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We’re going to review some basic ideas about distributions you should have learned
in Data 8 or STAT 20. In addition to review, we introduce some new ideas and
emphases to pay attention to:

• Continuous distributions and density curves

• New tools for visualizing and estimating distributions: boxplots and kernel
density estimators

• Types of samples and how they effect estimation

1 Basic Exporatory analysis

Let’s look at a dataset that contains the salaries of San Francisco employees.1 We’ve
streamlined this to the year 2014 (and removed some strange entires with negative
pay). Let’s explore this data.

dataDir <- "../../finalDataSets"

nameOfFile <- file.path(dataDir, "SFSalaries2014.csv")

salaries2014 <- read.csv(nameOfFile, na.strings = "Not Provided")

dim(salaries2014)

## [1] 38117 10

names(salaries2014)

## [1] "X" "Id" "JobTitle" "BasePay"

## [5] "OvertimePay" "OtherPay" "Benefits" "TotalPay"

## [9] "TotalPayBenefits" "Status"

salaries2014[1:10, c("JobTitle", "Benefits", "TotalPay",

"Status")]

## JobTitle Benefits TotalPay Status

## 1 Deputy Chief 3 38780.04 471952.6 PT

## 2 Asst Med Examiner 89540.23 390112.0 FT

1https://www.kaggle.com/kaggle/sf-salaries/
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## 3 Chief Investment Officer 96570.66 339653.7 PT

## 4 Chief of Police 91302.46 326716.8 FT

## 5 Chief, Fire Department 91201.66 326233.4 FT

## 6 Asst Med Examiner 71580.48 344187.5 FT

## 7 Dept Head V 89772.32 311298.5 FT

## 8 Executive Contract Employee 88823.51 310161.0 FT

## 9 Battalion Chief, Fire Suppress 59876.90 335485.0 FT

## 10 Asst Chf of Dept (Fire Dept) 64599.59 329390.5 FT

Let’s look at the column ‘TotalPay’ which gives the total pay, not including ben-
efits.

How might we want to explore this data? What single number summaries would
make sense? What visualizations could we do?

summary(salaries2014$TotalPay)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0 33482 72368 75476 107980 471953

Notice we entries with zero pay! Let’s investigate why we have zero pay by sub-
setting to just those entries.

zeroPay <- subset(salaries2014, TotalPay == 0)

nrow(zeroPay)

## [1] 48

head(zeroPay)

## X Id JobTitle BasePay OvertimePay OtherPay

## 34997 145529 145529 Special Assistant 15 0 0 0

## 35403 145935 145935 Community Police Services Aide 0 0 0

## 35404 145936 145936 BdComm Mbr, Grp3,M=$50/Mtg 0 0 0

## 35405 145937 145937 BdComm Mbr, Grp3,M=$50/Mtg 0 0 0

## 35406 145938 145938 Gardener 0 0 0

## 35407 145939 145939 Engineer 0 0 0
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## Benefits TotalPay TotalPayBenefits Status

## 34997 5650.86 0 5650.86 PT

## 35403 4659.36 0 4659.36 PT

## 35404 4659.36 0 4659.36 PT

## 35405 4659.36 0 4659.36 PT

## 35406 4659.36 0 4659.36 PT

## 35407 4659.36 0 4659.36 PT

summary(zeroPay)

## X Id JobTitle

## Min. :145529 Min. :145529 General Laborer : 4

## 1st Qu.:145948 1st Qu.:145948 Custodian : 3

## Median :145960 Median :145960 Transit Operator : 3

## Mean :147228 Mean :147228 Arborist Technician : 2

## 3rd Qu.:148637 3rd Qu.:148637 BdComm Mbr, Grp3,M=$50/Mtg : 2

## Max. :148650 Max. :148650 Community Police Services Aide: 2

## (Other) :32

## BasePay OvertimePay OtherPay Benefits TotalPay

## Min. :0 Min. :0 Min. :0 Min. : 0 Min. :0

## 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.: 0 1st Qu.:0

## Median :0 Median :0 Median :0 Median :4646 Median :0

## Mean :0 Mean :0 Mean :0 Mean :2444 Mean :0

## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:4649 3rd Qu.:0

## Max. :0 Max. :0 Max. :0 Max. :5651 Max. :0

##

## TotalPayBenefits Status

## Min. : 0 FT: 0

## 1st Qu.: 0 PT:48

## Median :4646

## Mean :2444

## 3rd Qu.:4649

## Max. :5651

##

It’s not clear why these people received zero pay. We might want to remove
them, thinking that zero pay are some kind of weird problem with the data we aren’t
interested in. But let’s so a quick summary of what the data would look like if we
did remove them:
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summary(subset(salaries2014, TotalPay > 0))

## X Id JobTitle

## Min. :110532 Min. :110532 Transit Operator : 2476

## 1st Qu.:120049 1st Qu.:120049 Special Nurse : 1476

## Median :129566 Median :129566 Registered Nurse : 1234

## Mean :129568 Mean :129568 Public Svc Aide-Public Works: 915

## 3rd Qu.:139083 3rd Qu.:139083 Firefighter : 813

## Max. :148626 Max. :148626 Custodian : 801

## (Other) :30354

## BasePay OvertimePay OtherPay Benefits

## Min. : 0 Min. : 0 Min. : 0 Min. : 0

## 1st Qu.: 30439 1st Qu.: 0 1st Qu.: 0 1st Qu.:10417

## Median : 65055 Median : 0 Median : 700 Median :28443

## Mean : 66652 Mean : 5409 Mean : 3510 Mean :24819

## 3rd Qu.: 94865 3rd Qu.: 5132 3rd Qu.: 4105 3rd Qu.:35445

## Max. :318836 Max. :173548 Max. :342803 Max. :96571

##

## TotalPay TotalPayBenefits Status

## Min. : 1.8 Min. : 7.2 FT:22334

## 1st Qu.: 33688.3 1st Qu.: 44561.8 PT:15735

## Median : 72414.3 Median :101234.9

## Mean : 75570.7 Mean :100389.8

## 3rd Qu.:108066.1 3rd Qu.:142814.2

## Max. :471952.6 Max. :510732.7

##

We can see that in fact we still have some weird pay entires (e.g. total payment
of $1.8). This points to the slippery slope you can get into in “cleaning” your data –
where do you stop?

A better observation is to notice that all the zero-entries have “Status” value of
PT, meaning they are part-time workers.

summary(subset(salaries2014, Status == "FT"))

## X Id JobTitle BasePay

## Min. :110533 Min. :110533 Transit Operator: 1524 Min. : 26364

## 1st Qu.:116598 1st Qu.:116598 Firefighter : 738 1st Qu.: 65055

## Median :122928 Median :122928 Police Officer 3: 642 Median : 84084

## Mean :123068 Mean :123068 Custodian : 565 Mean : 91174

## 3rd Qu.:129309 3rd Qu.:129309 Deputy Sheriff : 552 3rd Qu.:112171
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## Max. :140326 Max. :140326 Police Officer : 399 Max. :318836

## (Other) :17914

## OvertimePay OtherPay Benefits TotalPay

## Min. : 0 Min. : 0 Min. : 0 Min. : 26364

## 1st Qu.: 0 1st Qu.: 0 1st Qu.:29122 1st Qu.: 72356

## Median : 1621 Median : 1398 Median :33862 Median : 94272

## Mean : 8241 Mean : 4091 Mean :35023 Mean :103506

## 3rd Qu.: 10459 3rd Qu.: 5506 3rd Qu.:38639 3rd Qu.:127856

## Max. :173548 Max. :112776 Max. :91302 Max. :390112

##

## TotalPayBenefits Status

## Min. : 31973 FT:22334

## 1st Qu.:102031 PT: 0

## Median :127850

## Mean :138528

## 3rd Qu.:167464

## Max. :479652

##

summary(subset(salaries2014, Status == "PT"))

