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1 The classification problem

We move now from the regression problem to the classification problem. The setting
for the classification problem is similar to that of the regression problem. We have
a response variable y and p explanatory variables x1, . . . , xp. We collect data from n
subjects on these variables.

The only difference between regression and classification is that in classification,
the response variable y is binary (takes only two values; for our purposes we assume
it is coded as 0 and 1) while in regression, the response variable is continuous. The
explanatory variables, as before, are allowed to be both continuous and discrete.

There are many examples for the classification problem. Two simple examples are
given below. We shall look at more examples later on.

1.1 Frogs Dataset

This dataset is available in R via the package DAAG.

library(DAAG)

data(frogs)

212 sites of the Snowy Mountain area of New South Wales, Australia were surveyed
to understand the distribution of the Southern Corroboree frog. The variables are

1. pres.abs – 0/1 indicates whether frogs were found.

2. easting – reference point

3. northing – reference point

4. altitude – altitude in meters

5. distance – distance in meters to nearest extant population

6. NoOfPools– number of potential breeding pools

7. NoOfSites– number of potential breeding sites within a 2 km radius

8. avrain – mean rainfall for Spring period

9. meanmin – mean minimum Spring temperature
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10. meanmax – mean maximum Spring temperature

The variable easting refers to the distance (in meters) east of a fixed reference
point. Similarly northing refers to the distance (in meters) north of the reference
point. These two variables allow us to plot the data in terms of a map as follows:

plot(northing ~ easting, data = frogs, pch = c(1, 16)[frogs$pres.abs +

1], xlab = "Meters east of reference point", ylab = "Meters north")

In this plot, the filled points are for sites where frogs were found.

A natural goal is to under the relation between the occurance of a frog (pres.abs)
variable and the other geographic and environmental variables. This naturally falls
under the classification problem because the response variable pres.abs is binary.

1.2 Email Spam Dataset

This dataset is from Chapter 10 of the book Data Analysis and Graphics using R.
The original dataset is from the UC Irvine Repository of Machine Learning. The
original dataset had 4607 observations and 57 explanatory variables. The authors of
the book selected 6 of the 57 variables.

library(DAAG)

data(spam7)

head(spam7)
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## crl.tot dollar bang money n000 make yesno

## 1 278 0.000 0.778 0.00 0.00 0.00 y

## 2 1028 0.180 0.372 0.43 0.43 0.21 y

## 3 2259 0.184 0.276 0.06 1.16 0.06 y

## 4 191 0.000 0.137 0.00 0.00 0.00 y

## 5 191 0.000 0.135 0.00 0.00 0.00 y

## 6 54 0.000 0.000 0.00 0.00 0.00 y

spam = spam7

The main variable here is yesno which indicates if the email is spam or not. The
other variables are eplanatory variables. They are:

1. crl.tot - total length of words that are in capitals

2. dollar - frequency of the $ symbol, as percentage of all characters

3. bang - freqency of the symbol, as a percentage of all characters,

4. money - freqency of the word money, as a percentage of all words,

5. n000 - freqency of the text string 000, as percentage of all words,

6. make - freqency of the word make, as a percentage of all words.

The goal is mainly to predict whether a future email is spam or not based on
these explanatory variables. This is once again a classification problem because the
response is binary.

There are, of course, many more examples where the classification problem arises
naturally.

2 Logistic Regression Setup

We consider the simple example, where we just have a single predictor, x. We could
plot our y versus our x, and might have something that looks like this (these are both
toy data):
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Our goal then, is to predict the value of y from our x. What do you notice about
the relationship?

Logistic regression does not directly try to predict values 0 or 1, but instead tries
to predict the probability that y is 1 as a function of its variables,

p(x) = P (Y = 1|x)

Note that this can be thought of as our model for how the data were generated: for
a given value of x, you calculate the p(x), and then toss a coin that has probability
p(x) of heads. If you get a head, y = 1, otherwise y = 0.1

Note that unlike regression, we are not writing y as a function of x plus noise (i.e.
plus a random noise term). Instead we are writing P (Y = 1) as a function of x; our
randomness comes from the random coin toss we perform once we know x.

2.1 Estimating Probabilities

Let’s think of a simpler example, where we observe many observations with the same
value x, and their corresponding y:

1I.e. conditional on x, y is distributed Bernoulli(p(x)).
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Then how would you estimate the probability that y = 1 if x = 2?

We might then try to see how the probability of y = 1 is changing with x. For
example, in our toy data above with the repeats above, we see a decrease in the p̂ we
estimated at each x and the probability of y = 1, as x increases.

plot(as.numeric(colnames(tab)), prop.table(tab, margin = 2)[2,

], xlab = "x", ylab = expression(hat(p)))

If we had this kind of data with a lot of different x values, we could think of a way
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to estimate how p̂(x) is changing with x, perhaps with curve fitting methods we’ve
already considered.

More generally, however, we won’t have multiple observations with the same x.

Without repeated observations Returning to the more realistic data, we can’t
do this since we only have one observation at each x value. Consider, for example,
estimating the probability at x = 2.5 (colored in red). We only have 1 observation,
and p̂(2.5) = 1 is a very bad prediction based on 1 observation:

plot(y ~ x, data = toyDataCont)

points(y ~ x, data = subset(toyDataCont, x == 2.5),

col = "red", pch = 19, cex = 2)

We could do something, like try to bin together similar x values, and estimate
a single probability for similar values of x but creating bins gets complicated with
higher dimensions (though we will see that we do something similar to this in decision
trees, in the next module).

