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This chapter deals with the regression problem where the goal is to understand the
relationship between a specific variable called the response or dependent variable
(y) and several other related variables called explanatory or independent variables
or more generally covariates.

1. Prospective buyers and sellers might want to understand how the price of a
house depends on various characteristics of the house such as the total above
ground living space, total basement square footage, lot area, number of cars
that can be parked in the garage, construction year and presence or absence
of a fireplace. This is an instance of a regression problem where the response
variable is the house price and the other characteristics of the house listed above
are the explanatory variables.

This dataset contains information on sales of houses in Ames, Iowa from 2006
to 2010. The full dataset can be obtained by following links given in the
paper: https://ww2.amstat.org/publications/jse/v19n3/decock.pdf). I
have shortened the dataset slightly to make life easier for us.

2. A bike rental company wants to understand how the number of bike rentals in
a given hour depends on environmental and seasonal variables (such as tem-
perature, humidity, presence of rain etc.) and various other factors such as
weekend or weekday, holiday etc. This is also an instance of a regression prob-
lems where the response variable is the number of bike rentals and all other
variables mentioned are explanatory variables.

Instructor: Purdom #5, Fall 2019, STAT 131A 4



3. We might want to understand how the retention rates of colleges depend on
various aspects such as tuition fees, faculty salaries, number of faculty members
that are full time, number of undergraduates enrolled, number of students on
federal loans etc. using our college data from before. This is again a regression
problem with the response variable being the retention rate and other variables
being the explanatory variables.

4. We might be interested in understanding the proportion of my body weight
that is fat (body fat percentage). Directly measuring this quantity is probably
hard but I can easily obtain various body measurements such as height, weight,
age, chest circumeference, abdomen circumference, hip circumference and thigh
circumference. Can we predict my body fat percentage based on these mea-
surements? This is again a regression problem with the response variable being
body fat percentage and all the measurements are explanatory variables.

Body fat percentage (computed by a complicated underwater weighing tech-
nique) along with various body measurements are given for 252 adult men.
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There are outliers in the data and they make it hard to look at the relationships
between the variables. We can try to look at the pairs plots after deleting some
outlying observations.

1 The nature of the ‘relationship’

Notice that in these examples, the goals of the analysis shift depending on the example
from truly wanting to just be able to predict future observations (e.g. body-fat),
wanting to have insight into how to the variables are related to the response (e.g.
college data), and a combination of the two (e.g. housing prices and bike sharing).
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What do we mean by the relationship of a explanatory variable to a response?
There are multiple valid interpretations that are used in regression that are important
to distinguish.

• The explanatory variable is a good predictor of the response.

• The explanatory variable is necessary for good prediction of the response (among
the set of variables we are considering).

• Changes in the explanatory variable cause the response to change (causality).

We can visualize the difference in the first and second with plots. Being a good
predictor is like the pairwise scatter plots from before, in which case both thigh and
abdominal circumference are good predictors of percentage of body fat.

But in fact if we know the abdominal circumference, the thigh circumference
does not tell us much more. A coplot visualizes this relationship, by plotting the
relationship between two variables, conditional on the value of another. In otherwords,
it plots the scatter plot of percent body fat against thigh, but only for those points
for abdomen in a certain range (with the ranges indicated at the top).

Instructor: Purdom #5, Fall 2019, STAT 131A 7



We see there is no longer a strong relationship between percentage body fat and
thigh circumference for specific values of abdomen circumference

The same is not true, however, for the reverse,

We will see later in the course when we have many variables the answers to these
three questions are not always the same (and that we can’t always answer all of them).
We will almost always be able to say something about the first two, but the last is
often not possible.
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1.1 Causality

Often a (unspoken) goal of linear regression can be to determine whether something
‘caused’ something else. It is critical to remember that whether you can attribute
causality to a variable depends on how your data was collected. Specifically, most
people often have observational data, i.e. they sample subjects or units from the
population and then measure the variables that naturally occur on the units they
happen to sample. In general, you cannot determine causality by just collecting
observations on existing subjects. You can only observe what is likely to naturally
occur jointly in your population, often due to other causes. Consider the following
data on the relationship between the murder rate and the life expectancy of different
states, what do you observe? What about between frost levels and illiteracy?

It is a common mistake in regression to to jump to the conclusion that one variable
causes the other, but all you can really say is that there is a strong relationship in
the population, i.e. when you observe one value of the variable you are highly likely
to observed a particular value of the other.

Can you ever claim causality? Yes, if you run an experiment; this is where
you assign what the value of the predictors are for every observation independently
from any other variable. An example is a clinical trial, where patients are randomly
assigned a treatment.

It’s often not possible to run an experiment, especially in the social sciences or
working with humans . In the absence of an experiment, it is common to collect a lot
of other variables that might also explain the response, and ask our second question
– ‘how necessary is it (in addition to these other variables)?’ with the idea that it is
a proxy for causality. This is sometime called ‘controlling’ for the effect of the other
variables.

Note that regardless, the analysis of observational and experimental data often
both use linear regression.1 It’s what conclusions you can draw that differ.

1Note that there can be problems with using linear regression in experiments when only some
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2 Multiple Linear Regression

The body fat dataset is a useful one to use to explain linear regression because all of
the variables are continuous and the relationships are reasonably linear.

Let us look at the plots between the response variable (bodyfat) and all the
explanatory variables (we’ll remove the outliers for this plot).

Most pairwise relationships seem to be linear. The clearest relationship is between
bodyfat and abdomen. The next clearest is between bodyfat and chest.

We can expand the simple regression we used earlier to include more variables.

y = β0 + β1x
(1) + β2x

(2) + . . .

2.1 Regression Line vs Regression Plane

In simple linear regression (when there is only one explanatory variable), the fitted
regression equation describes a line. If we have two variables, it defines a plane. This
plane can be plotted in a 3D plot when there are two explanatory variables. When the
number of explanatory variables is 3 or more, we have a general linear combination2

and we cannot plot this relationship.

of the explanatory variables are randomly assigned. Similarly, there are other methods that you
can use in observational studies that can, within some strict limitations, get closer to answering
questions of causality.

2so defines a linear subspace
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To illustrate this, let us fit a regression equation to bodyfat percentage in terms
of age and chest circumference:

We can visualize this 3D plot:

2.2 How to estimate the coefficients?

We can use the same principle as before. Specifically, for any selection of our βj
coefficients, we get a predicted or fitted value ŷ. Then we can look for the βj which
minimize our loss

n∑
i=1

`(yi, ŷi)

Again, standard regression uses squared-error loss,

n∑
i=1

(yi − ŷi)2.

We again can fit this by using lm in R, with similar syntax as before:

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

summary(ft)

##
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## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

In fact, if we want to use all the variables in a data.frame we can use a simpler
notation:

ft = lm(BODYFAT ~ ., data = body)

Notice how similar the output to the function above is to the case of simple
linear regression. R has fit a linear equation for the variable BODYFAT in terms
of the variables AGE, WEIGHT, HEIGHT, CHEST, ABDOMEN, HIP and THIGH.
Again, the summary of the output gives each variable and its estimated coefficient,

BODY FAT = −37.48 + 0.012 ∗ AGE − 0.139 ∗WEIGHT − 0.102 ∗HEIGHT
(1)

− 0.0008 ∗ CHEST + 0.968 ∗ ABDOMEN − 0.183 ∗HIP + 0.286 ∗ THIGH

We can also write down explicit equations for the estimates of the β̂j when we use
squared-error loss, though we won’t give them here (they are usually given in matrix
notation).
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2.3 Interpretation of the regression equation

Here the coefficient β̂1 is interpreted as the average increase in y for unit increase
in x(1), provided all other explanatory variables x(2), . . . , x(p) are kept constant. More
generally for j ≥ 1, the coefficient β̂j is interpreted as the average increase in y for
unit increase in x(j) provided all other explanatory variables x(k) for k 6= j are kept
constant. The intercept β̂0 is interpreted as the average value of y when all the
explanatory variables are equal to zero.

In the body fat example, the fitted regression equation as we have seen is:

BODY FAT = −37.48 + 0.012 ∗ AGE − 0.139 ∗WEIGHT − 0.102 ∗HEIGHT
(2)

− 0.0008 ∗ CHEST + 0.968 ∗ ABDOMEN − 0.183 ∗HIP + 0.286 ∗ THIGH

The coefficient of 0.968 can be interpreted as the average percentage increase in body-
fat percentage per unit (i.e., 1 cm) increase in Abdomen circumference provided all
the other explanatory variables age, weight, height, chest circumference, hip circum-
ference and thigh circumference are kept unchanged.

Do the signs of the fitted regression coefficients make sense?

2.3.1 Scaling and the size of the coefficient

It’s often tempting to look at the size of the βj as a measure of how “important” the
variable j is in predicting the response y. However, it’s important to remember that
βj is relative to the scale of the input x(j) – it is the change in y for one unit change
in x(j). So, for example, if we change from measurements in cm to mm (i.e. multiply
x(j) by 10) then we will get a β̂j that is divided by 10:

## Coefficients with Abdomen in mm:

## (Intercept) AGE WEIGHT HEIGHT CHEST

## -3.747573e+01 1.201695e-02 -1.392006e-01 -1.028485e-01 -8.311678e-04

## ABDOMEN HIP THIGH

## 9.684620e-02 -1.833599e-01 2.857227e-01

## Coefficients with Abdomen in cm:

## (Intercept) AGE WEIGHT HEIGHT CHEST

## -3.747573e+01 1.201695e-02 -1.392006e-01 -1.028485e-01 -8.311678e-04

## ABDOMEN HIP THIGH

## 9.684620e-01 -1.833599e-01 2.857227e-01
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For this reason, it is not uncommon to scale the explanatory variables – i.e. divide
each variable by its standard deviation – before running the regression:

## Coefficients with variables scaled:

## (Intercept) AGE WEIGHT HEIGHT CHEST ABDOMEN

## 19.15079365 0.15143812 -4.09098792 -0.37671913 -0.00700714 10.44300051

## HIP THIGH

## -1.31360120 1.50003073

## Coefficients on original scale:

## (Intercept) AGE WEIGHT HEIGHT CHEST

## -3.747573e+01 1.201695e-02 -1.392006e-01 -1.028485e-01 -8.311678e-04

## ABDOMEN HIP THIGH

## 9.684620e-01 -1.833599e-01 2.857227e-01

## Sd per variable:

## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 12.602040 29.389160 3.662856 8.430476 10.783077 7.164058 5.249952

## Ratio of scaled lm coefficient to original lm coefficient

## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 12.602040 29.389160 3.662856 8.430476 10.783077 7.164058 5.249952

Now the interpretation of the βj is that per standard deviation change in the
variable xj, what is the change in y, again all other variables remaining constant.