## X Id JobTitle

## Min. :110532 Min. :110532 Special Nurse : 1473

## 1st Qu.:136520 1st Qu.:136520 Transit Operator : 955

## Median :140757 Median :140757 Public Svc Aide-Public Works: 897

## Mean :138820 Mean :138820 Registered Nurse : 855

## 3rd Qu.:144704 3rd Qu.:144704 Recreation Leader : 690

## Max. :148650 Max. :148650 Public Service Trainee : 479

## (Other) :10434

## BasePay OvertimePay OtherPay Benefits

## Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0.0

## 1st Qu.: 6600 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 115.7

## Median : 20557 Median : 0.0 Median : 191.7 Median : 4659.4

## Mean : 31749 Mean : 1385.6 Mean : 2676.7 Mean :10312.3

## 3rd Qu.: 47896 3rd Qu.: 681.2 3rd Qu.: 1624.7 3rd Qu.:19246.2

## Max. :257340 Max. :74936.0 Max. :342802.6 Max. :96570.7

##

## TotalPay TotalPayBenefits Status

## Min. : 0 Min. : 0 FT: 0

## 1st Qu.: 7359 1st Qu.: 8256 PT:15783

## Median : 22410 Median : 27834

## Mean : 35811 Mean : 46123

## 3rd Qu.: 52998 3rd Qu.: 72569
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## Max. :471953 Max. :510733

##

So it is clear that analyzing data from part-time workers will be tricky (and we
have no information here as to whether they worked a week or eleven months). To
simplify things, we will make a new data set with only full-time workers:

salaries2014_FT <- subset(salaries2014, Status == "FT")

1.1 Histograms

Let’s draw a histogram of the total salary for full-time workers only.

hist(salaries2014_FT$TotalPay, main = "Total Pay",

xlab = "Pay (in dollars)")

abline(v = mean(salaries2014_FT$TotalPay), lty = "dashed")

abline(v = median(salaries2014_FT$TotalPay))

legend("topright", legend = c("Median", "Mean"), lty = c("solid",

"dashed"))

What do you notice about the histogram? What does it tell you about the data?

How good of a summary is the mean or median here?
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1.1.1 Constructing Frequency Histograms

How do you construct a histogram? Practically, most histograms are created by
taking an evenly spaced set of K breaks that span the range of the data, call them
b1 ≤ b2 ≤ ... ≤ bK , and counting the number of observations in each bin.2 Then
the histogram consists of a series of bars, where the x-coordinates of the rectangles
correspond to the range of the bin, and the height corresponds to the number of
observations in that bin.

Breaks of Histograms Here’s two more histogram of the same data that differ
only by the number of breakpoints in making the histograms.

par(mfrow = c(2, 2))

hist(salaries2014_FT$TotalPay, main = "Total Pay, default breaks",

xlab = "Pay (in dollars)")

hist(salaries2014_FT$TotalPay, main = "Total Pay, breaks=100",

xlab = "Pay (in dollars)", breaks = 100)

hist(salaries2014_FT$TotalPay, main = "Total Pay, breaks=1000",

xlab = "Pay (in dollars)", breaks = 1000)

hist(salaries2014_FT$TotalPay, main = "Total Pay, Zoomed-in",

xlab = "Pay (in dollars)", xlim = c(0, 1e+05),

breaks = 1000)

2You might have been taught that you can make a histogram with uneven break points, which
is true, but in practice is rather exotic thing to do. If you do, then you have to calculate the height
of the bar differently based on the width of the bin because it is the area of the bin that should be
proportional to the number of entries in a bin, not the height of the bin.
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What seems better here? Is there a right number of breaks?

What if we used a subset, say only full-time firefighters? Now there are only 738
data points.

salaries2014_FT_FF <- subset(salaries2014_FT, JobTitle ==

"Firefighter" & Status == "FT")

dim(salaries2014_FT_FF)

## [1] 738 10
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par(mfrow = c(2, 2))

hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, default breaks",

xlab = "Pay (in dollars)")

hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, breaks=30",

xlab = "Pay (in dollars)", breaks = 30)

hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, breaks=100",

xlab = "Pay (in dollars)", breaks = 100)

hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, breaks=1000",

xlab = "Pay (in dollars)", breaks = 1000)
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1.1.2 Density Histograms

The above are called frequency histograms, because we plot on the y-axis (the
height of the rectangles) the count of the number of observations in each bin. Density
histograms plot the height of rectangles so that the area of each rectangle is equal
to the proportion of observations in the bin. If each rectangle has equal width, say
w, and there are n total observations, this means for a bin k, it’s height is given by

w ∗ hk =
# observations in bin k

n

So that the height of a rectangle for bin k is given by

hk =
# observations in bin k

w × n

In other words, the density histogram with equal-width bins will look like the fre-
quency histogram, only the heights of all the rectangles will be divided by wn.

We will return to the importance of density histograms more when we discuss
continuous distributions.

1.2 Boxplots

Another very useful visualization can be a boxplot. A boxplot is like a histogram, in
that it gives you a visualization of how the data are distributed. However, it is a much
greater simplification of the distribution. It plots only a box for the bulk of the data,
where the limits of the box are the 0.25 and 0.75 quantiles of the data (or 25th and
75th percentiles). A dark line across the middle is the median of the data. In addition,
a boxplot gives additional information to evaluate the extremities of the distribution.
It draws “whiskers” out from the box to indicate how far out is the data beyond the
25th and 75th percentiles. Specifically it calculates the interquartitle range (IQR),
which is just the difference between the 25th and 75th percentiles. It then draws
the whiskers out 1.5 IQR distance from the boxes OR to the smallest/largest data
point (whichever is closest to the box). Any data points outside of this range of the
whiskers are ploted individually.

par(mfrow = c(1, 1))

boxplot(salaries2014_FT$TotalPay, main = "Total Pay, breaks=1000",

ylab = "Pay (in dollars)")
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These points are often called “outliers” based the 1.5 IQR rule of thumb. The
term outlier is usually used for unusual or extreme points. However, we can see a
lot of data points fall outside this definition of “outlier” for our data; this is common
for data that is skewed, and doesn’t really mean that these points are “wrong”, or
“unusual” or anything else that we might think about for an outlier.3

You might think, why would I want such a limited display of the distribution,
compared to the wealth of information in the histogram? I can’t tell at all that the
data is bimodal from a boxplot, for example.

First of all, the boxplot emphasizes different things about the distribution. It
shows the main parts of the bulk of the data very quickly and simply, and emphasizes
more fine grained information about the extremes (“tails”) of the distribution.

Furthermore, because of their simplicity, it is far easier to plot many boxplots and
compare them than histograms. For example, I have information of the job title of
the employees, and I might be interested in comparing the distribution of salaries
with different job titles (firefighters, teachers, nurses, etc). Here I will isolate only
those samples that correspond to the top 10 most numerous full-time job titles and
do side-by-side boxplots of the distribution within each job title for all 10 jobs.

tabJobType <- table(subset(salaries2014_FT, Status ==

"FT")$JobTitle)

tabJobType <- sort(tabJobType, decreasing = TRUE)

topJobs <- head(names(tabJobType), 10)

salaries2014_top <- subset(salaries2014_FT, JobTitle %in%

3If our data had a nice symmetric distribution around the median, like the normal distribution,
the rule of thumb would be more appropriate, and this wouldn’t happen to the same degree
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topJobs & Status == "FT")

salaries2014_top <- droplevels(salaries2014_top)

dim(salaries2014_top)

## [1] 5816 10

par(mar = c(10, 4.1, 4.1, 0.1))

boxplot(salaries2014_top$TotalPay ~ salaries2014_top$JobTitle,

main = "Total Pay, by job title, 10 most frequent job titles",

xlab = "", ylab = "Pay (in dollars)", las = 3)

This would be hard to do with histograms – we’d either have 10 separate plots,
or the histograms would all lie on top of each other. Later on, we will discuss “violin
plots” which combine some of the strengths of both boxplots and histograms.

