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Comparing groups evaluates how a continuous variable (often called the re-
sponse or independent variable) is related to a categorical variable. In our flight
example, the continuous variable is the flight delay and the categorical variable is
which airline carrier was responsible for the flight.

Now let us turn to relating two continuous variables. We will review the method
that you’ve learned already – simple linear regression – and briefly discuss inference
in this scenario. Then we will turn to expanding these ideas for more flexible curves
than just a line.

1 Linear regression with one predictor

Let’s consider the following data collected by the Department of Education regard-
ing undergraduate institutions in the 2013-14 academic year (https://catalog.
data.gov/dataset/college-scorecard). The department of education collects a
great deal of data regarding the individual colleges/universities (including for-profit
schools). Let’s consider two variables, the tuition costs and the retention rate of stu-
dents (percent that return after first year). We will exclude the for-profit institutes
(there aren’t many in this particular data set), and focus on out-of-state tuition to
make the values more comparable between private and public institutions.

What do you observe in these relationships?

It’s not clear what’s going on with this observation with 0% return rate, but a

Instructor: Fithian #3, Spring 2020, STAT 131A 3



0% return rate is an unlikely value for an accreditated institution and is highly likely
to be an error. So for now we’ll drop that value. This is not something we want to
do lightly, and points to the importance of having some understanding of the data
– knowing that a priori 0% is a suspect number, for example. But just looking at
the plot, it’s not particularly clear that 0% is any more “outlying” than other points;
we’re basing this on our knowledge that 0% returning after the first year seems quite
surprising. If we look at the college (Pennsylvania College of Health Sciences), a
google search shows that it changed it’s name in 2013 which is a likely cause.

## X INSTNM STABBR ADM_RATE_ALL SATMTMID

## 1238 5930 Pennsylvania College of Health Sciences PA 398 488

## SATVRMID SAT_AVG_ALL AVGFACSAL TUITFTE TUITIONFEE_IN TUITIONFEE_OUT

## 1238 468 955 5728 13823 21502 21502

## CONTROL UGDS UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN

## 1238 2 1394 0.8364 0.0445 0.0509 0.0294 7e-04

## UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN INC_PCT_LO INC_PCT_M1 INC_PCT_M2

## 1238 0.0029 0.0014 0 0.0337 0.367788462 0.146634615 0.227163462

## INC_PCT_H1 INC_PCT_H2 RET_FT4 PCTFLOAN C150_4 mn_earn_wne_p10

## 1238 0.175480769 0.082932692 0 0.6735 0.6338 53500

## md_earn_wne_p10 PFTFAC

## 1238 53100 0.7564

What do I see if I color the universities by whether they are private or not?
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This highlights why it is very important to use more than one variable in trying
to understand patterns or predict, which we will spend much more time on later in
the course. But for now we are going to focus on one variable analysis, so lets make
this a more valid exercise by just considering private schools.

1.1 Estimating a Linear Model

These are convenient variables to consider the simplest relationship you can imagine
for the two variables – a linear one:

y = β0 + β1x

Of course, this assumes there is no noise, so instead, we often write

y = β0 + β1x+ e

where e represents some noise that gets added to the β0 + β1x; e explains why the
data do not exactly fall on a line.1

We do not know β0 and β1. They are parameters of the model. We want to
estimate them from the data.

How to estimate the line There are many possible lines, of course, even if we
force them to go through the middle of the data (e.g. the mean of x,y)

1It is useful to remember that adding noise is not the only option – this is a choice of a model.
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How do we decide which line is best? A reasonable choice is one that makes the
smallest errors in predicting the response y. For each possible β0, β1 pair (i.e. each
line), we can calculate the prediction from the line,

ŷ(β0, β1, x) = β0 + β1x

and compare it to the actual observed y. Then we can say that the error in prediction
for the point (xi, yi) is given by

yi − ŷ(β0, β1, xi)

Of course, for any particular point (xi, yi), we can choose a β0 and β1 so that
β0 + β1xi is exactly yi. But that would only be true for one point; we want to find a
single line that seems “good” for all the points.
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We need a measure of the fit of the line to all the data. We do this by taking the
average error across all the points. This gives us a measure of the total amount of
error for a possible line.