2.3.2 Correlated Variables

The interpretation of the coefficient β̂j depends crucially on the other explanatory
variables x(k), k 6= j that are present in the equation (this is because of the phrase
“all other explanatory variables kept constant”).

For the bodyfat data, we have seen that the variables chest thigh and hip and
abdomen circumference are highly correlated:

cor(body[, c("HIP", "THIGH", "ABDOMEN", "CHEST")])

## HIP THIGH ABDOMEN CHEST

## HIP 1.0000000 0.8964098 0.8740662 0.8294199

## THIGH 0.8964098 1.0000000 0.7666239 0.7298586

## ABDOMEN 0.8740662 0.7666239 1.0000000 0.9158277

## CHEST 0.8294199 0.7298586 0.9158277 1.0000000
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So if the coefficient assigned to CHEST tells us how the response changes as the
other variables stay the same, this doesn’t easily match the reality of how people
actually are.

Moreover, this effectively means that these variables are measuring essentially
the same thing and, therefore, it might make more sense to just have one of these
variables in the regression equation. Let us therefore fit a linear model for the body
fat percentage removing abdomen and thigh (ie. based on age, weight, height, chest
and hip):

ft1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

HIP, data = body)

round(coef(ft), 4)

## (Intercept) AGE WEIGHT HEIGHT CHEST ABDOMEN

## -37.4757 0.0120 -0.1392 -0.1028 -0.0008 0.9685

## HIP THIGH

## -0.1834 0.2857

round(coef(ft1), 4)

## (Intercept) AGE WEIGHT HEIGHT CHEST HIP

## -53.9871 0.1290 -0.0526 -0.3146 0.5148 0.4697

See now that the regression equation is quite different from the previous one. The
coefficients are different now (and they have different interpretations as well).

We will discuss this more, but it’s important to remember that the βj are not a
fixed, immutable property of the variable, but are only interpretable in the context
of the other variables.

What kind of relationship with y does βj measure? If we go back to our
possible questions we could ask about the relationship between a single variable j
and the response, then β̂j answers the second question: how necessary is variable j to
the predition of y above and beyond the other variables? We can see this in our above
description of “being held constant” – if when the other variables aren’t changing, β̂j
tells us how much y moves on average as only x(j) changes. If β̂j is close to 0, then
changes in x(j) aren’t affecting y much for fixed values of the other coordinates.

Note that this means that the interpretation of β̂j (and it’s significance) is a
function of the x data you have. If you only observe xj large when x(k) is also large

Instructor: Purdom #5, Fall 2019, STAT 131A 15



(i.e. strong and large positive correlation), then you have little data where x(j) is
changing over a range of values while x(k) is basically constant.

Here’s some simulated data demonstrating this. Notice both variables are pretty
correlated with the response y

But if I look at the regression summary, I don’t get any significance.

##

## Call:

## lm(formula = y ~ ., data = x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -46.067 -10.909 0.208 9.918 38.138

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 110.246 97.344 1.133 0.258

## score1 8.543 6.301 1.356 0.176

## score2 9.113 6.225 1.464 0.144

##

## Residual standard error: 15.09 on 297 degrees of freedom

## Multiple R-squared: 0.2607,Adjusted R-squared: 0.2557

## F-statistic: 52.37 on 2 and 297 DF, p-value: < 2.2e-16

However, individually, each score is highly significant in predicting y
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##

## Call:

## lm(formula = y ~ score1, data = x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -47.462 -10.471 0.189 10.378 38.868

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 211.072 68.916 3.063 0.00239 **

## score1 17.416 1.723 10.109 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 15.12 on 298 degrees of freedom

## Multiple R-squared: 0.2554,Adjusted R-squared: 0.2529

## F-statistic: 102.2 on 1 and 298 DF, p-value: < 2.2e-16

##

## Call:

## lm(formula = y ~ score2, data = x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -44.483 -11.339 0.195 11.060 40.327

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 45.844 85.090 0.539 0.59

## score2 17.234 1.701 10.130 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 15.11 on 298 degrees of freedom

## Multiple R-squared: 0.2561,Adjusted R-squared: 0.2536

## F-statistic: 102.6 on 1 and 298 DF, p-value: < 2.2e-16

They just don’t add further information when added to the existing variable already
included. Looking at the coplot, we can visualize this – for each bin of score 2 (i.e.
as close as we can get to constant), we have very little further change in y.

Instructor: Purdom #5, Fall 2019, STAT 131A 17



We will continually return the effect of correlation in understanding multiple re-
gression.

3 Important measurements of the regression esti-

mate

3.1 Fitted Values and Multiple R2

Any regression equation can be used to predict the value of the response variable given
values of the explanatory variables, which we call ŷ(x). We can get a fitted value for
any value x. For example, consider our original fitted regression equation obtained
by applying lm with bodyfat percentage against all of the variables as explanatory
variables:

BODY FAT = −37.48 + 0.01202 ∗ AGE − 0.1392 ∗WEIGHT − 0.1028 ∗HEIGHT
(3)

− 0.0008312 ∗ CHEST + 0.9685 ∗ ABDOMEN − 0.1834 ∗HIP + 0.2857 ∗ THIGH

Suppose a person X (who is of 30 years of age, weighs 180 pounds and is 70 inches
tall) wants to find out his bodyfat percentage. Let us say that he is able to measure
his chest circumference as 90 cm, abdomen circumference as 86 cm, hip circumference
as 97 cm and thigh circumference as 60 cm. Then he can simply use the regression
equation to predict his bodyfat percentage as:
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bf.pred = -37.48 + 0.01202 * 30 - 0.1392 * 180 - 0.1028 *

70 - 0.0008312 * 90 + 0.9685 * 86 - 0.1834 * 97 +

0.2857 * 60

bf.pred

## [1] 13.19699

The predictions given by the fitted regression equation for each of the observations
are known as fitted values, ŷi = ŷ(xi). For example, in the bodyfat dataset, the
first observation (first row) is given by:

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 1 12.3 23 154.25 67.75 93.1 85.2 94.5 59

The observed value of the response (bodyfat percentage) for this individual is 12.3
%. The prediction for this person’s response given by the regression equation (3) is

-37.48 + 0.01202 * body[1, "AGE"] - 0.1392 * body[1,

"WEIGHT"] - 0.1028 * body[1, "HEIGHT"] - 0.0008312 *

body[1, "CHEST"] + 0.9685 * body[1, "ABDOMEN"] -

0.1834 * body[1, "HIP"] + 0.2857 * body[1, "THIGH"]

## [1] 16.32398

Therefore the fitted value for the first observation is 16.424%. R directly calculates
all fitted values and they are stored in the lm() object. You can obtain these via:

head(fitted(ft))

## 1 2 3 4 5 6

## 16.32670 10.22019 18.42600 11.89502 25.97564 16.28529

If the regression equation fits the data well, we would expect the fitted values
to be close to the observed responses. We can check this by just plotting the fitted
values against the observed response values.
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We can quantify how good of a fit our model is by taking the correlation between
these two values. Specifically, the square of the correlation of y and ŷ is known as
the Coefficient of Determination or Multiple R2 or simply R2:

R2 = (cor(yi, ŷi))
2 .

This is an important and widely used measure of the effectiveness of the regression
equation and given in our summary the lm fit.

cor(body$BODYFAT, fitted(ft))^2

## [1] 0.7265596

summary(ft)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

A high value of R2 means that the fitted values (given by the fitted regression
equation) are close to the observed values and hence indicates that the regression
equation fits the data well. A low value, on the other hand, means that the fitted
values are far from the observed values and hence the regression line does not fit the
data well.

Note that R2 has no units (because its a correlation). In other words, it is scale-
free.

3.2 Residuals and Residual Sum of Squares (RSS)

For every point in the scatter the error we make in our prediction on a specific
observation is the residual and is defined as

ri = yi − ŷi

Residuals are again so important that lm() automatically calculates them for us
and they are contained in the lm object created.

head(residuals(ft))

## 1 2 3 4 5 6

## -4.026695 -4.120189 6.874004 -1.495017 2.724355 4.614712
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A common way of looking at the residuals is to plot them against the fitted values.

One can also plot the residuals against each of the explanatory variables (note we
didn’t remove the outliers in our regression so we include them in our plots).

The residuals represent what is left in the response (y) after all the linear effects
of the explanatory variables are taken out.

One consequence of this is that the residuals are uncorrelated with every
explanatory variable. We can check this in easily in the body fat example.
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## Correlation with AGE : -1.754044e-17

## Correlation with WEIGHT : 4.71057e-17

## Correlation with HEIGHT : -1.720483e-15

## Correlation with CHEST : -4.672628e-16

## Correlation with ABDOMEN : -7.012368e-16

## Correlation with HIP : -8.493675e-16

## Correlation with THIGH : -5.509094e-16

Moreover, as we discussed in simple regression, the residuals always have mean
zero:

mean(ft$residuals)

## [1] 2.467747e-16

Again, these are automatic properties of any least-squares regression. This is not
evidence that you have a good fit or that model makes sense!