Notice that the outliers draw a lot of attention, since there are so many of them;
this is common in large data sets especially when the data are skewed. I might want
to mask all of the “outlier” points as distracting for this comparison,

boxplot(TotalPay ~ JobTitle, data = salaries2014_top,

main = "Total Pay, by job title, 10 most frequent job titles",

xlab = "", ylab = "Pay (in dollars)", las = 3,

outline = FALSE)
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1.3 Descriptive Vocabulary

Here are some useful things to consider in describing distributions of data or compar-
ing two different distributions.

Symmetric refers to equal amounts of data on either side of the ‘middle’ of the
data, i.e. the distribution of the data on one side is the mirror image of the
distribution on the other side. This means that the median of the data is roughly
equal to the mean.

Skewed refers to when one ‘side’ of the data spreads out to take on larger values
than the other side. More precisely, it refers to where the mean is relative to the
median. If the mean is much bigger than the median, then there must be large
values on the right-hand side of the distribution, compared to the left hand side
(right skewed), and if the mean is much smaller than the median then it is
the reverse.

Spread refers to how spread out the data is from the middle (e.g. mean or median).

Heavy/light tails refers to how much of the data is concentrated in values far away
from the middle, versus close to the middle.

set.seed(1)

par(mfrow = c(2, 2))

hist(rgamma(1000, shape = 2), main = "Right Skew")

hist(rnorm(1000), main = "Symmetric")

breaks = seq(-20, 20, 1)
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hist(rnorm(1000), main = "Light tails", xlim = c(-20,

20), breaks = breaks, freq = TRUE)

x <- rcauchy(1000)

hist(x[abs(x) <= 20], main = "Heavy tails", xlim = c(-20,

20), breaks = breaks, freq = TRUE)

As you can see, several of these terms are mainly relevant for comparing two
distributions.4

4But they are often used without providing an explicit comparison distribution; in this case,
the comparison distribution is always the normal distribution, which is a standard benchmark in
statistics
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1.4 Transformations

When we have skewed data, it can be difficult to compare the distributions because
so much of the data is bunched up on one end, but our axes stretch to cover the large
values that make up a relatively small proportion of the data. This is also means that
our eye focuses on those values too.

This is a mild problem with this data, particularly if we focus on the full-time
workers, but let’s look quickly at another dataset that really shows this problem.

1.4.1 Flight Data from SFO

This data consists of all flights out of San Francisco Airport in 2016 in January (we
will look at this data more in the next module).

flightSF <- read.table(file.path(dataDir, "SFO.txt"),

sep = "\t", header = TRUE)

dim(flightSF)

## [1] 13207 64

names(flightSF)

## [1] "Year" "Quarter" "Month"

## [4] "DayofMonth" "DayOfWeek" "FlightDate"

## [7] "UniqueCarrier" "AirlineID" "Carrier"

## [10] "TailNum" "FlightNum" "OriginAirportID"

## [13] "OriginAirportSeqID" "OriginCityMarketID" "Origin"

## [16] "OriginCityName" "OriginState" "OriginStateFips"

## [19] "OriginStateName" "OriginWac" "DestAirportID"

## [22] "DestAirportSeqID" "DestCityMarketID" "Dest"

## [25] "DestCityName" "DestState" "DestStateFips"

## [28] "DestStateName" "DestWac" "CRSDepTime"

## [31] "DepTime" "DepDelay" "DepDelayMinutes"

## [34] "DepDel15" "DepartureDelayGroups" "DepTimeBlk"

## [37] "TaxiOut" "WheelsOff" "WheelsOn"

## [40] "TaxiIn" "CRSArrTime" "ArrTime"

## [43] "ArrDelay" "ArrDelayMinutes" "ArrDel15"

## [46] "ArrivalDelayGroups" "ArrTimeBlk" "Cancelled"

## [49] "CancellationCode" "Diverted" "CRSElapsedTime"
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## [52] "ActualElapsedTime" "AirTime" "Flights"

## [55] "Distance" "DistanceGroup" "CarrierDelay"

## [58] "WeatherDelay" "NASDelay" "SecurityDelay"

## [61] "LateAircraftDelay" "FirstDepTime" "TotalAddGTime"

## [64] "LongestAddGTime"

This dataset contains a lot of information about the flights departing from SFO.
For starters, let’s just try to understand how often flights are delayed (or canceled),
and by how long. Let’s look at the column ‘DepDelay’ which represents departure
delays.

summary(flightSF$DepDelay)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

## -25.0 -5.0 -1.0 13.8 12.0 861.0 413

Notice the NA’s. Let’s look at just the subset of some variables for those observa-
tions with NA values for departure time (I chose a few variables so it’s easier to look
at)

naDepDf <- subset(flightSF, is.na(DepDelay))

head(naDepDf[, c("FlightDate", "Carrier", "FlightNum",

"DepDelay", "Cancelled")])

## FlightDate Carrier FlightNum DepDelay Cancelled

## 44 2016-01-14 AA 209 NA 1

## 75 2016-01-14 AA 218 NA 1

## 112 2016-01-24 AA 12 NA 1

## 138 2016-01-22 AA 16 NA 1

## 139 2016-01-23 AA 16 NA 1

## 140 2016-01-24 AA 16 NA 1

summary(naDepDf[, c("FlightDate", "Carrier", "FlightNum",

"DepDelay", "Cancelled")])

## FlightDate Carrier FlightNum DepDelay Cancelled

## 2016-01-22: 92 OO :176 Min. : 1 Min. : NA Min. :1

## 2016-01-06: 49 UA : 76 1st Qu.: 616 1st Qu.: NA 1st Qu.:1

## 2016-01-23: 41 WN : 55 Median :2080 Median : NA Median :1
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## 2016-01-24: 40 AA : 35 Mean :3059 Mean :NaN Mean :1

## 2016-01-19: 31 VX : 33 3rd Qu.:5555 3rd Qu.: NA 3rd Qu.:1

## 2016-01-03: 27 DL : 17 Max. :6503 Max. : NA Max. :1

## (Other) :133 (Other): 21 NA’s :413

So, the NAs correspond to flights that were cancelled (Cancelled=1).

Histogram of flight delays Let’s draw a histogram of the departure delay.

par(mfrow = c(1, 1))

hist(flightSF$DepDelay, main = "Departure Delay", xlab = "Time (in minutes)")

abline(v = c(mean(flightSF$DepDelay, na.rm = TRUE),

median(flightSF$DepDelay, na.rm = TRUE)), lty = c("dashed",

"solid"))

What do you notice about the histogram? What does it tell you about the data?

How good of a summary is the mean or median here? Why are they so different?

Effect of removing data What happened to the NA’s? They are just silently not
plotted. What does that mean for interpreting the histogram?
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We could give the cancelled data a ‘fake’ value so that it plots.

flightSF$DepDelayWithCancel <- flightSF$DepDelay

flightSF$DepDelayWithCancel[is.na(flightSF$DepDelay)] <- 1200

hist(flightSF$DepDelayWithCancel, xlab = "Time (in minutes)",

main = "Departure delay, with cancellations=1200")

Boxplots If we do boxplots separated by carrier, we can see the problem with the
“outlier” points

boxplot(flightSF$DepDelay ~ flightSF$Carrier, main = "Departure Delay, by airline carrier",

ylab = "Time (in minutes)")
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Here is the same plot suppressing the outlying points:

boxplot(flightSF$DepDelay ~ flightSF$Carrier, main = "Departure Delay, by airline carrier",

ylab = "Time (in minutes)", outline = FALSE)

1.4.2 Log and Sqrt Transformations

In data like the flight data, we can remove these outliers for the boxplots to better
see the median, etc, but it’s a lot of data we are removing – what if the different
carriers are actually quite different in the distribution of these outer points? This is
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a problem with visualizations of skewed data: either the outlier points dominate the
visualization or they get removed from the visualization.