Instead, we want to predict the function p(x) as some straightforward function of
x.

Why not regression? We could ask, why don’t we just do regression to predict
p(x)?
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Numerically, we can do it, in the sense that lm will give us an answer that vaguely
seems reasonable. Here is the result from fitting to the toy data set above, as well as
another toy data set that is similar, but with less overlap between the two classes:

par(mfrow = c(2, 2))

plot(y ~ x, data = toyDataCont)

abline(lm(y ~ x, data = toyDataCont))

plot(lm(y ~ x, data = toyDataCont), which = 1)

plot(y ~ x, data = toyDataCont2)

abline(lm(y ~ x, data = toyDataCont2))

plot(lm(y ~ x, data = toyDataCont2), which = 1)

However, what do you notice about these predicted lines as our p̂(x)?
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This result doesn’t give us a prediction for probabilities (since values are outside
of [0,1]). Nor does it give us an obvious way to change our regression line into a
classification (i.e. avoid predicting probabilities and just classify from the regression
line); we’d have to make some decision based on our data when to decide to make
a prediction of 1, and since we aren’t correctly predicting probabilities, there’s no
obvious cutoff.

What do we do instead Instead, we want a function for p(x) that is constrained
within [0,1]. While we could try to figure out such a function, we are instead going
to take another tack which will lead us to such a function. Specifically, we are
going to consider transforming our p(x) so that it takes on all real-valued values, say
z(x) = τ(p(x)), and then estimate z(x) as a function of our x.

Why? Because now we are going to be free to use any simple modeling we’ve
already learned to estimate z(x), for example linear regression, without worrying
about any constraints. Then to get p(x), we will invert to get p(x) = τ−1(z(x)).

The other reason is that we are going to use a function such that z(x) = τ(p(x))
actually is interpretable and makes sense on its own; thus the function z(x) is actually
meaningful to interpret on its own.

2.2 Logit function / Log Odds

The function we are going to use is the logit function,

z = τ(p) = logit(p) = log(
p

1− p
).

p <- seq(0, 1, length = 100)

z <- log(p/(1 - p))

par(mfrow = c(1, 1))

plot(p, z, type = "l", ylab = "z=Logit(p)", xlab = "Probability",

main = "Logit Function")
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logit(p) is interpretable as the log of the odds, a common measure of discussing
the probability of something.

Odds If p = P (E) is the probability of an event E (for example our event could be
E = yi = 1, and p = P (yi = 1)) then the odds of the event E is denoted by odds(E)
and defined as

odds(E) :=
P (E)

1− P (E)
=

p

1− p
=

P (E happens)

P (E does not happen)
.

An important thing to note is that P (E) lies between 0 and 1, while the odds
(odds(E)) is only restricted to be nonnegative – i.e. it takes on a wider range of
values. Note the following simple formulae relating probability and odds:

p = P (E) =
odds(E)

1 + odds(E)

p <- seq(0, 1, length = 100)

odds <- p/(1 - p)

par(mfrow = c(1, 1))

plot(p, odds, type = "l", ylab = "odds", xlab = "Probability",

main = "Odds Function")

lines(p, 1/odds, type = "l", ylab = "odds", xlab = "Probability",

main = "Odds Function", lty = 2)

legend("top", legend = c("Odds(E)", "Odds(Not E)"),

lty = c(1, 2))
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Log Odds From a modeling perspective, it is still akward to work with odds, for
example to try to predict the odds, because it must be positive. Moreover, it’s not
symmetric in our choice of whether we consider P (y = 1) versus P (y = 0) – changes
of probability of P (y = 1) from 0.8 to 0.9 create large differences in the odds, but but
small differences in changing from the probability from 0.2 to 0.1. This is unfortunate,
since the choice of trying to estimate P (y = 1) is arbitrary – we could have just as
easily considered P (y = 0) and modelled that.

However, if we take the log of the odds, there is no restriction on log(odds(E)) i.e.,
log-odds can take on all real-valued numbers. Moreover, the function is symmetric
around 0.5, meaning that the difference between the log-odds of p = 0.8 versus p = 0.9
is the same difference as the log-odds of p = 0.2 versus p = 0.1 (see the figure above).

Converting from log-odds to probability We have the simple relationship be-
tween z, the log-odds, and the probability, p = P (E)

p = P (E) = τ−1(z) =
ez

1 + ez
=

1

1 + e−z
.

This function is called the logistic function. For any real-valued z, the logistic
function converts that number into a value between 0-1 (i.e. a probability).

x <- seq(-6, 6, length = 100)

p <- exp(x)/(1 + exp(x))

par(mfrow = c(1, 1))

plot(x, p, type = "l", xlab = "z", ylab = "p", main = "Logistic Function")
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2.3 Logistic Regression Model

Logistic regression, then, is to model the logit(p) (i.e. the log-odds of the event), as a
linear function of the explanatory variable values xi of the ith individual. Again, this
is a feasible thing to do, since log odds take on the full range of values, so that we
won’t have to figure out how to make sure we don’t predict probabilities outside of 0-
1. Then, because of the relationships above, this gives us a model for the probabilities
with respect to our explanatory variables x.

The logistic regression model, for p = P (y = 1), is given as:

log(
p

1− p
) = log (odds(y = 1)) = β0 + β1x1 + β2x2 + · · ·+ βpxp.