1.2 Choise of error (loss function)

Using our error from above (the difference of yi and ŷi), would give us the average
error of

1

n

n∑
i=1

(yi − ŷi)

But notice that there’s a problem with this. Our errors are allowed to cancel out,
meaning a very large positive error coupled with a very large negative error cancel
each other and result in no measured error! That’s not a promising way to pick a
line – we want every error to count. So we want to have a strictly positive measure
of error so that error’s will accumulate.

The choice of how to quantify the error (or loss) is called the loss function,
`(y, ŷ(β0, β1)). There are two common choices for this problem

• Absolute loss
`(yi, ŷi) = |yi − ŷi(β0, β1)|

• Squared-error loss
`(yi, ŷi) = (yi − ŷi(β0, β1))2

Then our overall fit is given by

1

n

n∑
i=1

`(yi, ŷi(β0, β1))

1.3 Squared-error loss

The most commonly used loss is squared-error loss, also known as least squares
regression, where our measure of overall error for any particular β0, β1 is the average
squared error,

1

n

n∑
i=1

(yi − ŷi(β0, β1))2 =
1

n

n∑
i=1

(yi − β0 − β1xi)2

We can find the β0 and β1 that minimize the least-squared error, using the function
lm in R. We call these values we find β̂0 and β̂1. Below we draw the prediced line:
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What do you notice about this line?

lm(RET_FT4 ~ TUITIONFEE_OUT, data = private)

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT, data = private)

##

## Coefficients:

## (Intercept) TUITIONFEE_OUT

## 4.863e-01 9.458e-06

lmPrivate <- lm(RET_FT4 ~ TUITIONFEE_OUT, data = private)

names(lmPrivate)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"

lmPrivate$coefficients

## (Intercept) TUITIONFEE_OUT

## 4.863443e-01 9.458235e-06
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coef(lmPrivate)

## (Intercept) TUITIONFEE_OUT

## 4.863443e-01 9.458235e-06

How do you interpret the coefficients?

How much predicted increase in do you get for an increase of $10,000 in tuition?

Notice, as the below graphic jokes, the goal is not to exactly fit any particular
point, and our line might not actually go through any particular point.2

2The above graphic comes from the 1999 winner of the annual statistics department contest for
tshirt designs
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The estimates of β0 and β1 If we want we can write down the equation for β̂1
and β̂0 (you don’t need to memorize these equations)

β̂1 =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)
1
n

∑n
i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

What do you notice about the denominator of β̂1?

The numerator is also an average, only now it’s an average over values that involve
the relationship of x and y. Basically, the numerator is large if for the same obser-
vation i, both xi and yi are far away from their means, with large positive values
if they are consistently in the same direction and large negative values if they are
consistently in the opposite direction from each other.

1.4 Absolute Errors

Least squares is quite common, particularly because it quite easily mathematically
to find the solution. However, it’s equally compelling to use the absolute error loss,
rather than squared error, which gives us a measure of overall error as:

1

n

n∑
i=1

|yi − ŷ(β0, β1)|

We can’t write down the equation for the β̂0 and β̂1 that makes this error the smallest
possible, but we can find them using the computer, which is done by the rq function
in R.
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While least squares is more common for historical reasons (we can write down
the solution!), using absolute error is in many ways more compelling, just like the
median can be better than the mean for summarizing the distribution of a population.
With squared-error, large differences become even larger, increasing the influence of
outlying points, because reducing the squared error for these outlying points will
significantly reduce the overall average error.

We will continue with the traditional least squares, since we are not (right now)
going to spend very long on regression before moving on to other techniques for
dealing with two continuous variables.

2 Inference for linear regression

One question of particular interest is determining whether β1 = 0. Why? (Consider
this data on college tuition – what does β1 = 0 imply)?

We can use the same strategy of inference for asking this question – hypothesis
testing, p-values and confidence intervals.

As a hypothesis test, we have a null hypothesis of:

H0 : β1 = 0
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We can also set up the hypothesis

H0 : β0 = 0

However, this is (almost) never interesting. Consider our data: what would it mean
to have β0 = 0?