A common way to get around this is to transform our data, which simply means
we pick a function f and turn every data point x into f(x). For example, a log-
transformation of data point x means that we define new data point y so that

y = log(x).

A common example of when we want a transformation is for data that are all
positive, yet take on values close to zero. In this case, there are often many data
points bunched up by zero (because they can’t go lower) with a definite right skew.

Such data is often nicely spread out for visualization purposes by either the log
or square-root transformations.

ylim <- c(-3, 3)

curve(log, from = 0, to = 10, ylim = ylim, ylab = "Transformed",

xlab = "Original")

curve(sqrt, from = 0, to = 10, add = TRUE, col = "red")

legend("bottomright", legend = c("log", "sqrt"), fill = c("black",

"red"))

title(main = "Graph of log and sqrt functions")

These functions are similar in two important ways. First, they are both monotone
increasing, meaning that the slope is always positive. As a result, the rankings of the
data points are always preserved: if x1 > x2 then f(x1) > f(x2), so the largest data
point in the original data set is still the largest in the transformed data set.
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The second important property is that both functions are concave, meaning that
the slope of f(x) gets smaller as f increases. As a result, the largest data points are
pushed together while the smallest data points get spread apart. For example, in the
case of the log transform, the distance between two data points depends only on their
ratio: log(x1)−log(x2) = log(x1/x2). Before transforming, 100 and 200 were far apart
but 1 and 2 were close together, but after transforming, these two pairs of points are
equally far from each other. The log scale can make a lot of sense in situations where
the ratio is a better match for our “perceptual distance,” for example when comparing
incomes, the difference between making $500,000 and $550,000 salary feels a lot less
important than the difference between $20,000 and $70,000.

Let’s look at how this works with simulated data from a fairly skewed distribution
(the Gamma distribution with shape parameter 1/10):

y <- rgamma(10000, scale = 1, shape = 0.1)

par(mfrow = c(1, 2))

hist(y, main = "Original data", xlab = "original scale",

breaks = 50)

hist(log(y), main = "Log of data", xlab = "log-scale",

breaks = 50)

Note that in this case, after transforming the data they are even a bit left-skewed
because the tiny data points are getting pulled very far apart: log(x) = −80 corre-
sponds to x = e−80 = 1.8 × 10−35, and log(x) = −40 to x = 4.2 × 10−18. Still, it is
much less skewed than before.
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Does it make sense to use transformations? Doesn’t this mess-up our data?
Notice an important property is that these are monotone functions, meaning we

are preserving the rank of our data – we are not suddenly inverting the relative order
of the data. But it does certainly change the meaning when you move to the log-scale.
A distance on the log-scale of ‘2’ can imply different distances on the original scale,
depending on where the original data was located.5

1.4.3 Transforming our data sets

Our flight delay data is not so obliging as the simulated data, since it also has negative
numbers. But we could, for visualization purposes, shift the data before taking the
log or square-root. Here I compare the boxplots of the original data, as well as that
of the data after the log and the square-root.

addValue <- abs(min(flightSF$DepDelay, na.rm = TRUE)) +

1

par(mfrow = c(3, 1))

boxplot(flightSF$DepDelay + addValue ~ flightSF$Carrier,

main = "Departure Delay, original", ylab = "Time")

boxplot(log(flightSF$DepDelay + addValue) ~ flightSF$Carrier,

main = "Departure Delay, log transformed", ylab = paste("log(Time+",

addValue, ")"))

boxplot(sqrt(flightSF$DepDelay + addValue) ~ flightSF$Carrier,

main = "Departure Delay, sqrt-transformed", ylab = paste("sqrt(Time+",

addValue, ")"))

5Of course the distance of ‘2’ on the log-scale does have a very specific meaning: a distance of ‘2’
on the (base 10) log scale is equivalent to being 100 times greater
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Notice that there are fewer ‘outliers’ and I can see the differences in the bulk of
the data better. Did the data become symmetrically distributed or is it still skewed?

2 Probability Distributions

Let’s review some basic ideas of sampling and probability distributions that you
should have learned in Data 8/STAT 20.

In the salary data we have all salaries of the employees of SF in 2014. This a
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census, i.e. a complete enumeration of the entire population of SF employees.

We have data from the US Census that tells us the median household income in
2014 in all of San Fransisco was around $72K. 6 We could want to use this data to
ask, what was the probability an employee in SF makes less than the regional median
household number?

We really need to be more careful, however, because this question doesn’t really
make sense because we haven’t defined any notion of randomness. If I pick employee
John Doe and ask what is the probability he makes less than $72K, this is not a
reasonable question, because either he did or didn’t make less than that.

So we don’t actually want to ask about a particular person if we are interested
in probabilities – we need to have some notion of asking about a randomly selected
employee. Commonly, the randomness we will assume is that a employee is randomly
selected from the full population of full-time employees, with all employees having an
equal probability of being selected. This is called a simple random sample.

Now we can ask, what is the probability of such a randomly selected employee
making less than $72K? Notice that we have exactly defined the randomness mecha-
nism, and so now can calculate probabilities. How would you calculate the following
probabilities based on this probability mechanism?

1. P (income = $72K)

2. P (income ≤ $72K)

3. P (income > $200K)

This kind of sampling is called a simple random sample and is what most
people mean when they say “at random” if they stop to think about it. However,
there are many other kinds of samples where data are chosen randomly, but not every
data point is equally likely to be picked. There are, of course, also many samples that
are not random at all.

Notation We call the salary value of a randomly selected employee a random
variable. We can simplify our notation for probabilities by letting the variable X be
short hand for the value of that random variable, and make statements like P (X > 2).
We call the complete set of probabilities the probability distribution of X.

6http://www.hcd.ca.gov/grants-funding/income-limits/state-and-federal-income-limits/

docs/inc2k14.pdf
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2.1 Probabilities and Histograms

The frequency histograms we plotted of the entire population above give us in-
formation about the probabilities of discrete distributions, since they give the count
of the numbers of observations in an interval. We can divide that count by the total
number of observations, and this gives us the probability of observations lying in each
bin.

How would you use the notation above to write this probability, say for the first
bin of (b1, b2]?

I’m going to plot these probabilities for each bin of our histogram, for both large
and small size bins. 7

Be careful, this plot is not the same thing as the density histograms that you have
learned – the density value involves the area of a bin. For this reason, plotting the bin
probabilities as the height of each bar is NOT what is meant by a density histogram.

What happens as I decrease the size of the bins?

7Plotting these probabilities is not done automatically by R, so we have to mainpulate the
histogram command in R to do this (and I don’t normally recommend that you make this plot –
I’m just making it for teaching purposes here).
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2.2 Considering a subpopulation (Conditioning)

Previously we asked about the population of all FT employees, so that X is the
random variable corresponding to income of a randomly selected employee from that
population. We might want to consider asking questions about the population of
employees making less than $72K. For example, low-income in 2014 for an individual
in San Francisco was defined by the same source as $64K – what is the probability of
a random employee making less than $72K to be considered low income?

We can write this as P (X ≤ 64 | X < 72), which we say as the probability a
employee is low-income given that or conditional on the employee makes less than
the median income. How would we compute a probability like this?.

Note that this is a different probability than P (X ≤ 64). How?