Also, if one were to fit a regression equation to the residuals in terms of the same
explanatory variables, then the fitted regression equation will have all coefficients
exactly equal to zero:

m.res = lm(ft$residuals ~ body$AGE + body$WEIGHT +

body$HEIGHT + body$CHEST + body$ABDOMEN + body$HIP +

body$THIGH)

summary(m.res)

##

## Call:

## lm(formula = ft$residuals ~ body$AGE + body$WEIGHT + body$HEIGHT +

## body$CHEST + body$ABDOMEN + body$HIP + body$THIGH)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.154e-14 1.449e+01 0 1

## body$AGE 1.282e-17 2.934e-02 0 1

## body$WEIGHT 1.057e-16 4.509e-02 0 1

Instructor: Purdom #5, Fall 2019, STAT 131A 23



## body$HEIGHT -1.509e-16 9.787e-02 0 1

## body$CHEST 1.180e-16 9.989e-02 0 1

## body$ABDOMEN -2.452e-16 8.531e-02 0 1

## body$HIP -1.284e-16 1.448e-01 0 1

## body$THIGH -1.090e-16 1.362e-01 0 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 6.384e-32,Adjusted R-squared: -0.02869

## F-statistic: 2.225e-30 on 7 and 244 DF, p-value: 1

If the regression equation fits the data well, the residuals are supposed to be
small. One popular way of assessing the size of the residuals is to compute their sum
of squares. This quantity is called the Residual Sum of Squares (RSS).

rss.ft = sum((ft$residuals)^2)

rss.ft

## [1] 4806.806

Note that RSS depends on the units in which the response variable is measured.

Relationship to R2 There is a very simple relationship between RSS and R2 (recall
that R2 is the square of the correlation between the response values and the fitted
values):

R2 = 1− RSS

TSS

where TSS stands for Total Sum of Squares and is defined as

TSS =
n∑
i=1

(yi − ȳ)2 .

TSS is just the variance of y without the 1/(n− 1) term.

It is easy to verify this formula in R.

rss.ft = sum((ft$residuals)^2)

rss.ft

## [1] 4806.806
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tss = sum(((body$BODYFAT) - mean(body$BODYFAT))^2)

1 - (rss.ft/tss)

## [1] 0.7265596

summary(ft)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

If we did not have any explanatory variables, then we would predict the value of
bodyfat percentage for any individual by simply the mean of the bodyfat values in
our sample. The total squared error for this prediction is given by TSS. On the other
hand, the total squared error for the prediction using linear regression based on the
explanatory variables is given by RSS. Therefore 1 − R2 represents the reduction in
the squared error because of the explanatory variables.
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3.3 Behaviour of RSS (and R2) when variables are added or
removed from the regression equation

The value of RSS always increases when one or more explanatory variables are re-
moved from the regression equation. For example, suppose that we remove the vari-
able abdomen circumference from the regression equation. The new RSS will then
be:

## [1] 7345.724

## [1] 4806.806

Notice that there is a quite a lot of increase in the RSS. What if we had kept
ABDOMEN in the model but dropped the variable CHEST?

## [1] 4806.808

## [1] 4806.806

The RSS again increases but by a very very small amount. This therefore suggests
that Abdomen circumference is a more important variable in this regression compared
to Chest circumference.

The moral of this exercise is the following. The RSS always increases when vari-
ables are dropped from the regression equation. However the amount of increase
varies for different variables. We can understand the importance of variables in a
multiple regression equation by noting the amount by which the RSS increases when
the individual variables are dropped. We will come back to this point while studying
inference in the multiple regression model.

Because RSS has a direct relation to R2 via R2 = 1 − (RSS/TSS), one can see
R2 decreases when variables are removed from the model. However the amount of
decrease will be different for different variables. For example, in the body fat dataset,
after removing the abdomen circumference variable, R2 changes to:

## [1] 0.5821305

## [1] 0.7265596

Notice that there is a lot of decrease in R2. What happens if the variable Chest
circumference is dropped.
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## [1] 0.7265595

## [1] 0.7265596

There is now a very very small decrease.

3.4 Residual Degrees of Freedom and Residual Standard Er-
ror

In a regression with p explanatory variables, the residual degrees of freedom is given
by n−p−1 (recall that n is the number of observations). This can be thought of as the
effective number of residuals. Even though there are n residuals, they are supposed
to satisfy p+ 1 exact equations (they sum to zero and they have zero correlation with
each of the p explanatory variables).

The Residual Standard Error is defined as:

Residual Sum of Squares

Residual Degrees of Freedom

This can be interpreted as the average magnitude of an individual residual and can
be used to assess the sizes of residuals (in particular, to find identify large residual
values).

For illustration,

## [1] 244

## [1] 4.438471

Both of these are printed in the summary function in R:

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

4 Multiple Regression when some explanatory vari-

ables are categorical

In many instances of regression, some of the explanatory variables are categorical
(note that the response variable is always continuous). For example, consider the
(short version of the) college dataset that you have already encountered.

We can do a regression here with the retention rate (variable name RET-FT4)
as the response and all other variables as the explanatory variables. Note that one
of the explanatory variables (variable name CONTROL) is categorical. This variable
represents whether the college is public (1), private non-profit (2) or private for profit
(3). Dealing with such categorical variables is a little tricky. To illustrate the ideas
here, let us focus on a regression for the retention rate based on just two explanatory
variables: the out-of-state tuition and the categorical variable CONTROL.

The important thing to note about the variable CONTROL is that its levels 1, 2 and
3 are completely arbitrary and have no particular meaning. For example, we could
have called its levels A, B, C or Pu, Pr − np, Pr − fp as well. If we use the lm()
function in the usual way with TUITIONFEE and CONTROL as the explanatory variables,
then R will treat CONTROL as a continuous variable which does not make sense:

req.bad = lm(RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)

summary(req.bad)
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##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.69041 -0.04915 0.00516 0.05554 0.33165

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.661e-01 9.265e-03 71.90 <2e-16 ***

## TUITIONFEE_OUT 9.405e-06 3.022e-07 31.12 <2e-16 ***

## CONTROL -8.898e-02 5.741e-03 -15.50 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08741 on 1238 degrees of freedom

## Multiple R-squared: 0.4391,Adjusted R-squared: 0.4382

## F-statistic: 484.5 on 2 and 1238 DF, p-value: < 2.2e-16

The regression coefficient for CONTROL has the usual interpretation (if CONTROL

increases by one unit, . . . ) which does not make much sense because CONTROL is
categorical and so increasing it by one unit is nonsensical. So everything about this
regression is wrong (and we shouldn’t interpret anything from the inference here).

You can check that R is treating CONTROL as a numeric variable by:

is.numeric(scorecard$CONTROL)

## [1] TRUE

The correct way to deal with categorical variables in R is to treat them as factors:

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + as.factor(CONTROL), data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68856 -0.04910 0.00505 0.05568 0.33150

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.765e-01 7.257e-03 79.434 < 2e-16 ***

## TUITIONFEE_OUT 9.494e-06 3.054e-07 31.090 < 2e-16 ***

## as.factor(CONTROL)2 -9.204e-02 5.948e-03 -15.474 < 2e-16 ***

## as.factor(CONTROL)3 -1.218e-01 3.116e-02 -3.909 9.75e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08732 on 1237 degrees of freedom

## Multiple R-squared: 0.4408,Adjusted R-squared: 0.4394

## F-statistic: 325 on 3 and 1237 DF, p-value: < 2.2e-16

We can make this output a little better by fixing up the factor, rather than having
R make it a factor on the fly:

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68856 -0.04910 0.00505 0.05568 0.33150

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.765e-01 7.257e-03 79.434 < 2e-16 ***

## TUITIONFEE_OUT 9.494e-06 3.054e-07 31.090 < 2e-16 ***

## CONTROLprivate -9.204e-02 5.948e-03 -15.474 < 2e-16 ***

## CONTROLprivate for-profit -1.218e-01 3.116e-02 -3.909 9.75e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08732 on 1237 degrees of freedom

## Multiple R-squared: 0.4408,Adjusted R-squared: 0.4394

## F-statistic: 325 on 3 and 1237 DF, p-value: < 2.2e-16

What do you notice that is different than our wrong output when the CONTROL

variable was treated as numeric?

Why is the coefficient of TUITIONFEE so small?

Instructor: Purdom #5, Fall 2019, STAT 131A 30



4.1 Separate Intercepts: The coefficients of Categorical/Factor
variables

What do the multiple coefficients mean for the variable CONTROL?

This equation can be written in full as:

RET = 0.5765+9.4×10−6∗TUITIONFEE−0.0092∗I (CONTROL = 2)−0.1218∗I (CONTROL = 3) .
(4)

The variable I (CONTROL = 2) is the indicator function, which takes the value 1
if the college has CONTROL equal to 2 (i.e., if the college is private non-profit) and 0
otherwise. Similarly the variable I (CONTROL = 3) takes the value 1 if the college
has CONTROL equal to 3 (i.e., if the college is private for profit) and 0 otherwise.
Variables which take only the two values 0 and 1 are called indicator variables.

Note that the variable I (CONTROL = 1) does not appear in the regression equa-
tion (4). This means that the level 1 (i.e., the college is public) is the baseline level
here and the effects of −0.0092 and 0.1218 for private for-profit and private non-profit
colleges respectively should be interpreted relative to public colleges.

The regression equation (4) can effectively be broken down into three equations.
For public colleges, the two indicator variables in (4) are zero and the equation be-
comes:

RET = 0.5765 + 9.4× 10−6 ∗ TUITIONFEE. (5)

For private non-profit colleges, the equation becomes

RET = 0.5673 + 9.4× 10−6 ∗ TUITIONFEE. (6)

and for private for-profit colleges,

RET = 0.4547 + 9.4× 10−6 ∗ TUITIONFEE. (7)

Note that the coefficient of TUITIONFEE is the same in each of these equations
(only the intercept changes). We can plot a scatterplot together with all these lines.
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4.2 Separate Slopes: Interactions

What if we want these regression equations to have different slopes as well as different
intercepts for each of the types of colleges?

Intuitively, we can do separate regressions for each of the three groups given by
the CONTROL variable.