This means that we are modeling the probabilities as

p(x) =
exp(β0 + β1x1 + β2x2 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βpxp)

Visualizing Logistic Model To understand the effect of these variables, let’s
consider our model for a single variable x:

log(
pi

1− pi
) = log(odds(yi = 1)) = β0 + β1xi

which means

pi =
exp (β0 + β1xi)

1 + exp(β0 + β1xi)
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We can visualize the relationship of the probability p of getting y = 1 as a function
of x, for different values of β

Fitting the Logistic Model in R The R function for logistic regression in R is
glm() and it is not very different from lm() in terms of syntax.

For the frogs dataset, we will try to fit a model (but without the geographical
variables)

frogsNoGeo <- frogs[, -c(2, 3)]

glmFrogs = glm(pres.abs ~ ., family = binomial, data = frogsNoGeo)

summary(glmFrogs)

##

## Call:

## glm(formula = pres.abs ~ ., family = binomial, data = frogsNoGeo)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.7215 -0.7590 -0.2237 0.8320 2.6789

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.105e+02 1.388e+02 0.796 0.42587

## altitude -3.086e-02 4.076e-02 -0.757 0.44901

## distance -4.800e-04 2.055e-04 -2.336 0.01949 *
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## NoOfPools 2.986e-02 9.276e-03 3.219 0.00129 **

## NoOfSites 4.364e-02 1.061e-01 0.411 0.68077

## avrain -1.140e-02 5.995e-02 -0.190 0.84920

## meanmin 4.899e+00 1.564e+00 3.133 0.00173 **

## meanmax -5.660e+00 5.049e+00 -1.121 0.26224

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 279.99 on 211 degrees of freedom

## Residual deviance: 198.74 on 204 degrees of freedom

## AIC: 214.74

##

## Number of Fisher Scoring iterations: 6

glm stands for generalized linear model. Logistic regression is a special case
of a generalized linear model; the family = binomial clause in the function tells R to
fit a logistic regression equation to the data – namely what kind of function to use to
determine whether the predicted probabilities fit our data.

3 Interpreting the Results

3.1 Coefficients

The parameter βj is interpreted as the change in log-odds of the event y = 1 for
a unit change in the variable xj provided all other explanatory variables are kept
unchanged. Equivalently, eβj can be interpreted as the multiplicative change in odds
due to a unit change in the variable xj – provided all other explanatory variables are
kept unchanged.

The R function provides estimates of the parameters β0, . . . , βp. For example,
in the frogs dataset, the estimated coefficient of the variable NoOfPools is 0.02986.
This is interpreted as the change in log-odds of the event of finding a frog when
the NoOfPools increases by one (provided the other variables remain unchanged).
Equivalently, the odds of finding a frog get multiplied by exp(0.02986) = 1.03031
when the NoOfPools increases by one.

P-values are also provided for each β̂j; they have a similar interpretation as in
linear regression, namely evaluating the null hypothesis that βj = 0. We are not
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going to go into how these p-values are calculated. Basically, if the model is true, β̂j
will be approximately normally distributed, with that approximation being better for
larger sample size. Logistic regression significance statements rely much more heavily
on asymptotics (i.e. having large sample sizes), even if the data exactly follows the
data generation model!

3.2 Fitted Values and prediction

Now suppose a new site is found in the area for which the explanatory variable values
are: altitude 1700 m, distance 400 m, NoOfPools 30, NoOfSites 8, avrain 150 (mm
??), meanmin 4 (degrees celsius ??) and meanmax is 16 (degrees celsius ??). What
can our logistic regression equation say about the presence or absence of frogs in this
area? Our logistic regression allows us to calculate the log(odds) of finding frogs in
this area as:

x0 = c(1, 1700, 400, 30, 8, 150, 4, 16)

sum(x0 * glmFrogs$coefficients)

## [1] -13.58643

Remember that this is log(odds). From here, the odds of finding frogs is calculated
as

exp(sum(x0 * glmFrogs$coefficients))

## [1] 1.257443e-06

These are very low odds. If one wants to obtain an estimate of the probability
of finding frogs at this new location, we can use the formula above to get:

exp(sum(x0 * glmFrogs$coefficients))/(1 + exp(sum(x0 *

glmFrogs$coefficients)))

## [1] 1.257441e-06

Therefore, we will predict that this species of frog will not be present at this new
location.
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Similar to fitted values in linear regression, we can obtain fitted probabilities in
logistic regression for each of the observations in our sample using the fitted function:

head(fitted(glmFrogs))

## 2 3 4 5 6 7

## 0.9994421 0.9391188 0.8683363 0.7443973 0.9427198 0.7107780

These fitted values are the fitted probabilities for each observation in our sample.
For example, for i = 45, we can also calculate the fitted value manually as:

i = 45

rrg = c(1, frogs$altitude[i], frogs$distance[i], frogs$NoOfPools[i],

frogs$NoOfSites[i], frogs$avrain[i], frogs$meanmin[i],

frogs$meanmax[i])

eta = sum(rrg * glmFrogs$coefficients)

prr = exp(eta)/(1 + exp(eta))

c(manual = prr, FittedFunction = unname(glmFrogs$fitted.values[i]))

## manual FittedFunction

## 0.5807378 0.5807378

The following plots the fitted values against the actual response:

boxplot(fitted(glmFrogs) ~ frogs$pres.abs, at = c(0,

1))

points(x = jitter(frogs$pres.abs), fitted(glmFrogs))
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Why do I plot this as a boxplot?