Once we condition on a portion of the population, we’ve actually defined a new
random variable. We could call this new random variable Y , but we usually notated it
as X | X > 72K. Since it is a random variable, it has a new probability distribution,
which is called the conditional distribution. We can plot the histogram of this
conditional distribution:

condPop <- subset(salaries2014_FT, TotalPay < 72000)

par(mfrow = c(1, 1))

hist(condPop$TotalPay, main = "Conditional Distribution, less than $72K",

xlab = "Pay (in dollars)")
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We can think of the probabilities of a conditional distribution as the probabili-
ties we would get if we repeatedly drew X from its marginal distribution but only
“keeping” it when we get one with X < 72K.

Consider the flight data we looked at briefly above. Let X for this data be the
flight delay, in minutes, where if you recall NA values were given if the flight was
cancelled.

How would you state the following probability statements in words?

P (X > 60|X 6= NA)

P (X > 60|X 6= NA&X > 0)

3 Distributions of samples of data

Usually the data we work with is a sample, not the complete population. This needs
to changes our interpretation of what the plot is doing.
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Consider what happens if you take a simple random sample of 100 employees from
our complete set of full-time employees and calculate a histogram.

salariesSRS <- sample(x = salaries2014_FT$TotalPay,

size = 100, replace = FALSE)

sample(1:5)

## [1] 5 2 1 4 3

Let’s draw a plot giving the proportions of the total sample in each bin (i.e. not a
histogram). I’m going to also draw the true population probabilities of being in each
bin as well, and put it on the same histogram as the sample proportions. To make sure
they are using the same breakpoints, I’m going to define the break points manually.
(Otherwise the specific breakpoints will depend on the range of each dataset and so
be different)

Pretty good. Suppose I had smaller width breakpoints (next figure), what con-
clusions would you make?
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3.1 Histograms as Estimates and Types of Samples

So when we are working with a sample of data, we should always think of probabilities
obtained from a sample as an estimate of the probabilities of the full population
distribution. This means histograms, boxplots, quantiles, and any estimate of a
probability calculated from a sample of the full population have variability, like any
other estimate.

This means we need to be careful about the dual use of histograms as both visu-
alization tools and estimates. As visualization tools, they are always appropriate for
understanding the data you have: whether it is skewed, whether there are outlying
or strange points, what are the range of values you observe, etc.

To draw broader conclusions from histograms or boxplots performed on a sample,
however, is by definition to view them as estimates of the entire population. In this
case you need to think carefully about how the data was collected.

3.1.1 Different Types of Samples

For example, let’s consider that I want to compare the salaries of fire-fighters and
teachers in all of California. To say this more precisely for data analysis, I want to
see how similar are the distribution of salaries for fire-fighters to that of teachers in
2014 in California. Consider the following samples of data

• All salaries in San Franscisco (the data we have)
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• A simple random sample drawn from a list of all employees in all localities in
California.

• A separate simple random samples drawn from every locality, combined together
into a single dataset

Why do I now consider all salaries in San Franscisco as a sample, when before I
said it was a census?

All three of these are samples from the population of interest and for simplicity
let’s assume that we make them so that they are all same total sample size.

One is not a random sample (which one? ). Only one is a simple random sample
. The last sampling scheme, created by doing a SRS of each month and combining
the results, is also a random sampling scheme. We know it’s random because if we
did it again, we wouldn’t get exactly the same set of data (unlike our SF data). But
it is not a SRS – it is called a Stratified random sample.

If we draw histograms of these different samples, they will all describe the observed
distribution of the sample we have, but they will not all be good estimates of the
underlying population distribution.

3.1.2 Example on Data

We don’t have this data, but we do have the full year of flight data in 2015/2016
academice year (previously we imported only the month of January). Consider the
following ways of sampling from the full set of flight data and consider how they
correspond to the above:

• 12 separate simple random samples drawn from every month in the 2015/2016
academic year, combined together into a single dataset

• All flights in January

• A simple random sample drawn from all flights in the 2015/2016 academic year.

We can actually make all of these samples and compare them to the truth (I’ve
made these samples previously and I’m going to just read them, because the entire
year is a big dataset to work with in class).
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flightSFOSRS <- read.table(file.path(dataDir, "SFO_SRS.txt"),

sep = "\t", header = TRUE, stringsAsFactors = FALSE)

flightSFOStratified <- read.table(file.path(dataDir,

"SFO_Stratified.txt"), sep = "\t", header = TRUE,

stringsAsFactors = FALSE)

par(mfrow = c(2, 2))

xlim <- c(-20, 400)

hist(flightSF$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)

hist(flightSFOSRS$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)

hist(flightSFOStratified$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)
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How do these histograms compare?

In particular, drawing histograms or estimating probabilities from data as we have
done here only give good estimates of the population distribution if the data is a SRS.
Otherwise they can vary quite dramatically from the actual population.

So are only SRS good random samples? NO! The stratified random sample
described above can actually be a much better way to get a random sample and give
you better estimates – but you must correctly create your estimates.

For the case of the histogram, you have to estimate the histogram in such a way
that it correctly estimates the distribution of population, rather than the distribution
of the sample. How? The key thing is that because it is a random sample, drawn
according to a known probability mechanism, it is possible to make a correct estimate
of the population.

How to make these kind of estimates for random samples that are not SRS is
beyond the scope of this class, but there are standard ways to do so for stratified
samples and many other sampling designs (this field of statistics is called survey
sampling). Indeed most national surveys, particularly any that require face-to-face
interviewing, are not SRS but much more complicated sampling schemes that can
give equally accurate estimates, but often with less cost.

4 Continuous Distributions

Data 8 and Stat 20 primarily relied on probability from discrete distributions,
meaning that the complete set of possible values that can be observed is a finite set
of values. For example, if we draw a random sample from our salary data we know
that only the 35711 unique values of the salaries in that year can be observed – not
all numeric values are possible. We saw this when we asked what was the probability
that we drew a random employee with salary exactly equal to $72K.

However, it can be useful to think about probability distributions that allow for
all numeric values (i.e. continuous values), even when we know the actual population
is finite. These are continuous distributions.

For example, suppose we wanted to use this set of data to make decisions about
policy to improve salaries for a certain class of employees. It’s more reasonable to
think that there is an (unknown) probability distribution that defines what we expect
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to see for that data that is defined on a continuous range of values, not the specific
ones we see in 2014.

Of course some features of the data are “naturally” discrete, like the set of job
titles, and there no rational way to think of them being continuous.

4.1 Probability with Continuous distributions

Some probability ideas become more complicated/nuanced for continuous distribu-
tions. In particular, for a discrete distribution, it makes sense to say P (X = 72K)
(the probability of a salary exactly equal to 72K). For continuous distributions, such
an innocent statement is actually fraught with problems.

To see why, remember what you know about discrete probability distributions. In
particular,

0 ≤ P (X = 72, 000) ≤ 1

Furthermore, any probability statment has to have this property, not just ones in-
volving ‘=’: e.g. P (X ≤ 10) or P (X ≥ 0). This is a fundamental rule of probability,
and thus also holds true for continuous distributions.

Okay so far. Now another thing you learned is if I give all possible values that my
random variable X can take (the sample space) and call them v1, . . . , vK , then if I
sum up all these probabilities they must sum exactly to 1,

K∑
i=1

P (X = vi) = 1

Furthermore, P (X ∈ {v1, . . . , vK}) = 1, i.e. the probability X is in the sample space
must of course be 1.

Well this becomes more complicated for continuous values – this leads us to an
infinite sum since we have an infinite number of possible values. Moreover, if we give
any positive probability (i.e. 6= 0) to each point in the sample space, then we won’t
‘sum’ to one 8 These kinds of concepts from discrete probability just don’t translate
over exactly to continuous random variables.

To deal with this, continuous distributions do not allow any positive probability
for a single value: if X has a continuous distribution, then P (X = x) = 0 for any
value of x.