Alternatively, we can do this in multiple regression by adding an interaction
variable between CONTROL and TUITIONFEE as follows:

req.1 = lm(RET_FT4 ~ TUITIONFEE_OUT + CONTROL + TUITIONFEE_OUT:CONTROL,

data = scorecard)

summary(req.1)

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + CONTROL + TUITIONFEE_OUT:CONTROL,

## data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68822 -0.04982 0.00491 0.05555 0.32900

##

## Coefficients:

## Estimate Std. Error t value
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## (Intercept) 5.814e-01 1.405e-02 41.372

## TUITIONFEE_OUT 9.240e-06 6.874e-07 13.441

## CONTROLprivate -9.830e-02 1.750e-02 -5.617

## CONTROLprivate for-profit -2.863e-01 1.568e-01 -1.826

## TUITIONFEE_OUT:CONTROLprivate 2.988e-07 7.676e-07 0.389

## TUITIONFEE_OUT:CONTROLprivate for-profit 7.215e-06 6.716e-06 1.074

## Pr(>|t|)

## (Intercept) < 2e-16 ***

## TUITIONFEE_OUT < 2e-16 ***

## CONTROLprivate 2.4e-08 ***

## CONTROLprivate for-profit 0.0681 .

## TUITIONFEE_OUT:CONTROLprivate 0.6971

## TUITIONFEE_OUT:CONTROLprivate for-profit 0.2829

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08734 on 1235 degrees of freedom

## Multiple R-squared: 0.4413,Adjusted R-squared: 0.4391

## F-statistic: 195.1 on 5 and 1235 DF, p-value: < 2.2e-16

Note that this regression equation has two more coefficients compared to the
previous regression (which did not have the interaction term). The two additional
variables are the product of the terms of each of the previous terms: TUITIONFEE∗
I(CONTROL = 2) and TUITIONFEE ∗ I(CONTROL = 3).

The presence of these product terms means that three separate slopes per each
level of the factor are being fit here, why?

Alternatively, this regression with interaction can also be done in R via:

summary(lm(RET_FT4 ~ TUITIONFEE_OUT * CONTROL, data = scorecard))

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT * CONTROL, data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68822 -0.04982 0.00491 0.05555 0.32900

##
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## Coefficients:

## Estimate Std. Error t value

## (Intercept) 5.814e-01 1.405e-02 41.372

## TUITIONFEE_OUT 9.240e-06 6.874e-07 13.441

## CONTROLprivate -9.830e-02 1.750e-02 -5.617

## CONTROLprivate for-profit -2.863e-01 1.568e-01 -1.826

## TUITIONFEE_OUT:CONTROLprivate 2.988e-07 7.676e-07 0.389

## TUITIONFEE_OUT:CONTROLprivate for-profit 7.215e-06 6.716e-06 1.074

## Pr(>|t|)

## (Intercept) < 2e-16 ***

## TUITIONFEE_OUT < 2e-16 ***

## CONTROLprivate 2.4e-08 ***

## CONTROLprivate for-profit 0.0681 .

## TUITIONFEE_OUT:CONTROLprivate 0.6971

## TUITIONFEE_OUT:CONTROLprivate for-profit 0.2829

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.08734 on 1235 degrees of freedom

## Multiple R-squared: 0.4413,Adjusted R-squared: 0.4391

## F-statistic: 195.1 on 5 and 1235 DF, p-value: < 2.2e-16

The three separate regressions can be plotted in one plot as before.

Interaction terms make regression equations complicated (have more variables)
and also slightly harder to interpret although, in some situations, they really improve
predictive power. In this particular example, note that the multiple R2 only increased
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from 0.4408 to 0.4413 after adding the interaction terms. This small increase means
that the interaction terms are not really adding much to the regression equation so
we are better off using the previous model with no interaction terms.

To get more practice with regressions having categorical variables, let us consider
the bike sharing dataset discussed above.

Let us fit a basic regression equation with casual (number of bikes rented by
casual users hourly) as the response variable and the explanatory variables being
atemp (normalized feeling temperature), workingday. For this dataset, I’ve already
encoded the categorical variables as factors.

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.07907 0.33784 0.48673 0.47435 0.60860 0.84090

## No Yes

## 231 500

## Clear/Partly Cloudy Light Rain/Snow Misty

## 463 21 247

We fit the regression equation with a different shift in the mean for each level:

md1 = lm(casual ~ atemp + workingday + weathersit,

data = bike)

summary(md1)

##

## Call:

## lm(formula = casual ~ atemp + workingday + weathersit, data = bike)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1456.76 -243.97 -22.93 166.81 1907.20

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 350.31 55.11 6.357 3.63e-10 ***

## atemp 2333.77 97.48 23.942 < 2e-16 ***

## workingdayYes -794.11 33.95 -23.388 < 2e-16 ***

## weathersitLight Rain/Snow -523.79 95.23 -5.500 5.26e-08 ***

## weathersitMisty -150.79 33.75 -4.468 9.14e-06 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##
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## Residual standard error: 425.2 on 726 degrees of freedom

## Multiple R-squared: 0.6186,Adjusted R-squared: 0.6165

## F-statistic: 294.3 on 4 and 726 DF, p-value: < 2.2e-16

How are the coefficients in the above regression interpreted?

There are interactons that one can add here too. For example, I can add an
interaction between workingday and atemp:

##

## Call:

## lm(formula = casual ~ atemp + workingday + weathersit + workingday:atemp,

## data = bike)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1709.76 -198.09 -55.12 152.88 1953.07

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -276.22 77.48 -3.565 0.000388 ***

## atemp 3696.41 155.56 23.762 < 2e-16 ***

## workingdayYes 166.71 94.60 1.762 0.078450 .

## weathersitLight Rain/Snow -520.78 88.48 -5.886 6.05e-09 ***

## weathersitMisty -160.28 31.36 -5.110 4.12e-07 ***

## atemp:workingdayYes -2052.09 190.48 -10.773 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 395.1 on 725 degrees of freedom

## Multiple R-squared: 0.6712,Adjusted R-squared: 0.6689

## F-statistic: 296 on 5 and 725 DF, p-value: < 2.2e-16

What is the interpretation of the coefficients now?
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5 Inference in Multiple Regression

So far, we have learned how to fit multiple regression equations to observed data and
interpret the coefficient. Inference is necessary for answering questions such as: “Is
the observed relationship between the response and the explanatory variables real or
is it merely caused by sampling variability?”

We will again consider both parametric models and resampling techniques for
inference.

5.1 Parametric Models for Inference

There is a response variable y and p explanatory variables x(1), . . . , x(p). The data
generation model is similar to that of simple regression:

y = β0 + β1x
(1) + · · ·+ βpx

(p) + e. (8)

The numbers β0, . . . , βp are the parameters of the model and unknown.

The error e is the only random part of the model, and we make the same assump-
tions as in simple regression:

1. ei are independent for each observation i

2. ei all have the same distribution with mean 0 and variance σ2

3. ei follow a normal distribution

We could write this more succinctly as

ei are i.i.d N(0, σ2)

but it’s helpful to remember that these are separate assumptions, so we can talk
about which are the most important.

This means that under this model,

y ∼ N(β0 + β1x
(1) + · · ·+ βpx

(p), σ2)

i.e. the observed yi are normal and independent from each other, but each with a
different mean, which depends on xi (so the yi are NOT i.i.d. because not identically
distributed).
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Estimates The numbers β0, . . . , βp capture the true relationship between y and
x1, . . . , xp. Also unknown is the quantity σ2 which is the variance of the unknown ei.

When we fit a regression equation to a dataset via lm() in R, we obtain estimates β̂j
of the unknown βj.

The residual ri serve as natural proxies for the unknown random errors ei. There-
fore a natural estimate for the error standard deviation σ is the Residual Standard
Error,

σ̂2 =
1

n− p− 1

∑
r2i =

1

n− p− 1
RSS

Notice this is the same as our previous equation from simple regression, only now we
are using n− p− 1 as our correction to make the estimate unbiased.

5.2 Global Fit

The most obvious question is the global question: are these variables cummulatively
any good in predicting y? This can be restated as, whether you could predict y just
as well if didn’t use any of the x(j) variables.

If we didn’t use any of the variables, what is our best “prediction” of y?

So our question can be phrased as whether our prediction that we estimated, ŷ(x),
is better than just ȳ in predicting y.

Equivalently, we can think that our null hypothesis is

H0 : βj = 0, for all j

5.2.1 Parametric Test of Global Fit

The parametric test that is commonly used for assessing the global fit is a F-test. A
common way to assess the fit, we have just said is either large R2 or small RSS =∑n

i=1 r
2
i .

We can also think our global test is an implicit test for comparing two possible
prediction models

0. No variables, just predict ȳ for all observations
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1. Our linear model with all the variables

Then we could also say that we could test the global fit by comparing the RSS
from model 0 (the null model), versus model 1 (the one with the variables), e.g.

RSS0 −RSS1

This will always be positive, why?

We will actually instead change this to be a proportional increase, i.e. relative to
the full model, how much increase in RSS do I get when I take out the variables:

RSS0 −RSS1

RSS1

To make this quantity more comparable across many datasets, we are going to
normalize this quantity by the number of variables in the data,

F =
(RSS0 −RSS1)/p

RSS1/(n− p− 1)

Notice that the RSS0 of our 0 model is actually the TSS. This is because

ŷModel 0 = ȳ

so

RSS0 =
n∑
i=1

(yi − ŷModel 0)2 =
n∑
i=1

(yi − ȳ)2

Further,
RSS1/(n− p− 1) = σ̂2

So we have

F =
(TSS −RSS)/p

σ̂2

All of this we can verify on our data:

n <- nrow(body)

p <- ncol(body) - 1

tss <- (n - 1) * var(body$BODYFAT)

rss <- sum(residuals(ft)^2)

sigma <- summary(ft)$sigma

(tss - rss)/p/sigma^2
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## [1] 92.61904

summary(ft)$fstatistic

## value numdf dendf

## 92.61904 7.00000 244.00000

We do all this normalization, because under our assumptions of the parametric
model, the F statistic above follows a F -distribution. The F distribution you have
seen in a HW when you were simulating data, and has two parameters, the degrees of
freedom of the numerator (df1) and the degrees of freedom of the denominator (df2);
they are those constants we divide the numerator and denominator by in the definition
of the F statistic. Then the F statistic we described above follows a F (p, n− p− 1)
distribution under our parametric model.