Some of the regions where frogs were present seems to have received very low
fitted probability under the model (and conversely, some of the regions with high
fitted probability did not actually have any frogs). We can look at these unusual
points in the following plot:

sel <- frogs$pres.abs == 0 & glmFrogs$fitted > 0.7

par(mfrow = c(1, 2))

plot(northing ~ easting, data = frogs, pch = c(1, 16)[frogs$pres.abs +

1], col = c("black", "red")[factor(sel)], xlab = "Meters east of reference point",

ylab = "Meters north", main = "Points with no frogs, but high prob")

sel <- frogs$pres.abs == 1 & glmFrogs$fitted < 0.2

plot(northing ~ easting, data = frogs, pch = c(1, 16)[frogs$pres.abs +

1], col = c("black", "red")[factor(sel)], xlab = "Meters east of reference point",

ylab = "Meters north", main = "Points with frogs, but low prob")
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What do you notice about these points?

3.3 Fitting the model & Residual Deviance

We haven’t discussed how we find the “best” choice of coefficients β for our model.
Like regression, we are going to choose the coefficients based on getting the best fit
to our data.

In regression we considered the squared residual as a measure of our fit to an
observation,

(yi − ŷi)2,

and minimizing the average fit to our data. We will do something similar in logistic
regression, but

1. We will consider the fit of the fitted probabilities

2. the criterion we use to determine the best coefficients β is not the residual, but
another notion of “fit” to every observation.

Let p̂1, . . . , p̂n denote the fitted probabilities in logistic regression for a specific
coefficient. The actual response values are y1, . . . , yn (note that these are binary). If
the fit is good, we would expect p̂i to be small (close to zero) when yi is 0 and p̂i
to be large (close to one) when yi is 1. Conversely, if the fit is not good, we would
expect p̂i to be large for some yi that is zero and p̂i to be small for some yi that is 1.
A commonly used function for measuring if a probability p is close to 0 is −2 log p.
This quantity −2 log p is always nonnegative and it becomes very large if p is close
to zero. Similarly, one can measure if a probability p is close to 1 by −2 log(1 − p).
Using these quantities, we measure the quality of fit of p̂i to yi by

Dev(p̂i, yi) =

{
−2 log p̂i : yi = 1
−2 log (1− p̂i) : yi = 0

This is called the deviance.2If Dev(p̂i, yi) is large, it means that p̂i is not a good fit
for yi.

2This comes from assuming that the yi follow a Bernoulli distribtion with probability pi. Then
this is the negative log-likelihood of the observation, and by minimizing the average of this over all
observations, we are maximizing the likelihood.
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Because yi is either 0 or 1, the above formula for Dev(p̂i, yi) can be written more
succinctly as

Dev(p̂i, yi) = yi (−2 log p̂i) + (1− yi) (−2 log(1− p̂i)) .

Note that this is for the ith observation. We can get a measure of the overall goodness
of fit (across all observations) by simply summing this quantity over i = 1, . . . , n. The
resulting quantity is called the Residual Deviance:

RD =
n∑
i=1

Dev(p̂i, yi).

Just like RSS, small values of RD are preferred and large values indicate lack of fit.

This doesn’t have our βj anywhere, so how does this help in choosing the best β?
Well, our model says that p̂i is a specific function of our xi values:

p̂i = p̂(xi) = τ−1(β̂0 + . . .+ β̂px
(p)
i ) =

exp(β̂0 + . . .+ β̂px
(p)
i )

1 + exp(β̂0 + . . .+ β̂px
(p)
i )

So we can put those values into our equation above, and find the β̂j that maximize
that quantity. Unlike linear regression, this has to be maximized by a computer –
you can’t write down an expression for the β̂j that maximize this quantity equation.

Residual Deviance in R The function deviance can be used in R to calculate
deviance. It can, of course, also be calculated manually using the fitted probabilities.

RD (Residual Deviance) can be calculated from our glm object as
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deviance(glmFrogs)

## [1] 198.7384

4 Comparing Models

4.1 Deviance and submodels

Residual Deviances has parallels to RSS in linear regression, and we can use deviance
to compare models similarly to linear regression.

RD decreases as you add variables Just like the RSS in linear regression, the
RD in logistic regression will always decrease as more variables are added to the
model. For example, in the frogs dataset, if we remove the variable NoOfPools, the
RD changes to:

m2 = glm(pres.abs ~ altitude + distance + NoOfSites +

avrain + meanmin + meanmax, family = binomial,

data = frogs)

deviance(m2)

## [1] 210.8392

deviance(glmFrogs)

## [1] 198.7384

Note that RD decreased from 210.84 to 198.7384 by adding NoOfPools.