Does this mean we can just set β0 to be anything, and not worry about it?

2.1 Bootstrap Confidence intervals

Once we get estimates β̂0 and β̂1, how can we get bootstrap confidence intervals for
the parameters?

## lower estimate upper

## (Intercept) 4.628622e-01 4.863443e-01 5.094172e-01

## TUITIONFEE_OUT 8.766951e-06 9.458235e-06 1.014341e-05

## lower estimate upper

## (Intercept) 4.628622e-01 4.863443e-01 5.094172e-01

## TUITIONFEE_OUT 8.766951e-06 9.458235e-06 1.014341e-05

## NULL

## lower estimate upper

## 0.08766951 0.09458235 0.10143414

How do we interpret these confidence intervals? What do they tell us about the
problem?
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In principle, anything in this range is covered by the confidence intervals. However,
that is not quite true. Our confidence in where the line is actually is narrower than
what is shown, because some of the combinations of values of the two confidence
intervals don’t actually ever get seen together – these two statistics aren’t independent
from each other. Separate confidence intervals for the two values don’t give you that
information.3

2.2 Parametric Models

If we look at the summary of the lm function that does linear regression in R, we see
a lot of information beyond just the estimates of the coefficients:

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT, data = private)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.44411 -0.04531 0.00525 0.05413 0.31388

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.863e-01 1.020e-02 47.66 <2e-16 ***

## TUITIONFEE_OUT 9.458e-06 3.339e-07 28.32 <2e-16 ***

3You can actually have joint confidence regions that demonstrate the dependency between these
values, but that is beyond this class.
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08538 on 783 degrees of freedom

## Multiple R-squared: 0.5061,Adjusted R-squared: 0.5055

## F-statistic: 802.3 on 1 and 783 DF, p-value: < 2.2e-16

We see that it automatically spits out a table of estimated values and p-values
along with a lot of other stuff. This is exceedingly common – all statistical software
programs do this – so let’s cover the meaning of the most important components.

Null Hypotheses Why are there 2 p-values? What are the null hypotheses that
these p-values correspond to?

Parametric Model for the data: lm uses a standard parametric model to get the
distributions of our statistics β̂0 and β̂1.

Recall our linear model:
y = β0 + β1x+ e.

The standard parametric model for inference assumes a distribution for the errors e.
Specifically, we assume

• e ∼ N(0, σ2), i..e normal with the same (unknown) variance σ2.

• The unknown errors e1, . . . , en are all independent from each other

Notice, that means for a given xi, each yi is normally distributed, since it is just a
normal (ei) with a (unknown) constant added to it (β0 + β1xi). So

yi|xi ∼ N(β0 + β1xi, σ
2)

However, even though the errors ei are assumed i.i.d the yi are not i.i.d, why?

This assumption regarding the distribution of the errors allows us to know the
distribution of the β̂1. We won’t show this, but since each yi is normally distributed,

Instructor: Fithian #3, Spring 2020, STAT 131A 14



the β̂1 is as well.4

β̂1 ∼ N(β1, ν
2
1)

where

ν21 = var(β̂1) =
σ2∑n

i=1(xi − x̄)2

In what follows, just try to follow the logic, you don’t need to memorize these equa-
tions or understand where they come from.

Notice the similarities in the broad outline of the parametric t-test for two-groups.
We have an statistic, β̂1, and the assumptions of the parametric model gives us the
distribution of β̂1.

Estimating σ2 Of course, we have the same problem as the t-test – we don’t know
σ2! But we can estimate σ2 too and get an estimate of the variance (we’ll talk more
about how we estimate σ̂ when we return to linear regression with multiple variables)

ν̂21 = ˆvar(β̂1 =
σ̂2∑n

i=1(xi − x̄)2

Hypothesis Testing Using this, we can use the same idea as the t-test for two-
groups, and create a similar test statistic for β̂1 that standardizes β̂1

5

T1 =
β̂1√
ˆvar(β̂1)

Just like the t-test, T1 should be normally distributed6 This is exactly what lm gives
us:

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT, data = private)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.44411 -0.04531 0.00525 0.05413 0.31388

##

## Coefficients:

4If you look at the equation of β̂1, then we can see that it is a linear combination of the yi, and
linear combinations of normal R.V. are normal, even if the R.V. are not independent.