Here is the null distribution for our F statistic for the bodyfat:

This is a highly significant result, and indeed most tests of general fit are highly
significant. It is rare that the entire set of variables collected have zero predictive
value to the response!
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5.2.2 Permutation test for global fit

Our null hypothesis to assess the global fit is that the xi do not give us any information
regarding the y. We had a similar situation previously when we considered comparing
two groups. There, we measured a response y on two groups, and wanted to know
whether the group assignment of the observation made a difference in the y response.
To answer that question with permutation tests, we permuted the assignment of the
yi variables into the two groups.

Then we can think of the global fit of the regression similarly, since under the null
knowing xi doesn’t give us any information about yi, so I can permute the assignment
of the yi to xi and it shouldn’t change the fit of our data.

Specifically, we have a statistic, R2, for how well our predictions fit the data. We
observe pairs (yi, xi) (xi here is a vector of all the variables for the observation i).
Then

1. Permute the order of the yi values, so that the yi are paired up with different
xi.

2. Fit the regression model on the permuted data

3. Calculate R2
b

4. Repeat B times to get R2
1, . . . , R

2
B.

5. Determine the p-value of the observed R2 as compared to the compute null
distribution

We can do this with the body fat dataset:

Instructor: Purdom #5, Fall 2019, STAT 131A 41



## $p.value

## [1] 0

##

## $observedStat

## [1] 0.7265596

Notice that we could also use the F statistic from before too (here we overlay the
null distribution of the F statistic from the parametric model for comparison),

## $p.value

## [1] 0
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##

## $observedStat

## value

## 92.61904

5.3 Individual Variable Importance

We can also ask about individual variable, βj. This is a problem that we have dis-
cussed in the setting of simple regression, where we are interested in inference regard-
ing the parameter βj, either with confidence intervals of βj or the null hypothesis:

H0 : βj = 0

In order to perform inference for βj, we have two possibilities of how to perform
inference, like in simple regression: bootstrap CI and the parametric model.

5.3.1 Bootstrap for CI of β̂j

Performing the bootstrap to get CI for β̂j in multiple regression is the exact same
procedure as in simple regression.

Specifically, we still bootstrap pairs (yi, xi) and each time recalculate the linear
model. For each βj, we will have a distribution of β̂∗

j for which we can perform
confidence intervals.

We can even use the same function as we used in the simple regression setting
with little changed.

## lower estimate upper

## (Intercept) -75.68776383 -3.747573e+01 -3.84419402

## AGE -0.03722018 1.201695e-02 0.06645578

## WEIGHT -0.24629552 -1.392006e-01 -0.02076377

## HEIGHT -0.41327145 -1.028485e-01 0.28042319

## CHEST -0.25876131 -8.311678e-04 0.20995486

## ABDOMEN 0.81115069 9.684620e-01 1.13081481

## HIP -0.46808557 -1.833599e-01 0.10637834

## THIGH 0.02272414 2.857227e-01 0.56054626
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Note, that unless I scale the variables, I can’t directly interpret the size of the βj
as its importance (see commentary above under interpretation).

Assumptions of the Bootstrap Recall that the bootstrap has assumptions, two
important ones being that we have independent observations and the other being
that we can reasonably estimate F with F̂ . However, the distribution F we need to
estimate is not the distribution of an individual a single variable, but the entire joint
distributions of all the variables. This gets to be a harder and harder task for larger
numbers of variables (i.e. for larger p).

In particular, when using the bootstrap in multiple regression, it will not perform
well if p is large relative to n.3 In general you want the ratio p/n to be small (like
less than 0.1); otherwise the bootstrap can give very poor CI.4

## Ratio of p/n in body fat: 0.03174603

5.3.2 Parametric models

Again, our inference on βj will look very similar to simple regression. Using our

parametric assumptions about the distribution of the errors will mean that each β̂j

3Of course, you cannot do regression at all unless n > p.
4The CI will tend to be very conservative...too wide to give meaningful inference
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is normally distributed 5

β̂j ∼ N(βj, ν
2
j )

where
ν2j = `(X)σ2

(`(X) is a linear combination of all of the observed explanatory variables, given in
the matrix X).6

Using this, we create t-statistics for each βj by standardizing β̂j

Tj =
β̂j√
ˆvar(β̂j)

Just like the t-test, Tj should be normally distributed7 This is exactly what lm gives
us:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.747573e+01 14.49480190 -2.585460204 1.030609e-02

## AGE 1.201695e-02 0.02933802 0.409603415 6.824562e-01

## WEIGHT -1.392006e-01 0.04508534 -3.087490946 2.251838e-03

## HEIGHT -1.028485e-01 0.09787473 -1.050817489 2.943820e-01

## CHEST -8.311678e-04 0.09988554 -0.008321202 9.933675e-01

## ABDOMEN 9.684620e-01 0.08530838 11.352484708 2.920768e-24

## HIP -1.833599e-01 0.14475772 -1.266667813 2.064819e-01

## THIGH 2.857227e-01 0.13618546 2.098041564 3.693019e-02

Correlation of estimates The estimated β̂j are themselves correlated with each
other, unless the xj and xk variables are uncorrelated.

5again, the equation for β̂j will be a linear combination of the yi, and linear combinations of
normal R.V. are normal, even if the R.V. are not independent.

6Specifically, the vector of estimates of the βj is given by β̂ = (X ′X)−1Xy (a p+1 length vector)

and the covariance matrix of the estimates β̂ is given by (X ′X)−1σ2

7with the same caveat, that when you estimate the variance, you affect the distribution of Tj ,
which matters in small sample sizes.
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5.4 Inference on ŷ(x)

We can also create confidence intervals on the prediction given by the model, ŷ(x).
For example, suppose now that we are asked to predict the bodyfat percentage of an
individual who has a particular set of variables x0. Then the same logic in simple
regression follows here.

There are two intervals associated with prediction:

1. Confidence intervals for the average response, i.e. bodyfat percentage for all
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individuals who have the values x0. The average (or expected values) at x0 is

E(y(x0)) = β0 + β1x
(1)
0 + . . .+ βpx

(p)
0 .

and so we estimate it using our estimates of βj, getting ŷ(x0).

Then our 1− α confidence interval will be

ŷ(x0)± tα2

√
ˆvar(ŷ(x0))

8

2. Confidence intervals for a particular individual. If we knew β completely, we
still wouldn’t know the value of the particular individual. But if we knew β,
we know that our parametric model says that all individuals with the same x0
values are normally distributed as

N(β0 + β1x
(1)
0 + . . .+ βpx

(p)
0 , σ2)

So we could give an interval that we would expect 95% confidence that such an
individual would be in, how?

We don’t know β, so actually we have to estimate both parts of this,

ŷ(x0) +±1.96
√
σ̂2 + ˆvar(ŷ(x0))

This type of interval is called a prediction interval.

These intervals are obtained in R via the predict function.

x0 = data.frame(AGE = 30, WEIGHT = 180, HEIGHT = 70,

CHEST = 95, ABDOMEN = 90, HIP = 100, THIGH = 60)

predict(ft, x0, interval = "confidence")

## fit lwr upr

## 1 16.51927 15.20692 17.83162

predict(ft, x0, interval = "prediction")

## fit lwr upr

## 1 16.51927 7.678715 25.35983

Note that the prediction interval is much wider compared to the confidence interval
for average response.

8For those familiar with linear algebra, ˆvar(ŷ(x0) = xT0 (XTX)−1x0σ
2
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6 Regression Diagnostics

Our next topic in multiple regression is regression diagnostics. The inference pro-
cedures that we talked about work under the assumptions of the linear regression
model. If these assumptions are violated, then our hypothesis tests, standard errors
and confidence intervals will be violated. Regression diagnostics enable us to diagnose
if the model assumptions are violated or not.

The key assumptions we can check for in the regression model are:

1. Linearity: the mean of the y is linearly related to the explanatory variables.

2. Homoscedasticity: the errors have the same variance.

3. Normality: the errors have the normal distribution.

4. All the observations obey the same model (i.e., there are no outliers or excep-
tional observations).

These are particularly problems for the parametric model; the bootstrap will be
relatively robust to these assumptions, but violations of these assumptions can cause
the inference to be less powerful – i.e. harder to detect interesting signal.

These above assumptions can be checked by essentially looking at the residuals:

1. Linearity: The residuals represent what is left in the response variable after the
linear effects of the explanatory variables are taken out. So if there is a non-
linear relationship between the response and one or more of the explanatory
variables, the residuals will be related non-linearly to the explanatory variables.
This can be detected by plotting the residuals against the explanatory variables.
It is also common to plot the residuals against the fitted values. Note that one
can also detect non-linearity by simply plotting the response against each of the
explanatory variables.

2. Homoscedasticity: Heteroscedasticity can be checked again by plotting the
residuals against the explanatory variables and the fitted values. It is common
here to plot the absolute values of the residuals or the square root of the absolute
values of the residuals.

3. Normality: Detected by the normal Q-Q plot of the residuals.

4. Outliers: The concern with outliers is that they could be effecting the fit.
There are three measurements we could use to consider whether a point is an
outlier
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(a) Size of the residuals (ri) – diagnostics often use standardized residuals to
make them more comparable between different observations9

(b) Leverage – a measure of how far the vector of explanatory variables of an
observation are from the rest, and on average are expected to be about
p/n.

(c) Cook’s Distance – how much the coefficients β̂ will change if you leave out
observation i, which basically combines the residual and the leverage of a
point.

Outliers typically will have either large (in absolute value) residuals and/or large
leverage.

Consider the bodyfat dataset. A simple way for doing some of the standard
regression diagnostics is to use the plot command as applied to the linear model fit:

Let’s go through these plots and what we can look for in these plots. There can
sometimes be multiple issues that we can detect in a single plot.

Independence Note that the most important assumption is independence. Vio-
lations of independence will cause problems for every inference procedure we have
looked at, including the resampling procedures, and the problems such a violation
will cause for your inference will be even worse than the problems listed above. Un-
fortunately, violations of independence are difficult to check for in a generic problem.

9in fact ri is not a good estimate of ei, in terms of not having constant variance and being
correlated. Standardized residuals are still correlated, but at least have the same variance
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If you suspect a certain kind of dependence, e.g. due to time or geographical proxim-
ity, there are special tools that can be used to check for that. But if you don’t have
a candidate for what might be the source of the dependence, the only way to know
there is no dependence is to have close control over how the data was collected.