The Null Model (No Variables) We can similarly ask whether we need any
of the variables (like the F test). The Null Deviance (ND) is the analogue of TSS
(Total Sum of Squares) in linear regression. It simply refers to the deviance when
there are no explanatory variables i.e., when one does logistic regression with only
the intercept.
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We can fit a model in R with no variables with the following syntax:

m0 <- glm(pres.abs ~ 1, family = binomial, data = frogs)

deviance(m0)

## [1] 279.987

Note, when there are no explanatory variables, the fitted probabilities are all equal
to ȳ:

head(fitted(m0))

## 2 3 4 5 6 7

## 0.3726415 0.3726415 0.3726415 0.3726415 0.3726415 0.3726415

mean(frogs$pres.abs)

## [1] 0.3726415

Notice that this null deviance is reported in the summary of the full model we fit:

summary(glmFrogs)

##

## Call:

## glm(formula = pres.abs ~ ., family = binomial, data = frogsNoGeo)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.7215 -0.7590 -0.2237 0.8320 2.6789

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.105e+02 1.388e+02 0.796 0.42587

## altitude -3.086e-02 4.076e-02 -0.757 0.44901

## distance -4.800e-04 2.055e-04 -2.336 0.01949 *

## NoOfPools 2.986e-02 9.276e-03 3.219 0.00129 **

## NoOfSites 4.364e-02 1.061e-01 0.411 0.68077
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## avrain -1.140e-02 5.995e-02 -0.190 0.84920

## meanmin 4.899e+00 1.564e+00 3.133 0.00173 **

## meanmax -5.660e+00 5.049e+00 -1.121 0.26224

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 279.99 on 211 degrees of freedom

## Residual deviance: 198.74 on 204 degrees of freedom

## AIC: 214.74

##

## Number of Fisher Scoring iterations: 6

Significance of submodels The deviances come with degrees of freedom. The
degrees of freedom of RD is n−p−1 (exactly equal to the residual degrees of freedom
in linear regression) while the degrees of freedom of ND is n− 1.

Unlike regression, the automatic summary does not give a p-value as to whether
this is a significant change in deviance. Similarly, the anova function for comparing
submodels doesn’t give a significance for comparing a submodel to the larger model

anova(m0, glmFrogs)

## Analysis of Deviance Table

##

## Model 1: pres.abs ~ 1

## Model 2: pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +

## meanmin + meanmax

## Resid. Df Resid. Dev Df Deviance

## 1 211 279.99

## 2 204 198.74 7 81.249

The reason for this that because for logistic regression, unlike linear regression,
there are multiple tests that for the same test. Furthermore, the glm function can fit
other models than just the logistic model, and depending on those models, you will
want different tests. I can specify a test, and get back a significance value:

anova(m0, glmFrogs, test = "LRT")
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## Analysis of Deviance Table

##

## Model 1: pres.abs ~ 1

## Model 2: pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +

## meanmin + meanmax

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 211 279.99

## 2 204 198.74 7 81.249 7.662e-15 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

What are the conclusions of these tests?

Comparison with Tests of β̂j Notice that unlike linear regression, you get slightly
different answers testing the importance of leaving out NoOfPools using the anova
above and test statistics that come with the summary of the logistic object:

anova(m2, glmFrogs, test = "LRT")

## Analysis of Deviance Table

##

## Model 1: pres.abs ~ altitude + distance + NoOfSites + avrain + meanmin +

## meanmax

## Model 2: pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +

## meanmin + meanmax

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 205 210.84

## 2 204 198.74 1 12.101 0.000504 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

cat("Summary results:\n")

## Summary results:

round(summary(glmFrogs)$coeff, 4)
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## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 110.4935 138.7622 0.7963 0.4259

## altitude -0.0309 0.0408 -0.7571 0.4490

## distance -0.0005 0.0002 -2.3360 0.0195

## NoOfPools 0.0299 0.0093 3.2192 0.0013

## NoOfSites 0.0436 0.1061 0.4114 0.6808

## avrain -0.0114 0.0599 -0.1901 0.8492

## meanmin 4.8991 1.5637 3.1329 0.0017

## meanmax -5.6603 5.0488 -1.1211 0.2622

They are still testing the same null hypothesis, but they are making different
choices about the statistic to use3; in linear regression the different choices converge
to the same test (the F -statistic for ANOVA is the square of the t-statistic), but
this is a special property of normal distribution. Theoretically these two choices are
equivalent for large enough sample size; in practice they can differ.

4.2 Variable Selection using AIC

Although the Residual Deviance (RD) measures goodness of fit, it cannot be used for
variable selection because the full model will have the smallest RD. The AIC however
can be used as a goodness of fit criterion (this involves selecting the model with the
smallest AIC).

AIC We can similarly calculate the AIC , only now it is based on the residual
deviance,

AIC = RD + 2 (p+ 1)

AIC(glmFrogs)

## [1] 214.7384

glmFrogs$deviance + 2 * (7 + 1)

## [1] 214.7384

3The glm summary gives the Wald-statistics, while the anova uses the likelihood ratio statistic.
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Based on AIC, we have the same choices as in linear regression. In principle, one
can go over all possible submodels and select the model with the smallest value of
AIC. But this involves going over 2p models which might be computationally difficult
if p is moderate or large. A useful alternative is to use stepwise methods, only now
comparing the change in RD rather than RSS; we can use the same step function in
R:

step(glmFrogs, direction = "both", trace = 0)

##

## Call: glm(formula = pres.abs ~ distance + NoOfPools + meanmin + meanmax,

## family = binomial, data = frogsNoGeo)

##

## Coefficients:

## (Intercept) distance NoOfPools meanmin meanmax

## 14.0074032 -0.0005138 0.0285643 5.6230647 -2.3717579

##

## Degrees of Freedom: 211 Total (i.e. Null); 207 Residual

## Null Deviance: 280

## Residual Deviance: 199.6 AIC: 209.6

5 Classification Using Logistic Regression

Suppose that, for a new site, our logistic regression model predicts that the probability
that a frog will be found at that site to be p̂(x). What if we want to make a binary
prediction, rather than just a probability, i.e. prediction ŷ that is a 1 or 0, prediction
whether there will be frogs found at that site. How large should p̂(x) be so that we
predict that frogs will be found at that site? 0.5 sounds like a fair threshold but
would 0.6 be better?