5In fact, we can also do this for β̂0, with exactly the same logic, though β0 is not interesting.
6with the same caveat, that when you estimate the variance, you affect the distribution of T1,

which matters in small sample sizes.
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## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.863e-01 1.020e-02 47.66 <2e-16 ***

## TUITIONFEE_OUT 9.458e-06 3.339e-07 28.32 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08538 on 783 degrees of freedom

## Multiple R-squared: 0.5061,Adjusted R-squared: 0.5055

## F-statistic: 802.3 on 1 and 783 DF, p-value: < 2.2e-16

Confidence intervals We can also create parametric confidence intervals for β̂1 in
the same way we did for two groups:

β̂1 ± 1.96ν̂1

## 2.5 % 97.5 %

## (Intercept) 4.663136e-01 5.063750e-01

## TUITIONFEE_OUT 8.802757e-06 1.011371e-05

2.2.1 Estimating σ2

How do we estimate σ2? Recall that σ2 is the variance of the error distribution. We
don’t know the true errors ei, but if we did, we know they are i.i.d and so a good
estimate of σ2 would be the sample variance of the true errors:

1

n− 1

∑
(ei − ē)2

However, these true errors are unknown. If we knew the true β0 and β1 we could
calculate the true ei, how?

But these coefficeints are also unknown. Yet, this does give us the idea that we
do have some idea of the errors since we have estimates of β0 and β1. Namely, we can
calculate the error of our data from the estimated line,

ri = yi − (β̂0 + β̂1xi)
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The ri are called the residuals. They are often called the errors, but they are not
the actual (true) error, however. They are the error from the estimated line.

Using the residuals, we can take the sample variance of the residuals as a good
first estimate of σ2,

1

n− 1

∑
(ri − r̄)2

Mean of residuals, r̄ In fact, it is an algebraic fact that r̄ = 0. But, this is NOT
a sign the line is a good fit. It is just always true, even when the line is a lousy fit to
the data.

Better estimate of σ Moreover, for regression, a better estimate is to divide by
n − 2 rather than n − 1. Doing so makes our estimate unbiased, meaning that the
average value of σ̂2 over many repeated samples will be σ. This is the same reason
we divide by n−1 in estimating the sample variance rather than 1/n for the estimate
of the variance of a single population.

These two facts gives us our final estimate:

σ̂2 =
1

n− 2

∑
i

r2i .

The residuals ri are not always great estimates of ei (for example, they aren’t
independent, they don’t have the same variance, etc). But, despite that, it turns out
that σ̂2 is a very good estimate of σ2, even if the errors aren’t normal.

2.3 Assumptions

Like the t-test, the bootstrap gives a more robust method than the parametric linear
model for creating confidence intervals.

The parametric linear model makes the following assumptions:

• Errors ei are independent

• Errors ei are i.i.d, meaning they have the same variance

• Errors are normally distributed
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The bootstrap makes the same kind of assumptions as with the two group com-
parisons:

• The i.i.d resampling of the bootstrapped data mirrors how the actual data was
generated (i.e. actual data was i.i.d)

• The sample size is large enough that the sample distribution is close to the real
distribution.

• The test statistic is well behaved (e.g. unbiased) – and this is true for regression

Notice, that both methods assume the data points are independent. This is the
most critical assumption for both methods. Both implicitly assume that all of the
observations have the same variance (i.i.d). The parametric method makes the further
assumption of normality of the errors (like the t-test).

In practice, we do not see much difference in these two methods for our data:

## lower estimate upper

## [1,] 8.802757e-06 9.458235e-06 1.011371e-05

## [2,] 8.766951e-06 9.458235e-06 1.014341e-05

2.4 Prediction Intervals

In addition to evaluating the coefficients, we can also look at the prediction we would
make. This is better way than the plots we did from the confidence intervals to get
an idea of what our predictions at a particular value would actually be.
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Prediction How does our model a value, say for tuition of $20,000?