6.1 Residuals vs. Fitted Plot

The first plot is the residuals plotted against the fitted values. The points should
look like a random scatter with no discernible pattern. We are often looking for two
possible violations:

1. Non-linear relationship to response, detected by a pattern in the mean of the
residuals. Recall that the correlation between ŷ and the residuals must be
numerically zero – but that doesn’t mean that there can’t be non-linear rela-
tionships.

2. Heteroscedasticity – a pattern in the variability of the residuals, for example
higher variance in observations with large fitted values.

Let us now look at some simulation examples in the simple setting of a single
predictor to demonstrate these phenomena.

Example: Non-linearity In the next example, the response is related non-linearly
to x.
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Non-linearity is fixed by adding non-linear functions of explanatory variables as
additional explanatory variables. In this example, for instance, we can add x2 as an
additional explanatory variable.

Example: Heteroscedasticity Next let us consider an example involving heter-
scedasticity (unequal variance).

Notice that even with a single variable, it is easier to see the difference in variability
with the residuals than in plotting y versus x (in the plot of y versus x, the fact that
y is growing with x makes it harder to be sure).
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Heteroscedasticity is a little tricky to handle in general. Heteroscedasiticity can
sometimes be fixed by applying a transformation to the response variable (y) before
fitting the regression. For example, if all the response values are positive, taking the
logarithm or square root of the response variable is a common solution.

The Scale-Location plot (which is one of the default plots of plot) is also useful
for detecting heteroscedasiticity. It plots the square root of the absolute value of
the residuals (actually standardized residuals but these are similar to the residuals)
against the fitted values. Any increasing or decreasing pattern in this plot indicates
heteroscedasticity.

Back to data We don’t see any obvious pattern in the fitted versus residual plot.
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What if we consider our bike regression from above, what do you see?

md1 = lm(casual ~ atemp + workingday + weathersit,

data = bike)

par(mfrow = c(1, 2))

plot(md1, which = c(1, 3))

The response here is counts (number of casual users) and it is common to transform
such data. Here we show the fitted/residual plot after transforming the response by
the log and sqrt:
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Why plot against ŷ? If we think there is a non linear relationship, shouldn’t we
plot against the individual x(j) variables? We certainly can! Just like with ŷ, each
x(j) is uncorrelated with the residuals, but there can be non-linear relationships that
show up. Basically any plot we do of the residuals should look like a random cloud
of points with no pattern, including against the explanatory variables.

Plotting against the individual x(j) can help to determine which variables have a
non-linear relationship, and can help in determining an alternative model. Of course
this is only feasible with a relatively small number of variables.

One reason that ŷ is our default plot is that 1) there are often too many variables
to plot against easily; and 2) there are many common examples where the variance
changes as a function of the size of the response, e.g. more variance for larger y values.

6.2 QQ-Plot

The second plot is the normal Q-Q plot of the standardized residuals. If the normal
assumption holds, then the points should be along the line here.
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A QQ-plot is based on the idea that every point in your dataset is a quantile.
Specifically, if you have data x1, . . . , xn and you assume they are all in order, then
the probability of finding a data point less than or equal to x1 is 1/n (assuming there
are no ties). So x1 is the 1/n quantile of the observed data distribution. x2 is the
2/n quantile, and so forth.10

quantile(stdres(ft), 1/nrow(body))

## 0.3968254%

## -2.453687

Under our assumption of normality, then we also know what the 1/n quantile
should be based on qnorm (the standardized residuals are such that we expect them
to be N(0, 1))

qnorm(1/nrow(body))

## [1] -2.654759

The idea with QQ-plots is that we can do this for all of the data, and compare
whether our data has quantiles that match what we would expect for a normal dis-
tribution.

10Actually, we estimate quantiles from data (called empirical quantiles), in a slightly more
complex way that performs better, but this is the idea.
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Here are some examples of QQ-plots for some simulated data, to give you a since
of how QQ-plots correspond to distributional properties:

Back to body fat data There are some signs in the right tail that the residuals
are a little off normal. Would you say that they are heavy or light tailed?
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Looking at the bike model, we see the QQ plot shows serious problems in the
residuals as well. We see that taking a transformation of the response not only
helped with the heteroskedasticity, but also makes the residuals look closer to normal.
This is not uncommon, that what helps create more constant variance can help the
distributional assumptions as well.
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6.3 Detecting outliers

The final plots are used for detecting outliers and other exceptional observations.
Large leverage or large residuals can indicate potential outliers, as does cooks distance,
which is a combination of the two. The default plots give the index of potential outliers
to help identify them.
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Three points flagged here are observations i = 39, 42, 36. Let us look at these
observations separately, as well as plot some our visualizations highlighting these
points:

## High leverage points:

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 39 35.2 46 363.15 72.25 136.2 148.1 147.7 87.3

## 42 32.9 44 205.00 29.50 106.0 104.3 115.5 70.6

## 36 40.1 49 191.75 65.00 118.5 113.1 113.8 61.9

## Mean of each variables:

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP

## 19.15079 44.88492 178.92440 70.14881 100.82421 92.55595 99.90476

## THIGH

## 59.40595
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The observation 39 is certainly an outlier in many variables. Observation 42 seems
to have an erroneous height recording. Observation 36 seems to have a high value for
the response (percent bodyfat).

When outliers are detected, one can perform the regression analysis after dropping
the outlying observations and evaluate their impact. After this, one needs to decide
whether to report the analysis with the outliers or without them.

## Coefficients without outliers:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -22.902 20.297 -1.128 0.260

## AGE 0.021 0.029 0.717 0.474

## WEIGHT -0.074 0.059 -1.271 0.205

## HEIGHT -0.241 0.187 -1.288 0.199
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## CHEST -0.121 0.113 -1.065 0.288

## ABDOMEN 0.945 0.088 10.709 0.000

## HIP -0.171 0.152 -1.124 0.262

## THIGH 0.223 0.141 1.584 0.114

##

## Coefficients in Original Model:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -37.476 14.495 -2.585 0.010

## AGE 0.012 0.029 0.410 0.682

## WEIGHT -0.139 0.045 -3.087 0.002

## HEIGHT -0.103 0.098 -1.051 0.294

## CHEST -0.001 0.100 -0.008 0.993

## ABDOMEN 0.968 0.085 11.352 0.000

## HIP -0.183 0.145 -1.267 0.206

## THIGH 0.286 0.136 2.098 0.037

We can see that WEIGHT and THIGH are no longer significant after removing
these outlying points. We should note that removing observations reduces the power
of all tests, so you may often see less significance if you remove many points (three
is not really many!). But we can compare to removing three random points, and see
that we don’t have major changes in our results:

## Coefficients without three random points:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -36.732 14.620 -2.513 0.013

## AGE 0.008 0.030 0.287 0.774

## WEIGHT -0.139 0.045 -3.070 0.002

## HEIGHT -0.108 0.098 -1.094 0.275

## CHEST 0.002 0.100 0.016 0.987

## ABDOMEN 0.972 0.086 11.351 0.000

## HIP -0.182 0.145 -1.249 0.213

## THIGH 0.266 0.136 1.953 0.052

7 Variable Selection

Consider a regression problem with a response variable y and p explanatory variables
x1, . . . , xp. Should we just go ahead and fit a linear model to y with all the p ex-
planatory variables or should we throw out some unnecessary explanatory variables
and then fit a linear model for y based on the remaining variables? One often does
the latter in practice. The process of selecting important explanatory variables to
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include in a regression model is called variable selection. The following are reasons
for performing variable selection:

1. Removing unnecessary variables results in a simpler model. Simpler models are
always preferred to complicated models.

2. Unnecessary explanatory variables will add noise to the estimation of quantities
that we are interested in.

3. Collinearity (i.e. strong linear relationships in the variables) is a problem with
having too many variables trying to do the same job.

4. We can save time and/or money by not measuring redundant explanatory vari-
ables.

Several common, interrelated strategies for asking this question

1. Hypothesis testing on variables or submodels

2. Stepwise regression based on p-values

3. Criteria based Variable Selection

We shall illustrate variable selection procedures using the following dataset (which
is available in R from the “faraway” package). This small dataset gives information
about drivers and the seat position that they choose, with the idea of trying to predict
a seat position from information regarding the driver (age, weight, height,...).

We can see that the variables are highly correlated with each other, and no vari-
ables are significant. However, the overall p-value reported for the F -statistic in the
summary is almost zero (this is an example of how you might actually find the F
statistic useful, in that it provides a check that even though no single variable is
significant, the variables jointly do fit the data well )
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##

## Call:

## lm(formula = hipcenter ~ ., data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -73.827 -22.833 -3.678 25.017 62.337

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 436.43213 166.57162 2.620 0.0138 *

## Age 0.77572 0.57033 1.360 0.1843

## Weight 0.02631 0.33097 0.080 0.9372

## HtShoes -2.69241 9.75304 -0.276 0.7845

Instructor: Purdom #5, Fall 2019, STAT 131A 64



## Ht 0.60134 10.12987 0.059 0.9531

## Seated 0.53375 3.76189 0.142 0.8882

## Arm -1.32807 3.90020 -0.341 0.7359

## Thigh -1.14312 2.66002 -0.430 0.6706

## Leg -6.43905 4.71386 -1.366 0.1824

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 37.72 on 29 degrees of freedom

## Multiple R-squared: 0.6866,Adjusted R-squared: 0.6001

## F-statistic: 7.94 on 8 and 29 DF, p-value: 1.306e-05

7.1 Submodels and Hypothesis testing

We already saw that we can evaluate if we need any of the variables by setting up
two models

0. No variables, just predict ȳ for all observations

1. Our linear model with all the variables

Then we compare the RSS from these two models with the F-statistic,

F =
(RSS0 −RSS1)/p

RSS1/(n− p− 1)

which the null hypothesis that these two models are equivalent (and assuming our
parametric model) has a F distribution

H0 : F ∼ F (p, n− p− 1)

We can expand this framework to compare any submodel to the full model, where
a submodel means using only a specific subset of the p parameters. For example, can
we use a model with only ABDOMEN, AGE, and WEIGHT?