Let us now introduce the idea of a confusion matrix. Given any chosen thresh-
old, we can form obtain predictions in terms of 0 and 1 for each of the sample observa-
tions by applying the threshold to the fitted probabilities given by logistic regression.
The confusion matrix is created by comparing these predictions with the actual ob-
served responses.

ŷ = 0 ŷ = 1
y = 0 C0 W1

y = 1 W0 C1
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• C0 denotes the number of observations where we were correct in predicting 0:
both the observed response as well as our prediction are equal to zero.

• W1 denotes the number of observations where were wrong in our predictions of
1: the observed response equals 0 but our prediction equals 1.

• W0 denotes the number of observations where were wrong in our predictions of
0: the observed response equals 1 but our prediction equals 0.

• C1 denotes the number of observations where we were correct in predicting 0:
both the observed response as well as our prediction are equal to 1.

For example, for the frogs data, if we choose the threshold 0.5, then the entries of
the confusion matrix can be calculated as:

cat("Confusion for threshold 0.5:\n")

## Confusion for threshold 0.5:

confusion(frogs$pres.abs, glmFrogs$fitted.values, 0.5)

## C0 W1 W0 C1

## 0.5 112 21 21 58

On the other hand, if we use a threshold of 0.3, the numbers will be:

cat("Confusion for threshold 0.3:\n")

## Confusion for threshold 0.3:

confusion(frogs$pres.abs, glmFrogs$fitted.values, 0.3)

## C0 W1 W0 C1

## 0.3 84 49 10 69

Note that C0 and C1 denote the extent to which the response agrees with our
threshold. And W1 and W0 measure the extent to which they disagree. An optimal
threshold can be chosen to be one which minimizes W1 + W0. We can compute the
entries of the confusion matrix for a range of possible thresholds.
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## C0 W1 W0 C1

## 0 0 133 0 79

## 0.05 33 100 3 76

## 0.1 47 86 5 74

## 0.15 61 72 5 74

## 0.2 69 64 6 73

## 0.25 80 53 10 69

## 0.3 84 49 10 69

## 0.35 91 42 13 66

## 0.4 100 33 14 65

## 0.45 106 27 18 61

## 0.5 112 21 21 58

## 0.55 118 15 26 53

## 0.6 121 12 35 44

## 0.65 126 7 44 35

## 0.7 129 4 50 29

## 0.75 130 3 59 20

## 0.8 133 0 69 10

## 0.85 133 0 71 8

## 0.9 133 0 73 6

## 0.95 133 0 78 1

## 1 133 0 79 0

Notice that I can get either W1 or W0 exactly equal to 0 (i.e no mis-classifications).
Why is that not a good idea?

We can then plot the value of W1 + W0 for each value of the threshold in the
following plot:

plot(thr, conf[, "W1"] + conf[, "W0"], xlab = "threshold",

ylab = "W1+W0")
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The smallest value of W1 + W0 corresponds to the threshold 0.55. It is sensible
therefore to use this threshold for predictions.

5.1 Example of Spam Dataset

Let us now consider the email spam dataset. Recall the dataset:

head(spam7)

## crl.tot dollar bang money n000 make yesno

## 1 278 0.000 0.778 0.00 0.00 0.00 y

## 2 1028 0.180 0.372 0.43 0.43 0.21 y

## 3 2259 0.184 0.276 0.06 1.16 0.06 y

## 4 191 0.000 0.137 0.00 0.00 0.00 y

## 5 191 0.000 0.135 0.00 0.00 0.00 y

## 6 54 0.000 0.000 0.00 0.00 0.00 y

Before fitting a logistic regression model, let us first look at the summary and
histograms of the explanatory variables:

summary(spam)

## crl.tot dollar bang money

## Min. : 1.0 Min. :0.00000 Min. : 0.0000 Min. : 0.00000
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## 1st Qu.: 35.0 1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.00000

## Median : 95.0 Median :0.00000 Median : 0.0000 Median : 0.00000

## Mean : 283.3 Mean :0.07581 Mean : 0.2691 Mean : 0.09427

## 3rd Qu.: 266.0 3rd Qu.:0.05200 3rd Qu.: 0.3150 3rd Qu.: 0.00000

## Max. :15841.0 Max. :6.00300 Max. :32.4780 Max. :12.50000

## n000 make yesno

## Min. :0.0000 Min. :0.0000 n:2788

## 1st Qu.:0.0000 1st Qu.:0.0000 y:1813

## Median :0.0000 Median :0.0000

## Mean :0.1016 Mean :0.1046

## 3rd Qu.:0.0000 3rd Qu.:0.0000

## Max. :5.4500 Max. :4.5400

par(mfrow = c(3, 2))

for (i in 1:5) hist(spam[, i], main = "", xlab = names(spam)[i],

breaks = 10000)

par(mfrow = c(1, 1))

The following is a pairs plot of the variables.

pairs(spam, cex = 0.5)
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It is clear from these plots that the explanatory variables are highly skewed and
it is hard to see any structure in these plots. Visualization will be much easier if we
take logarithms of the explanatory variables.