8For those with more math: convergent infinite series can of course sum to 1. But we are working
with the continuous real line (or an interval of the real line), and there is not a bijection between
the integers and the continuous line.
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Notation: Notice the notation here. We generally use a capital letter, like X for
random variables, and lower case value for a particulary possible value that they can
take on (a value that it takes on is also called a realization). We often use the same
letter, with one lower-case and one upper case, as is done here. Why? Otherwise we
start to run out of letters and symbols once we have multiple random variables – we
don’t want statements like P (W = v,X = y, Z = u) because it’s hard to remember
which value goes with which random variable.

Instead, continuous distributions only allow for positive probability of an interval:
P (x1 ≤ X ≤ x2) can be greater than 0.

Note that this also means that for continuous distributions P (X ≤ x) = P (X <
x), why?

Giving zero probability for a single value isn’t so strange if you think about it.
Think about our flight data. What is your intuitive sense of the probability of a flight
delay of exactly 10 minutes – and not 10 minutes 10 sec or 9 minutes 45 sec? You see
that once you allow for infinite precision, it is actually reasonable to say that exactly
10 minutes has no real probability that you need worry about.

For our salary data, of course we don’t have infinite precision, but we still see that
it’s useful to think of ranges of salary – there is no one that makes exactly $72K, but
there are 1 within $1 dollar of that amount, and 6 employees within $10 dollars of
that amount, all equivalent salaries in any practical discussion of salaries.

What if you want the chance of getting a 10 minute flight delay? Well, you really
mean a small interval around 10 minutes, since there’s a limit to our measurement
ability anyway. This is what we also do with continuous distributions: we discuss the
probability in terms of increasingly small intervals around 10 minutes.

The mathemtatics of calculus give us the tools to do this via integration. In prac-
tice, the functions we want to integrate are not tractable anyway, so we will use the
computer. We are going to focus on understanding how to think about continuous
distributions so we can understand the statistical question of how to estimate distri-
butions and probabilities (rather than the more in-depth probability treatment you
would get in a probability class).

4.2 Cummulative Distribution Function (cdfs)

For discrete distributions, we can completely describe the distribution of a random
variable by describing the probability of each of the discrete values it takes on. In
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other words, knowing P (X = vi) for all possible values of vi in the sample space
completely defines the probability distribution.

If we can’t talk about P (X = x), then how do we define a continous distribution?
We basically define the probably of every single possible interval. Obviously, there
are an infinite number of intervals, but we can use the simple fact that

P (x1 < X ≤ x2) = P (X ≤ x2)− P (X ≤ x1)

Why? (Use the case of discrete distribution to reason it out)

Thus rather than define the probably of every single possible interval, we can
tackle the simpler task to define P (X ≤ x) for every single x on the real line. That’s
just a function of x

F (x) = P (X ≤ x)

F is called a cumulative distribution function (cdf). And while we will focus on
continuous distributions, discrete distributions can also be defined in the same way
by their cumulative distribution function.

Here are some illustrations of different F functions for x between −3 and 3:

Which of these distributions is likely to have values of X less than −3?

Which equally likely to be positive or negative?
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What is the P (X > 3) – how would you calculate that? Which distributions are
likely to have values greater than 3?

What is limx→∞ F (x) for all cdfs? What is limx→−∞ F (x) for all cdfs? Why?

Key properties of continuous distributions

1. Probabilities are always between 0 and 1, inclusive.

2. Probabilities are only calculated for intervals, not individual points

4.3 Probability Density Functions (pdfs)

You see from these questions, that you can make all of the assessments we have
discussed (like symmetry, or compare if a distribution has heavier tails than another)
from the cdf. But it is not the most common way to think about the distribution.
More frequently the probability density function (pdf) is more intuitive, and is
similar to a histogram in the information it gives about the distribution.

Formally, the pdf p(x) is derivative of F (x), if F (x) is differentiable

p(x) =
d

dx
F (x)

If F isn’t differentiable, the distribution doesn’t have a density, which in practice you
will rarely run into for continuous variables.9

Conversely, p(x) is the function such that if you take the area under its curve for
an interval, i.e. the integral, it gives you probability of that interval:∫ b

a

p(x) = P (a ≤ X ≤ b) = F (b)− F (a)

More formally, you can derive P (X ≤ v) = F (v) from p(x) as

F (v) =

∫ v

−∞
p(x)dx.

9Discrete distributions have cdfs where F (x) is not differentiable, so they do not have densities.
But even some continuous distributions can have cdfs that are non-differentiable
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Let’s look at an example with the following pdf, which is perhaps vaguely similar
to our flight or salary data, though on a different scale of values for X,

p(x) =
1

4
xe−x/2

Suppose that X is a random variable from a distribution with this pdf. Then to
find P (5 ≤ X ≤ 10), I find the area under the curve of p(x) between 5 and 10, by
taking the integral of p(x) over the range of (5, 10):∫ 10

5

1

4
xe−x/2
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In this case, we can actually solve the integral through integration by parts (which
you may or may not have covered),

∫ 10

5

1

4
xe−x/2 = (−1

2
xe−x/2 − e−x/2)

∣∣∣∣∣
10

5

=

Evaluating this gives us P (5 ≤ X ≤ 10) = 0.247. Most of the time, however, the
integrals of common pdfs that are used as models for data (like the normal), cannot
be done by hand, and we rely on the computer to evaluate the integral for us.

Total Probability Our same rule from discrete distribution applies, namely that
the probability of X being in the entire sample space must be 1. Here the sample
space is the whole real line. What does this mean in terms of the cumulative area
under the curve of p(x)?

4.4 Normal Distribution and Central Limit Theorem

You’ve seen a continuous distribution when you learned about the central limit the-
orem.

Recall, if I take a SRS of a population and calculate it’s mean, call it X̄, this
is itself a random variable that has a distribution. It’s randomness is due to the
randomness in the SRS. If I do this process many times I can look at the distribution
of X̄

sampleSize <- 1000

sampleMean <- replicate(n = 10000, expr = mean(sample(salaries2014_FT$TotalPay,

size = sampleSize, replace = TRUE)))

hist(sampleMean, xlab = "Mean Pay", main = paste("Mean of SRS of size",

sampleSize))
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If the size of the sample is large enough, the distribution (i.e. histogram) of X̄
will look like a bell-shaped curve. The central limit theorem tells us that for large
sample sizes, this always happens, regardless of the original distribution of the data.
This bell-shaped curve is called the normal distribution. Because of the CLT – and
because many natural estimates are means of one form or another – the normal is a
key distribution for statistics.

A normal distribution has two parameters that define the distribution: its mean
µ and variance σ2 (recall the variance is the standard deviation squared). It’s pdf is

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

It’s a mouthful, but easy for a computer to evaluate.10

Then the central limit theorem says that if the original distribution has mean
µtrue and variance τ 2true, then the distribution of X̄ for a sample of size n will be
approximately

N(µtrue,
τ 2true
n

)

Back to the Salary data We can overlay the normal distribution on our histogram,
if we draw a density histogram (i.e. scale the frequencies so that the area in the
rectangles sums to 1). Notice we also have to pick the right mean and standard
deviation for our normal distribution for these to align. How?

10It’s cdf – the integral of this equation – is intractable, but again easy for a computer to approx-
imate to arbitrarily good precision.
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For most actual datasets, of course, we don’t know the true mean of the popula-
tion, but since we sampled from a known population we do.

Probabilities of a normal distribution Recall that for a normal distribution,
the probability of being within 1 standard deviation of µ is roughly 0.68 and the
probability of being within 2 standard deviations of µ is roughly 0.95.

What is the probability that a observed random variable from a N(µ, σ2) distri-
bution is less than µ by more than 2σ?