## (Intercept)

## 0.675509

## 1

## 0.675509

These predictions are themselves statistics based on the data, and the uncer-
tainty/variability in the coefficients carries over to the predictions. So we can also
give confidence intervals for our prediction. There are two types of confidence inter-
vals.

• Confidence intervals about the predicted average response – i.e. prediction of
what is the average completion rate for all schools with tuition $20,000.

• Confidence intervals about a particular individual, i.e. prediction of a partic-
ular school that has tuition $20,000. These are actually not called confidence
intervals, but prediction intervals.

Clearly, we predict the same estimate for both of these settings, but our estimate
of the precision of these estimates varies. Which of these settings do you think would
have wider CI?

## fit lwr upr

## 1 0.675509 0.6670314 0.6839866

## fit lwr upr

## 1 0.675509 0.5076899 0.843328

We can compare these two intervals by calculating them for a large range of xi
values and plotting them:
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What do you notice about the difference in the confidence lines? How does it
compare to the observed data?

3 Least Squares for Polynomial models & beyond

Least squares will spit out estimates of the coefficients and p-values to any data
– the question is whether this is a good idea. For example, consider the variable
SAT_AVG_ALL that gives the average SAT score for the school. Looking at the public
institutions, what do you see as it’s relationship to the other two variables?
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We might imagine that other functions would be a better fit to the data for the
private schools. What might be some reasonable choices of functions?

We can fit other functions in the same way. Take a quadratic function, for example.
What does that look like for a model?

y = β0 + β1x+ β2x
2 + e

We can, again, find the best choices of those co-efficients by getting the predicted
value for a set of coefficients:

ŷi(β0, β1, β2) = β0 + β1xi + β2x
2
i ,

and find the error
`(yi, ŷi(β0, β1, β2))

and trying to find the choices that minimizes the average loss over all the observations.

If we do least squares for this quadratic model, we are trying to find the coefficients
β0, β1, β2 that minimize,

1

n

n∑
i=1

(yi − β0 − β1xi − β2x2i )2

Here are the results:
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It’s a little better, but not much. We could try other functions. A cubic function,
for example, is exactly the same idea.

ŷi(β0, β1, β2) = β0 + β1xi + β2x
2
i + β3x

3
i .

What do you think about the cubic fit?
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4 Local fitting

Defining a particular function to match the entire scope of the data might be difficult.
Instead we might want something that is more flexible. We’d really like to say

y = f(x) + e

and just estimate f , without any particular restriction on f .

Like with density estimation, we are going to slowly build up to understanding the
most commonly used method (LOESS) by starting with simpler ideas first. Brain-
storm with a partner: what ideas can you imagine for how you might get a descriptive
curve/line/etc to describe this data?

4.1 Running Mean or Median

One simple idea is to take a running mean or median over the data. In otherwords,
take a window of points, and as you slide this window across the x-axis, take the
mean.

f̂(x) =
1

# in window

∑
i:xi∈[x−w

2
,x+w

2
)

yi

There are a lot of varieties on this same idea. For example, you could make the
window not fixed width w, but a fixed number of points, etc. While it’s conceptually
easy to code from scratch, there are a lot of nitpicky details, so we’ll use a built in
implementation that does a fixed number of points.
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What do you notice when I change the number of points in each window? Which
seems more reasonable here?

Comparison to density estimation If this feels familiar, it should! This is very
similar to what we did in density estimation. However, in estimating the density p(x),
we were taking data xi that were in windows around x, and calculating the density
estimate p̂(x) using basically just the number of points in the window

p̂(x) =
1

nw{# xi in window}
=

∑
i:xi∈[x−w

2
,x+w

2
)

1

nw

With function estimation, we are finding the xi that are near x and then taking their
corresponding yi to calculate f̂(x). So for function estimation, the xi are used to
determining which points (xi, yi) to use, but the yi are used to calculate the value.

f̂(x) =
sum of yi in window

# xi in window

=

∑
i:xi∈[x−w

2
,x+w

2
) yi∑

i:xi∈[x−w
2
,x+w

2
) 1

4.2 Kernel weighting

One disadvantage to a running median is that it can create a curve that is rather
jerky as you add in one point/take away a point. Alternatively, if you have a wide
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window, then your curve at any point x will average the points that can be quite far
away, and treat them equally as points that are nearby.