s = 0.001

pairs(~log(crl.tot) + log(dollar + s) + log(bang +

s) + log(money + s) + log(n000 + s) + log(make +

s) + yesno, data = spam, cex = 0.5)

We now fit a logistic regression model for yesno based on the logged explanatory
variables.
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spam.glm <- glm(yesno ~ log(crl.tot) + log(dollar +

s) + log(bang + s) + log(money + s) + log(n000 +

s) + log(make + s), family = binomial, data = spam)

summary(spam.glm)

##

## Call:

## glm(formula = yesno ~ log(crl.tot) + log(dollar + s) + log(bang +

## s) + log(money + s) + log(n000 + s) + log(make + s), family = binomial,

## data = spam)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.1657 -0.4367 -0.2863 0.3609 2.7152

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.11947 0.36342 11.335 < 2e-16 ***

## log(crl.tot) 0.30228 0.03693 8.185 2.71e-16 ***

## log(dollar + s) 0.32586 0.02365 13.777 < 2e-16 ***

## log(bang + s) 0.40984 0.01597 25.661 < 2e-16 ***

## log(money + s) 0.34563 0.02800 12.345 < 2e-16 ***

## log(n000 + s) 0.18947 0.02931 6.463 1.02e-10 ***

## log(make + s) -0.11418 0.02206 -5.177 2.25e-07 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 6170.2 on 4600 degrees of freedom

## Residual deviance: 3245.1 on 4594 degrees of freedom

## AIC: 3259.1

##

## Number of Fisher Scoring iterations: 6

Note that all the variables are significant. We actually could have fitted a linear
model as well (even though the response variable is binary).

spam.lm <- lm(as.numeric(yesno == "y") ~ log(crl.tot) +

log(dollar + s) + log(bang + s) + log(money + s) +

log(n000 + s) + log(make + s), data = spam)

summary(spam.lm)
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##

## Call:

## lm(formula = as.numeric(yesno == "y") ~ log(crl.tot) + log(dollar +

## s) + log(bang + s) + log(money + s) + log(n000 + s) + log(make +

## s), data = spam)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.10937 -0.13830 -0.05674 0.15262 1.05619

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.078531 0.034188 31.547 < 2e-16 ***

## log(crl.tot) 0.028611 0.003978 7.193 7.38e-13 ***

## log(dollar + s) 0.054878 0.002934 18.703 < 2e-16 ***

## log(bang + s) 0.064522 0.001919 33.619 < 2e-16 ***

## log(money + s) 0.039776 0.002751 14.457 < 2e-16 ***

## log(n000 + s) 0.018530 0.002815 6.582 5.16e-11 ***

## log(make + s) -0.017380 0.002370 -7.335 2.61e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.3391 on 4594 degrees of freedom

## Multiple R-squared: 0.5193,Adjusted R-squared: 0.5186

## F-statistic: 827.1 on 6 and 4594 DF, p-value: < 2.2e-16

A comparison plot of the fitted values for the linear regression and logistic regres-
sion is given below.

par(mfrow = c(1, 1))

plot(spam.lm$fitted.values, spam.glm$fitted.values,

asp = 1)

abline(c(0, 1), col = "red")
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Note that some of the fitted values for the linear model are less than 0 and some
are more than one. We can formally compare the prediction performance of the
linear model and the generalized linear model by the confusion matrix. For various
thresholds on the fitted values, the confusion matrices of linear regression and logistic
regression can be computed and we can compare their misclassification error

v <- seq(0.001, 0.999, length = 50)

y <- as.numeric(spam$yesno == "y")

glm.conf <- confusion(y, spam.glm$fitted, v)

lm.conf <- confusion(y, spam.lm$fitted, v)

matplot(v, cbind((glm.conf[, "W1"] + glm.conf[, "W0"])/4601,

(lm.conf[, "W1"] + lm.conf[, "W0"])/4601), xlab = "threshold",

ylab = "W0+W1", type = "b", pch = 1)

legend(0.8, 0.4, lty = 1:2, col = 1:2, c("glm", "lm"))
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It is clear from this plot that 0.5 is the best threshold for both linear and logistic
regression as the misclassification error is minimized at 0.5. Logistic regression seems
to be slightly better than linear regression at other thresholds.

5.2 Trading off different types of errors

We used the quantity W0 +W1 to quantify how many errors we make. However, these
are combining together two different types of errors, and we might care about one
type of error more than another. For example, if y = 1 if a person has a disease and
y = 0 if they do not, then we might have different ideas about how much of the two
types of error we would want. W1 are all of the times we say someone has a disease
when they don’t, while W0 is the reverse (we say someone has the disease, but they
don’t).

We’ve already seen that it’s not a good idea to try to drive either W0 or W1 to
zero (if that was our goal we could just ignore any data and always says someone has
the disease, and that would make W0 = 0 since we would never have ŷ = 0).

Alternatively, we might have a prediction procedure, and want to quantify how
good it is, and so we want a vocabulary to talk about the types of mistakes we make.

Recall our types of results:

pred = 0 pred = 1
obs = 0 C0 W1

obs = 1 W0 C1
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There are two sets of metrics that are commonly used.