For X̄, which is approximately normal, if the original population had mean µ and
standard deviation τ , the standard deviation of that normal is τ/

√
n. What does

this mean for the chance of a single mean calculated from your data being far from
the true mean (relate your answer to the above information about probabilities in a
normal)?

Improvement with larger n We generally want to increase the sample size to
be more accurate. What does this mean and why does this work? The mean X̄ we
observe in our data will be a random, single observation. If we could collect our data
over and over again, we know that X̄ will fluctuates around the truth for different
samples. If we’re lucky, τ is small, so that variability will be small, so any particular
sample (like the one we get!) will be close to the mean. But we can’t control τ . We
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can (perhaps) control the sample size, however – we can gather more data. The CLT
tells us that if we have more observations, n, the fluctations of the mean X̄ from
the truth will be smaller and smaller for larger n – meaning the particular mean we
observe in our data will be closer and closer to the true mean. So means with large
sample size should be more accurate.

However, there’s a catch, in the sense that the amount of improvement you get
with larger n gets less and less for larger n. If you go from n observations to 2n
observations, the standard deviation goes from τtrue√

n
to τtrue√

2n
– a decrease of 1

√
2. In

other words, the standard deviation decreases as n decreases like 1/
√
n.

4.5 More on density curves

“Not much good to me” you might think – you can’t evaluate p(x) and get any
probabilities out. It just requires the new task of finding an area. However, finding
areas under curves is a routine integration task, and even if there is not a analytical
solution, the computer can calculate the area. So pdfs are actually quite useful.

Moreover, p(x) is interpretable, just not as a direct tool for probability cal-
culations. For smaller and smaller intervals you are getting close to the idea of
the “probability” of X = 72K. For this reason, where discrete distributions use
P (X = 72K), the closest corresponding idea for continuous distributions is p(72, 000):
though p(72, 000) is not a probability like P (X = 72, 000) the value of p(x) gives you
an idea of more likely regions of data.

More intuitively, the curve p(x) corresponds to the idea of of a histogram of data.
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It’s shape tells you about where the data are likely to be found, just like the bins of
the histogram. We see for our example of X̄ that the histogram of X̄ (when properly
plotted on a density scale) approaches the smooth curve of a normal distribution. So
the same intuition we have from the discrete histograms carry over to pdfs.

Properties of pdfs

1. A probability density function gives the probability of any interval by taking
the area under the curve

2. The total area under the curve p(x) must be exactly equal to 1

3. Unlike probabilities, the value of p(x) can be ≥ 1 (!).

This last one is surprising to people, but p(x) is not a probability – only the area
under it’s curve is a probability.

To understand this, consider this very simple density function:

p(x) =

{
1 x ∈ [0, 1]

0 x > 1, x < 0

This is a density function that corresponds to being equally likely for any value
between 0 and 1; why?
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What is the area under this curve? Well it’s just a rectangle, so...

This distribution is called a uniform distribution on [0,1], some times abbreviated
U(0, 1).

Suppose instead, I want density function that corresponds to being equally likely
for any value between 1/4 and 1/2 (i.e. U(1/4, 1/2)).

Then again, we can easily calculate this area . If p(x) was required to be less than
one, you couldn’t get the total area to be 1.

So you see that the scale of values that X takes on matters to the value of p(x).
If X is concentrated on a small interval, then the density function will be quite large,
while if it is diffuse over a large area the value of the density function will be small.

Example: Changing the scale of measurements : Suppose my random vari-
ableX are measurements in centimeters, with a normal distribution, N(µ = 100cm, σ2 =
100cm2). What is the standard deviation?

Then I decide to convert all the measurements to meters (FYI: 100 centimeters=1
meter). What is now the mean? And standard deviation?
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4.5.1 Density Histograms Revisited

We’ve been showing histograms with the frequency of counts in each bin on the y-
axis. But, histograms are actually meant to represent the distribution of continuous
measurements, i.e. to approximate density functions. Specifically, histograms are
properly drawn on the density scale, meaning that you want the total area in all of
the rectangles of the histogram to have area 1.

Notice how when I overlay the normal curve for discussing the central limit theo-
rem, I had to set my hist function to freq=FALSE to get proper density histograms.
Otherwise the histogram is on the wrong scale.

hist(sampleMean, xlab = "Mean Pay", main = paste("Mean of SRS of size",

sampleSize), freq = FALSE, sub = paste("Over",

length(sampleMean), "simulations"))

m <- mean(salaries2014_FT$TotalPay)

s <- sqrt(var(salaries2014_FT$TotalPay)/sampleSize)

p <- function(x) {
dnorm(x, mean = m, sd = s)

}
curve(p, add = TRUE, col = "red", lwd = 3)

We can demonstrate the effect of the scale of the data on this density histogram
by changing the scale that we measure to be in units of 10K rather than say 1K.
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Just like density curves, if you plot histograms on the density scale, you can get
values greater than 1.

Notice how density values vary (like counts) as you change the breaks. Why?
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4.5.2 Examples of other distributions

Here are some examples of some pdfs from some two common continuous distributions
other than the normal:

These are all called parametric distributions. Notice a few things illustrated
by these examples:

• that ‘a’ parametric distribution is actually a family of distributions that differ
by changing the parameters (e.g. Normal has a mean and a standard deviation
that defines it)

• Unlike the normal, many distributions have very different shapes for different
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parameters

• Continuous distributions can be limited to an interval or region (i.e. not take
on all values of the real line). They are still considered continuous distributions
because the range of points with positive probability is still a continuous range.

The following cannot be pdfs, why?

But be careful. Just because a function p(x) goes to infinity (i.e. is unbounded),
doesn’t mean that it can’t be a probability density!
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5 Density Curve Estimation

We’ve seen that histograms can approximate density curves (by making the area in
the histogram sum to 1). If we have data from a continuous distribution, we are
estimating a pdf, so we would want an estimate that is written as a function, say
p̂(x).

5.1 Histogram as estimate of pdf

So if we don’t know p(x) but have a SRS from the distribution and we want to
estimate p(x).

Let’s think of an easy situation. Suppose that we want to estimate p(x) between
the values b1, b2, and that in that region, p(x) is constant, i.e. a flat line

Then what do we know about P (b1 ≤ X ≤ b2)?

We have a good idea of how to estimate from a SRS P (b1 ≤ X ≤ b2), how?

So a good estimate of p(x) if it is a flat function in that area is going to be

P̂ (b1 ≤ X ≤ b2)/(b2 − b1) =
# Points in [b1, b2]

w × n

This is exactly what we calculate for a density histogram.

More generally, if the pdf p(x) is pretty smooth, then in a small enough windows
around x, p(x) is going to be not changing too much roughly the same value. So if
the width of the interval is small, we can more generally say

p̂(x) =
P̂ (data in interval)

w

With this idea, we can view our histogram as a estimate of the pdf. For example,
suppose we consider a histogram of our SRS of salaries,
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Then the frequency counts in each bin can be convert to density scale by dividing
by the width of the interval of the bins (this is what is meant by the density values
in a histogram). Then by our argument above, this density histogram is an estimate
of p(x). Specifically, while we don’t normally plot it this way, the histogram is a
function that estimates p̂(x). We can call it p̂hist(x), and it is a function that is what
is called a step function. For every x, we can define an estimated value of p̂hist(x)
based on what bin x is in:

p̂hist(x) =
P̂ (data in bin of x )

w

Suppose we want to calculate p̂hist(60K), and we’ve set up our breaks of our
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histogram so that x = 60K is in the bin with interval [50K, 70K). Then how do you
calculate p̂hist(60K) from a sample of size 100?

How we choose the breaks in a histogram can affect their ability to be a good esti-
mate of the density. Consider our sample of X̄ values, which we know approximates
a normal,

5.2 Kernel density estimation

The histogram estimate is reasonable estimate if x is right in the middle of the bin,
but if x is on the boundary of the bin, what happens?