We’ve already seen a similar concept when we talked about kernel density esti-
mation, instead of histograms. There we saw that we could describe our windows as
weighting of our points xi based on their distance from x. We can do the same idea
for our running mean:

f̂(x) =

∑
i:xi∈[x−w

2
,x+w

2
) yi∑

i:xi∈[x−w
2
,x+w

2
) 1

=

∑n
i=1 yif(x, xi)∑n
i=1 f(x, xi)

where again, f(x, xi) weights each point by 1/w

f(x, xi) =

{
1
w

xi ∈ xi ∈ [x− w
2
, x+ w

2
)

0 otherwise

(notice the constant 1/w cancels out, but we leave it there to look like the kernel
density estimation).

This is called the Nadaraya-Watson kernel-weighted average estimate or kernel
smoothing regression.

Again, once we write it this way, it’s clear we could again choose different weighting
functions, like the gaussian kernel, similar to that of kernel density estimation. Just as
in density estimation, you tend to get smoother results if our weights aren’t abruptly
changing from 0 once a point moves in or out of the window. So we will use the same
idea, where we weight our point i based on how close xi is to the x for which we are
trying to estimate f(x). And just like in density estimation, a gaussian kernel is the
common choice for how to decide the weight:
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Here’s how the gaussian kernel smoothing weights compare to a rolling mean (i.e.
based on fixed windows)

Window width The span argument tells you what percentage of points are used
in predicting x (like bandwidth in density estimation)7. So there’s still an idea of a
window size; it’s just that within the window, you are giving more emphasis to points
near your x value.

Notice that one advantage is that you can define an estimate for any x in the

7There’s a lot of details about span and what points are used, but we are not going to worry
about them. What I’ve described here gets at the idea
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range of your data – the estimated curve doesn’t have to jump as you add new
points. Instead it transitions smoothly.

What other comparisons might you make here?

Weighted Mean If we look at our estimate of f(x), we can actually write it more
simply as a weighted mean of our yi

f̂(x) =

∑n
i=1 yif(x, xi)∑n
i=1 f(x, xi)

=
n∑

i=1

wi(x)yi

where

wi(x) =
f(x, xi)∑n
i=1 f(x, xi)

are weights that indicate how much each yi should contribute to the mean (and notice
that these weights sum to one). The standard mean of all the points is equivalent to
choosing wi(x) = 1/n, i.e. each point counts equally.

4.3 Loess: Local Regression Fitting

In the previous section, we use kernels to have a nice smooth way to decide how much
impact the different yi have in our estimate of f(x). But we haven’t changed the fact
that we are essentially taking just a mean of the nearby yi to estimate f(x).

Let’s go back to our simple windows (i.e. rectangular kernel). When we estimate
f(x), we are doing the following:
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We see that for our prediction f̂(x) at x = 1, we are not actually getting into
where the data is because of the in balance of how the xi values are distributed.
That’s because the function is changing around x = 1; weighting far-away points
would help some, we’re basically trying to “fit” a constant line to what clearly is
changing in this window.

We could do this for every x, as our window keeps moving, so we would never
actually be fitting a polynomial across the entire function. So while we wouldn’t think
a line fit the overall data very well, locally around x = 1 it would be more reasonable
to say it is roughly like a line:

We could go even further and say a quadratic would be better:
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In short, we are saying, to estimate f(x) locally some simple polynomials will work
well, even though they don’t work well globally.

So we now have the choice of the degree of the polynomial and the span/window
size.
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What conclusions would you draw about the difference between choosing the de-
gree of the fit (mean/linear/quadratic)?

Generally degree is chosen to be 2, as it usually gives better fitting estimates,
while the span parameter might be tweaked by the user.
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5 Big Data clouds

It can be particularly helpful to have a smooth scatter for visualization when you have
a lot of data points. Consider the following data on craigs list rentals that you saw
in lab. We would suspect that size would be highly predictive of price, and indeed if
we plot price against size that’s pretty clear.