Precision/Recall

• Precision
P (y = 1|ŷ = 1)

We estimate it with the proportion of predictions of ŷ = 1 that are correct

# correct ŷ = 1

#ŷ = 1
=

C1

C1 +W1

• Recall
P (ŷ = 1|y = 1)

Estimated with proportion of y = 1 that are correctly predicted

# correct ŷ = 1

#y = 1

C1

C1 +W0

Sensitivity/Specificity

• Specificity (or true negative rate)

P (ŷ = 0|y = 0)

Estimated with the proportion of all y = 0 that are correctly predicted

# correct ŷ = 0

#ŷ = 0
=

C0

C0 +W1

• Sensitivity (equivalent to Recall or true positive rate)

P (ŷ = 1|y = 1)

Estimated with the proportion of all y = 1 that are correctly predicted

# correct ŷ = 1

#y = 1
=

C1

C1 +W0
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Disease classification example: If we go back to our example of y = 1 if a person
has a disease and y = 0 if they do not, then we have:

• Precision The proportion of patients classified with the disease that actually
have the disease.

• Recall/Sensitivity The proportion of diseased patients that will be correctly
identified as diseased

• Specificity The proportion of non-diseased patients that will be correctly iden-
tified as non-diseased

5.3 ROC/Precision-Recall Curves

These metrics come in pairs because you usually consider the two pairs together to
decide on the right cutoff, as well as to generally compare techniques.

These measures are usually done plotted: Sensitivity plotted against specificity is
called a ROC curve (”Receiver operating characteristic” curve); the other plot is just
the precision-recall plot.

Here are these curves estimated for our glm model on the spam dataset (note that
the points are where we actually evaluated it, and we draw lines between those points
to get a curve)

spamGlm.precision <- glm.conf[, "C1"]/(glm.conf[, "C1"] +

glm.conf[, "W1"])

spamGlm.recall <- glm.conf[, "C1"]/(glm.conf[, "C1"] +

glm.conf[, "W0"])

spamGlm.spec <- glm.conf[, "C0"]/(glm.conf[, "C0"] +

glm.conf[, "W1"])

par(mfrow = c(1, 2))

plot(x = spamGlm.precision, y = spamGlm.recall, xlab = "Precision",

ylab = "Recall / Sensitivity", type = "b", xlim = c(0,

1), ylim = c(0, 1), main = "Precision-Recall")

plot(x = spamGlm.spec, y = spamGlm.recall, ylab = "Recall / Sensitivity",

xlab = "Specificity", type = "b", xlim = c(0, 1),

ylim = c(0, 1), main = "ROC")
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Note there is a NaN for precision for the last value of the threshold so there is no
point – why would there be a NaN?

We can compare linear and logistic regressions in one plot as follows.

spamlm.precision <- lm.conf[, "C1"]/(lm.conf[, "C1"] +

glm.conf[, "W1"])

spamlm.recall <- lm.conf[, "C1"]/(lm.conf[, "C1"] +

glm.conf[, "W0"])

spamlm.spec <- lm.conf[, "C0"]/(lm.conf[, "C0"] + glm.conf[,

"W1"])

par(mfrow = c(1, 2))

matplot(x = cbind(spamGlm.precision, spamlm.precision),

y = cbind(spamGlm.recall, spamlm.recall), xlab = "Precision",

ylab = "Recall", type = "l")

legend(0.8, 0.4, lty = 1:2, col = 1:2, c("glm", "lm"))

matplot(x = cbind(spamGlm.spec, spamlm.spec), y = cbind(spamGlm.recall,

spamlm.recall), ylab = "Recall / Sensitivity",

xlab = "Specificity", type = "l")

legend(0.8, 0.4, lty = 1:2, col = 1:2, c("glm", "lm"))
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Why one versus the other? Notice that Precision-Recall focuses on the cases of
y = 1 or ŷ = 1. This can be useful in cases where your focus is really on how well you
detect someone and you are not concerned about how well you are detecting y = 0.
This is most common if the vast majority of the population has y = 0, and you want
to detect very rare events when y = 1 – these are often problems when you are “trying
to find a needle in the haystack”, and only care about your ability to find positive
results. For example, suppose you want to consider how well a search engine lists of
links are correctly related to the topic requested. You can imagine all websites in the
world have a true yi = 1 if it would be correct to be listed and the search engine gives
a ŷi = 1 to those websites that they will return. Then precision is asking (on average)
what proportion of the search engine’s list of websites are correct; recall/sensitivity
is asking what proportion of all of the yi = 1 websites are found. Both are reasonable
questions to try to trade off. Specificity, however, is what proportion of all the other
(billion?) websites that are not related (i.e. yi = 0) are NOT given in the search
engine’s list of good websites. You are not concerned about this quantity at all.

However, in other contexts it matters very much how good you are at separating
the negative results (i.e. y = 0). Consider predicting if a patient has a disease
(ŷi = 1), and then yi is whether the patient actually has a disease. A negative result
tells a patient that the patient doesn’t have the disease – and is a serious problem if
in fact the patient does have the disease, and thus doesn’t get treatment.

Note that the key distinction between these two contexts the reprecussions to being
negative. There are many settings where the use of the predictions is ultimately as a
recommendation system (movies to see, products to buy, best times to buy something,
potential important genes to investigate, etc), so mislabeling some positive things as
negative (i.e. not finding them) isn’t a big deal so long as what you do recommend
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is high quality.

Indeed, the cases where trade-offs lead to different conclusions tend to be cases
where the overall proportion of yi = 1 in the population is small. (However, just
because they have a small proportion in the population doesn’t mean you don’t care
about making mistakes about negatives – missing a diagnosis for a rare but serious
disease is still a problem)
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