It makes not only the size of the bins, but also the specific centers of the bins
that matter. And clearly this doesn’t make sense for a continuous function!

5.2.1 Moving Windows

As a motivation to kernel density estimation, which is what people use in practice,
lets consider a simple version: a moving window or bin.

If you want to estimate p(x) at a specific x, say x = 72, 000. We would want
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72, 000 to be in the center of the bin. But strangely, when we make a histogram,
we set a fix number of centers of the bins, and estimate p̂hist(x), and then return
p̂hist(72, 000).

Clearly, then, if I wanted to estimate just p(72, 000), I should change my bin and
not use p̂hist(x). But estimating p(x), the curve, is equivalent to estimate p(x) for
every x. So by the same analog, I should estimate a p̂(x) by making a bin centered
at x, for every x.

For example, say we pick a bin width of 20K, and want to estimate the density
around 72, 000. Then for x = 72, 000, we could make a interval of width 20K,
[52, 000, 92, 000), and calculate

# x ∈ [52K, 92K)

20K × 100

We can do this for x = 80, 000, with an interval of [60K, 100K) and so forth for each
x.

Doing this for every single x would give us a curve like this:

More formally, our estimate of p(x), is

p̂(x) =
#xi ∈ [x− w

2
, x+ w

2
)

w × n

We can consider using different size windows:
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What is the effect of larger windows or bins?

5.2.2 Weighted Kernel Function

We said our estimate of p(x), is

p̂(x) =
#xi ∈ [x− w

2
, x+ w

2
)

w × n

So to estimate the density around x, we are using the individual data observations if
and only if they are close to x. We could write this as a sum over all of our data in
our SRS, where some of the data are not counted depending on whether it is close
enough to x or not:

p̂(x) =
1

n

∑
i:xi∈[x−w2 ,x+

w
2
)

1

w

Here is a visualization of how we determine how much a point xi counts toward
estimating p(x) – it either contributes 1/w or 0 depending on how far it is from x
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We can think of this as a function f of x and xi: for every x for which we want
to estimate p(x), we have a function that tells us how much each of our data points
xi should contribute.

f(x, xi) =

{
1
w

xi ∈ xi ∈ [x− w
2
, x+ w

2
)

0 otherwise

It’s a function that is different for every x, but just like our moving windows, it’s the
same function and we just slide it across all of the x. So we can simply write our
estimate at each x as an average of the values f(x, xi)

p̂(x) =
1

n

n∑
i=1

f(x, xi)

Is this a proper density? Does p̂(x) form a proper density, i.e. is the area under
its curve equal 1? We can answer this question by integrating p̂(x)∫ ∞

−∞
p̂(x)dx =

∫ ∞
−∞

1

n

n∑
i=1

f(x, xi)dx

=
1

n

n∑
i=1

∫ ∞
−∞

f(x, xi)dx

So if
∫∞
−∞ f(x, xi)dx = 1 for any xi, we will have,∫ ∞

−∞
p̂(x)dx =

1

n

n∑
i=1

1 = 1.
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Is this the case? Well, considering f(x, xi) as a function of x with a fixed xi value,
it is equal to 1/w when x is within w/2 of xi, and zero otherwise (i.e. the same
function as before, but now centered at xi):

This means
∫∞
−∞ f(x, xi)dx = 1 for any fixed xi, and so it is a valid density function.

Writing in terms of a kernel function K For various reasons, we will often
speak in terms of the distance between x and the xi relative to our the width on one
side of x h:

|x− xi|
h

You can think of this as the number of h units xi is from x. So if we are trying to
estimate p(72, 000) and our bin width is w = 5, 000, then h = 2, 500 and |x−xi|

h
is the

number of 2.5K units a data point xi is from 72, 000.

Doing this we can write

fx(xi) =
1

h
K(
|x− xi|

h
)

where

K(d) =

{
1
2

d ≤ 1

0 otherwise

We call a function K(d) that defines a weight for each data point at h-units distance
d from x a kernel function.

p̂(x) =
1

n

n∑
i=1

1

h
K(
|x− xi|

h
)
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All of this mucking about with the function K versus f(x, xi) is not really important
– it gives us the same estimate! K is just slightly easier to write mathematically
because we took away it’s dependence on x, xi and (somewhat) h.

The parameter h is called the bandwidth parameter.

Example of Salary data In R, the standard function to calculate the density
is density. Our moving window is called the “rectangular” kernel, and so we can
replicate what we did using the option kernel=‘‘rectangular’’ in the density

function 11

5.2.3 Other choices of kernel functions

Once we think about our estimate like that, we can think about not having such a
sharp distinction for the interval around x. After all, what if you have a data point
that is 5, 100 away from x rather than 5, 000? Similarly, if you have 50 data points
within 100 of x shouldn’t they be more informative about the density around x than
50 data points more than 4, 500 away from x?

This gives the idea of letting data points contribute to the estimate of p(x) based
on their distance from x, but in a smoother way. For example, consider this more
‘gentle’ visualization of the contribution of a data point xi to the density of x

11It’s actually hard to exactly replicate what I did above with the density function, because R
is smarter. First of all, it picks a bandwidth from the data. Second, it doesn’t evaluate at every
possible x like I did. It picks a number, and interpolates between them. For the rectangular density,
this makes much more sense, as you can see in the above plot.
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This is also the form of a kernel function, called a normal (or gaussian) kernel and
is very common for density estimation. It is a normal curve centered at x12; as you
move away from x you start to decrease in your contribution to the estimate of p(x)
but more gradually than the rectangle kernel we started with.

If we want to formally write this in terms of a function K, like above then we
would say that our K(·) function is the standard normal curve centered at zero with
standard deviation 0.

This would imply that
1

h
K(
|x− xi|

h
)

will give you the normal curve with mean x and standard deviation h.

We can compare the kernel estimates: Here is the estimate of the density based
on the rectangular kernel and the normal kernel (now using the defaults), along with
our estimate from the histogram:

12You have to properly scale the height of the kernel function curve so that you get area under
the final estimate p̂(x) curve equal to 1
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What do you notice when comparing the estimates of the density from these two
kernels?

Bandwidth Notice that I still have a problem of picking a width for the rectangular
kernel, or the spread/standard deviation for the gaussian kernel. This w is called
generically a bandwidth parameter. In the above plot I forced the functions to have
the same bandwidth corresponding to the moving window of $20K.

Here are different choices of the bandwidth:
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The default parameter of the density function is usually pretty reasonable, partic-
ularly if used with the gaussian kernel (also the default). Indeed, while we discussed
the rectangular kernel to motivate going from the histogram to the kernel density
estimator, it’s rarely used in practice. It is almost always the gaussian kernel.

5.3 Comparing multiple groups with density curves

In addition to being a more satisfying estimation of a pdf, density curves are much
easier to compare between groups than histograms because you can easily overlay
them.
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5.4 Violin Plots

We can combine the idea of density plots and boxplots to get something called a
‘violin plot’.

library(vioplot)

vioplot(salaries2014_FT$TotalPay)

This is basically just turning the density estimate on its side and putting it next to
the boxplot so that you can get finer-grain information about the distribution. Like
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boxplots, this allows you to compare many groups (but unlike the standard boxplot

command, the vioplot function is a bit akward for plotting multiple groups, so I’ve
made my own little function ‘vioplot2’ available online which I will import here)

source("http://www.stat.berkeley.edu/~epurdom/RcodeForClasses/myvioplot.R")

par(mar = c(10, 4.1, 4.1, 0.1))

vioplot2(salaries2014_top$TotalPay, salaries2014_top$JobTitle,

col = cols, las = 3, ylab = "Salary (in dollars)")
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