But, because of the number of points, we can’t really see much of what’s going
on. In fact our eye is drawn to outlying (and less representative) points, while the
rest is just a black smear where the plots are on top of each other.

We can add a loess smooth curve to get an idea of where the bulk of the data lie.
We’ll zoom in a bit closer as well by changing the x and y limits of the axes.
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What does this tell you about the data?

5.1 2D density smoothing plots

If we really want to get a better idea of what’s going on under that smear of black,
we can use 2D density smoothing plots. This is the same idea as density smoothing
plots for probability densities, only for 2D. Imagine that instead of a histogram along
the line, a 2D histogram. This would involve griding the 2D plane into rectangles
(instead of intervals) and counting the number of points within each rectangle. The
high of the bars (now in the 3rd dimension) would give a visualization of how many
points there are in different places in the plot.

Then just like with histograms, we can smooth this, so that we get a smooth curve
over the 2 dimensions.

A 3D picture of this would be cool, but difficult to actually see information, axes,
etc. So its common to instead smash this information into 2D, by representing the
3rd dimension (the density of the points) by a color scale instead.

Here is an example of such a visualization of a 2D histogram (the hexbin package)
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We can use a smoother version of this and get more gradual changes (and a less
finicky function) using the smoothScatter function
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What do these colors tell you? How does this compare to the smooth line? What
do you see about those points that grabbed our eye before (and which the loess line
ignored)?

Simulated Example For this data, it turned out that the truth was pretty linear.
But many times, the cloud of data can significantly impair our ability to see the data.
We can simulate a more complicated function with many points.
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6 Time trends

Let’s look at another common example of fitting a trend – time data. In the following
dataset, we have the average temperatures (in celecius) by city per month since 1743.

## dt AverageTemperature AverageTemperatureUncertainty City

## 1 1849-01-01 26.704 1.435 Abidjan

## 2 1849-02-01 27.434 1.362 Abidjan

## 3 1849-03-01 28.101 1.612 Abidjan

## 4 1849-04-01 26.140 1.387 Abidjan

## 5 1849-05-01 25.427 1.200 Abidjan

## 6 1849-06-01 24.844 1.402 Abidjan

## Country Latitude Longitude

## 1 Cte D’Ivoire 5.63N 3.23W

## 2 Cte D’Ivoire 5.63N 3.23W

## 3 Cte D’Ivoire 5.63N 3.23W

## 4 Cte D’Ivoire 5.63N 3.23W

## 5 Cte D’Ivoire 5.63N 3.23W

## 6 Cte D’Ivoire 5.63N 3.23W

Given the scientific consensus that the planet is warming, it is interesting to look
at this data, limited though it is, to see how different cities are affected.

Here, we plot the data with smoothScatter, as well as plotting just some specific
cities
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This is a very uninformative plot, despite our best efforts. Why?

We can consider for different cities or different months how average temperatures
have changed. We use the function scatter.smooth that both plots the points and
places a loess curve on top.
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Loess Prediction Intervals We can even calculate (parametric) confidence inter-
vals around these curves (based on a type of t-statistic for kernel smoothers), with a
bit more lines of code. They are called prediction intervals, because they are confi-
dence intervals for the prediction at each point.

In fact, since it’s a bit annoying, I’m going to write a little function to do it.
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Look at the code. In what way do they look like t-statistic intervals?

Comparing Many Cities Smooth scatter plots can be useful to compare the time
trends of many groups. It’s difficult to plot each city, but we can plot their loess
curve. I will write a function to automate this. For ease of comparison, I will pick
just a few cities in the northern hemisphere.
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What makes these curves so difficult to compare?

Instead, I’m going to subtract off their temperature in 1849, so that we plot
everything relative to that temperature.
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Why don’t the curves all go through the same point at 1849? Consider the fol-
lowing plots of the 8 cities, with the 1849 point highlighted in blue.

It would be better to center based on the loess prediction at that point.

Now we can subtract off that value instead.
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