For convenience lets say we number our variables so we have the first q variables
are our submodel (q = 3 in our example). Then we now have two models:

0. Just the first q variables (and the intercept)
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1. Our linear model with all the p variables

We can do the same as before and calculate our RSS for each model and compare
them. We can get a F statistic,

F =
(RSS0 −RSS1)/(p− q)

RSS1/(n− p− 1)

and under the null hypothesis that the two models are equivalent,

H0 : F ∼ F (p− q, n− p− 1)

What does it mean if I get a non-significant result?

We can do this in R by fitting our two models, and running on the function anova

on both models:

## Analysis of Variance Table

##

## Model 1: BODYFAT ~ ABDOMEN + AGE + WEIGHT

## Model 2: BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN + HIP + THIGH

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 248 4941.3

## 2 244 4806.8 4 134.5 1.7069 0.1491

What conclusion do we draw?

F-test is only valid for comparing submodels It is important to realize that
the F test described here is only valid for comparing submodels, i.e. the smaller
model has to be a set of variables that are a subset of the full model. You can’t
compare disjoint sets of variables with an F -test.

Single variable: test for βj: We could set up the following two models:

0. All of the variables except for βj

1. Our linear model with all the p variables
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This is equivalent to
H0 : βj = 0

How would you calculate the F statistic and null distribution of the F Statistic?

Here we run that leaving out just HEIGHT:

## Analysis of Variance Table

##

## Model 1: BODYFAT ~ ABDOMEN + AGE + WEIGHT + CHEST + HIP + THIGH

## Model 2: BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN + HIP + THIGH

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 245 4828.6

## 2 244 4806.8 1 21.753 1.1042 0.2944

In fact if we compare that with the inference from our standard t-test of βj = 0,
we see we get the same answer

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 4.438 on 244 degrees of freedom
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## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

In fact, in this case the F statistic is the square of the t statistic and the two tests
are exactly identical

## F:

## [1] 1.104217

## Square of t-statistic:

## [1] 1.104217

This again shows us that our inference on βj is equivalent to asking if adding in
this variable significantly improves the fit of our model – i.e. on top of the existing
variables.

7.2 Finding the best submodel

The above method compares a specific defined submodel to the full model. But we
might instead want to find the best submodel for prediction. Conceptually we could
imagine that we would just fit all of possible subsets of variables for the model and
pick the best. That creates two problems

1. How to compare all of these models to each other? What measure should we
use to compare models? For example, we’ve seen that the measures of fit we’ve
discussed so far (e.g. R2 and RSS) can’t be directly compared between different
sized models, so we have to determine how much improvement we would expect
simply due to adding another variable.

2. There often way too many possible submodels. Specifically, there are 2p dif-
ferent possible submodels. That’s 256 models for 8 variables, which is actually
manageable, in the sense that you can run 256 regressions on a computer. But
the number grows rapidly as you increase the number of variables. You quickly
can’t even enumerate all the possible submodels in large datasets with a lot of
variables.

7.3 Criterion for comparing models

We are going to quickly go over different types of statistics for comparing models. By
a model M , we mean a linear model using a subset of our p variables. We will find
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the β̂(M), which gives us a prediction model, and we will calculate a statistic based
on our observed data that measures how well the model predicts y. Once we have
such a statistic, say T (M), we want to compare across models Mj and pick the model
with the smallest T (Mj) (or largest depending on the statistic).

Notice that this strategy as described is not inferential – we are not generally
taking into account the variability of the T (Mj), i.e. how T (Mj) might vary for
different random samples of the data. There might be other models Mk that have
slightly larger T (Mk) on this data than the “best” T (Mj), but in a different dataset
T (Mk) might be slightly smaller.

7.3.1 RSS: Comparing models with same number of predictors (RSS)

We’ve seen that the RSS (Residual Sum of Squares) is a commonly used measure
of the performance of a regression model, but will always decrease as you increase
the number of variables. However, RSS is a natural criterion to use when comparing
models having the same number of explanatory variables.

A function in R that is useful for variable selection is regsubsets in the R package
leaps. For each value of k = 1, . . . , p, this function gives the best model with k
variables according to the residual sum of squares.

For the body fat dataset, we can see what variables are chosen for each size:

## Subset selection object

## Call: eval(expr, envir, enclos)

## 7 Variables (and intercept)

## Forced in Forced out

## AGE FALSE FALSE

## WEIGHT FALSE FALSE

## HEIGHT FALSE FALSE

## CHEST FALSE FALSE

## ABDOMEN FALSE FALSE

## HIP FALSE FALSE

## THIGH FALSE FALSE

## 1 subsets of each size up to 7

## Selection Algorithm: exhaustive

## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 1 ( 1 ) " " " " " " " " "*" " " " "

## 2 ( 1 ) " " "*" " " " " "*" " " " "

## 3 ( 1 ) " " "*" " " " " "*" " " "*"

## 4 ( 1 ) " " "*" " " " " "*" "*" "*"

## 5 ( 1 ) " " "*" "*" " " "*" "*" "*"
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## 6 ( 1 ) "*" "*" "*" " " "*" "*" "*"

## 7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"

This output should be interpreted in the following way. The best model with
one explanatory variable (let us denote this by M1) is the model with ABDOMEN.
The best model with two explanatory variables (denoted by M2) is the one involving
ABDOMEN and WEIGHT. And so forth. Here “best” means in terms of RSS. This
gives us 7 regression models, one for each choice of k: M1,M2, . . . ,M7. The model
M7 is the full regression model involving all the explanatory variables.

For the body fat dataset, there’s a natural hierarchy in the results, in that for
each time k is increased, the best model Mk is found by adding another variable to
the set variables in Mk−1. However, consider the car seat position data, does it have
this hiearchy?

## Subset selection object

## Call: eval(expr, envir, enclos)

## 8 Variables (and intercept)

## Forced in Forced out

## Age FALSE FALSE

## Weight FALSE FALSE

## HtShoes FALSE FALSE

## Ht FALSE FALSE

## Seated FALSE FALSE

## Arm FALSE FALSE

## Thigh FALSE FALSE

## Leg FALSE FALSE

## 1 subsets of each size up to 8

## Selection Algorithm: exhaustive

## Age Weight HtShoes Ht Seated Arm Thigh Leg

## 1 ( 1 ) " " " " " " "*" " " " " " " " "

## 2 ( 1 ) " " " " " " "*" " " " " " " "*"

## 3 ( 1 ) "*" " " " " "*" " " " " " " "*"

## 4 ( 1 ) "*" " " "*" " " " " " " "*" "*"

## 5 ( 1 ) "*" " " "*" " " " " "*" "*" "*"

## 6 ( 1 ) "*" " " "*" " " "*" "*" "*" "*"

## 7 ( 1 ) "*" "*" "*" " " "*" "*" "*" "*"

## 8 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"

Note though, that we cannot compare the models M1, . . . ,M7 with RSS because
they have different number of variables. Moreover, for the car seat position dataset,
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we also cannot use the F statistic to compare the models because the sets of variables
in the different models are not subsets of each other.

7.3.2 Expected Predictive Error

The best criterion for comparing models are based on trying to minimize the pre-
dictive performance of the model, meaning for a new observation (y0, x0), how
accurate is our prediction ŷ(x0) in predicting y0? In other words, how small is

y0 − ŷ(x0).

This is basically like the residual, only with data we haven’t seen. Of course there
is an entire population of unobserved (y0, x0), so we can say that we would like to
minimize the average error across the entire population of unseen observations

minE(y0 − ŷ(x0))
2.

This quantity is the expected prediction error.11

This seems very much like our RSS

RSS =
n∑
i=1

(yi − ŷ(xi))
2,

specifically, RSS/n seems like it should be a estimate of the prediction error.

The problem is that when you use the same data to estimate both the β̂ and
the prediction error, the estimate of the prediction error will underestimate the true
prediction error (i.e. it’s a biased estimate). Moreover, the more variables you add
(the larger p) the more it underestimates the true prediction error of that model.
That doesn’t mean smaller models are always better than larger models – the larger
model’s true prediction error may be less than the true prediction error of the smaller
model – but that comparing the fit (i.e. RSS) as measured on the data used to
estimate the model gets to be a worse and worse estimate of the prediction error for
larger and larger models. Moreover, the larger the underlying noise (σ) for the model,
the more bias there is as well; you can think that the extra variables are being used
to try to fit to the noise seen in the data, which will not match the noise that will
come with new data points. This is often why larger models are considered to overfit
the data.

Instead we could imagine estimating the error by not using all of our data to fit
the model, and saving some of it to evaluate which model is better. We divide our
data into training and test data. We can then fit the models on the training data,
and then estimate the prediction error of each on the test data.

11

Instructor: Purdom #5, Fall 2019, STAT 131A 71



## Predicted error on random 10% of data:

## 1 2 3 4 5 6 7

## 25.29712 28.86460 27.17047 28.65131 28.96773 28.92292 29.01328

What does this suggest is the model with the smallest prediction error?

Of course this is just one random subset, and 10% of the data is only 25 observa-
tions, so there is a lot of possible noise in our estimate of the prediction error. If we
take a different random subset it will be different:

## Predicted error on random 10% of data:

## 1 2 3 4 5 6 7

## 22.36633 22.58908 22.21784 21.90046 21.99034 21.94618 22.80151

What about this one?

So a natural idea is to average over a lot of random training sets. For various
reasons, we do something slightly different. We divide the data into 10 parts (i.e.
each 10%), and use 9 of the parts to fit the model and 1 part to estimate prediction
error, and repeat over all 10 partitions. This is called cross-validation.

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## [1,] 18.72568 10.95537 11.68551 12.16354 11.83839 11.78985 11.93013

## [2,] 21.41687 21.08760 21.53709 21.06757 21.10223 21.20400 21.62519

## [3,] 32.47863 21.97477 22.48690 22.50871 22.97452 22.92450 24.05130

## [4,] 21.05072 20.22509 19.16631 18.82538 18.90923 18.89133 18.94164

## [5,] 26.47937 22.92690 23.76934 26.13180 26.17794 26.12684 26.28473

## [6,] 26.60945 23.35274 22.06232 22.06825 22.15430 23.10201 25.29325

## [7,] 25.65426 20.48995 19.95947 19.82442 19.53618 19.97744 20.29104

## [8,] 17.54916 18.79081 18.14251 17.67780 17.74409 17.67456 17.71624

## [9,] 33.52443 27.26399 25.83256 26.87850 27.80847 28.32894 28.41455

## [10,] 18.64271 14.11973 14.05815 14.53730 14.42609 14.36767 14.57028

We then average these estimates:

## [1] 24.21313 20.11870 19.87002 20.16833 20.26714 20.43871 20.91184
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7.3.3 Criterion for comparing models with different numbers of predic-
tors

There are other theoretically derived measures that estimate the expected predicted
error as well. These can be computationally easier, or when you have smaller datasets
may be more reliable.

The following are all measures for a model M , most of which try to measure the
expected prediction error (we’re not going to go into where they come from)

• Leave-One-Out Cross Validation Score This is basically the same idea
as cross-validation, only instead of dividing the data into 10 parts, we make
each single observation take turns being the test data, and all the other data is
the training data. Specifically, for each observation i, fit the model M to the
(n− 1) observations obtained by excluding the ith observation. This gives us
an estimates of β, β̂(i). Then we predict the response for the ith observation
using β̂(−i),

ŷ(−i) = β̂
(−i)
0 + β̂

(−i)
1 x(1) + . . . β̂(−i)

p x(p)

Then we have the error for predicting yi based on a model that didn’t use the
data (yi, xi). We can do this for each i = 1, . . . , n and then get our estimate of
prediction error,

LOOCV (M) =
1

n

n∑
i=1

(yi − ŷ(−i))2

In fact, Cp(M) becomes equivalent to the LOOCV as n gets large. In fact,
LOOCV can be computed very quickly in linear regression from our residuals of
the model without a lot of codingcoding using algebraic facts about regression
that we won’t get into.12

• Mallows Cp

Cp(M) = RSS(M)/n+
2σ̂2(p+ 1)

n

There are other ways of writing Cp as well. σ̂2 in this equation is the estimate
based on the full model (with all predictors included.)

• Akaike Information Criterion (AIC)

AIC(M) = nlog(RSS(M)/n) + 2p

• Bayes Information Criterion (BIC)

BIC(M) = nlog(RSS(M)/n) + plog(n)

12LOOCV = 1
n

∑n
i=1

(
r2i

1−hi

)2
where hi is the diagonal of X(X ′X)−1X
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We would note that all of these measures, except for Cp can be used for models
that are more complicated than just regression models, though AIC and BIC are
calculated differently depending on the prediction model.

Relationship to Best of size k results Also, if we are comparing only models
with the same number of predictors, Cp, AIC and BIC are simply picking the model
with the smallest RSS, like we did before. So we can imagine using our results from
running regsubsets to find the best model, and then running these criterion on just
the best of each one.

Adjusted R2 Another common measure is the adjusted R2. Recall that R2(M) =

1− RSS(M)
TSS

= 1− RSS(M)/n
TSS/n

. The adjusted R2 is

R2
adj(M) = 1− RSS(M)/(n− p− 1)

TSS/(n− 1)
= 1− σ̂2(M)

ˆvar(y)
,

i.e. it uses the “right” values to divide by (i.e. right degrees of freedom), rather than
just n. You will often see it printed out on standard regression summaries. It is an
improvement over R2 (R2

adj(M) doesn’t always get larger when you add a variable),
but is not as good of a measure of comparing models as those listed above.

Example: Comparing our best k-sized models We can compare these criterion
on the best k-sized models we found above:

## Criterion for the 8 best k-sized models of car seat position:

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC

## 1 0.6382850 0.6282374 1253.047 1387.644 1402.818 -0.5342143 384.9060

## 2 0.6594117 0.6399496 1179.860 1408.696 1404.516 -0.4888531 384.6191

## 3 0.6814159 0.6533055 1103.634 1415.652 1403.175 -0.5246725 384.0811

## 4 0.6848577 0.6466586 1091.711 1456.233 1466.137 1.1568934 385.6684

## 5 0.6861644 0.6371276 1087.184 1548.041 1536.496 3.0359952 387.5105

## 6 0.6864310 0.6257403 1086.261 1739.475 1610.457 5.0113282 389.4782

## 7 0.6865154 0.6133690 1085.968 1911.701 1685.051 7.0035240 391.4680

## 8 0.6865535 0.6000855 1085.836 1975.415 1759.804 9.0000000 393.4634

## BIC

## 1 389.8188

## 2 391.1694

## 3 392.2691

## 4 395.4939

## 5 398.9736

## 6 402.5789
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## 7 406.2062

## 8 409.8392

##

## Criterion for the 7 best k-sized models of body fat:

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC

## 1 0.6616721 0.6603188 23.60104 24.30696 23.91374 53.901272 1517.790

## 2 0.7187981 0.7165395 19.61605 20.27420 20.08510 4.925819 1473.185

## 3 0.7234261 0.7200805 19.29321 20.07151 19.91861 2.796087 1471.003

## 4 0.7249518 0.7204976 19.18678 20.13848 19.96853 3.434662 1471.609

## 5 0.7263716 0.7208100 19.08774 20.21249 20.02584 4.167779 1472.305

## 6 0.7265595 0.7198630 19.07463 20.34676 20.16908 6.000069 1474.132

## 7 0.7265596 0.7187150 19.07463 20.62801 20.32542 8.000000 1476.132

## BIC CV10

## 1 1528.379 24.21313

## 2 1487.302 20.11870

## 3 1488.650 19.87002

## 4 1492.785 20.16833

## 5 1497.011 20.26714

## 6 1502.367 20.43871

## 7 1507.896 20.91184

7.4 Stepwise methods

With a large number of predictors, it may not be feasible to compare all 2p submodels.

A common approach is to not consider all submodels, but compare only certain
submodels using stepwise regression methods. The idea is to iteratively add or
remove a single variable – the one that most improves your model – until you do not
get an improvement in your model criterion score.

For example, we can start with our full model, and iteratively remove the least
necessary variable, until we don’t get an improvement (Backward Elimination). Al-
ternatively we could imagine starting with no variables and add the best variable,
then another, until there’s no more improvement (Forward Elimination).

The choice of which variable to add or remove can be based on either the criterion
given above, or also by comparing p-values (since each step is a submodel), but the
most common usuage is not via p-values.

The most commonly used methods actually combine backward elimination and
forward selection. This deals with the situation where some variables are added or
removed early in the process and we want to change our mind about them later. For
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example, in the car seat position data, if you want to add a single best variable you
might at the beginning choose “Ht”. But having Ht in the model might keep you
from ever adding Ht Shoes, which in combination with Wt might do better than just
Ht – i.e. the best model might be Ht Shoes + Wt rather than Ht, but you would
never get to it because once Ht is in the model, Ht Shoes never gets added.

The function step in R will perform a stepwise search based on the AIC

##

## Call:

## lm(formula = BODYFAT ~ WEIGHT + ABDOMEN + THIGH, data = body)

##

## Coefficients:

## (Intercept) WEIGHT ABDOMEN THIGH

## -52.9631 -0.1828 0.9919 0.2190

We can compare this to the best k-sized models we got before, and their measured
criterion.

## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 1 ( 1 ) " " " " " " " " "*" " " " "

## 2 ( 1 ) " " "*" " " " " "*" " " " "

## 3 ( 1 ) " " "*" " " " " "*" " " "*"

## 4 ( 1 ) " " "*" " " " " "*" "*" "*"

## 5 ( 1 ) " " "*" "*" " " "*" "*" "*"

## 6 ( 1 ) "*" "*" "*" " " "*" "*" "*"

## 7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC

## 1 0.6616721 0.6603188 23.60104 24.30696 23.91374 53.901272 1517.790

## 2 0.7187981 0.7165395 19.61605 20.27420 20.08510 4.925819 1473.185

## 3 0.7234261 0.7200805 19.29321 20.07151 19.91861 2.796087 1471.003

## 4 0.7249518 0.7204976 19.18678 20.13848 19.96853 3.434662 1471.609

## 5 0.7263716 0.7208100 19.08774 20.21249 20.02584 4.167779 1472.305

## 6 0.7265595 0.7198630 19.07463 20.34676 20.16908 6.000069 1474.132

## 7 0.7265596 0.7187150 19.07463 20.62801 20.32542 8.000000 1476.132

## BIC CV10

## 1 1528.379 24.21313

## 2 1487.302 20.11870

## 3 1488.650 19.87002

## 4 1492.785 20.16833

## 5 1497.011 20.26714

## 6 1502.367 20.43871

## 7 1507.896 20.91184
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We see that stepwise picked the same model.

We can do the same for the car seat position data.

##

## Call:

## lm(formula = hipcenter ~ Age + HtShoes + Leg, data = seatpos)

##

## Coefficients:

## (Intercept) Age HtShoes Leg

## 456.2137 0.5998 -2.3023 -6.8297

We can again compare to the best model we found before.

## Age Weight HtShoes Ht Seated Arm Thigh Leg

## 1 ( 1 ) " " " " " " "*" " " " " " " " "

## 2 ( 1 ) " " " " " " "*" " " " " " " "*"

## 3 ( 1 ) "*" " " " " "*" " " " " " " "*"

## 4 ( 1 ) "*" " " "*" " " " " " " "*" "*"

## 5 ( 1 ) "*" " " "*" " " " " "*" "*" "*"

## 6 ( 1 ) "*" " " "*" " " "*" "*" "*" "*"

## 7 ( 1 ) "*" "*" "*" " " "*" "*" "*" "*"

## 8 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC

## 1 0.6382850 0.6282374 1253.047 1387.644 1402.818 -0.5342143 384.9060

## 2 0.6594117 0.6399496 1179.860 1408.696 1404.516 -0.4888531 384.6191

## 3 0.6814159 0.6533055 1103.634 1415.652 1403.175 -0.5246725 384.0811

## 4 0.6848577 0.6466586 1091.711 1456.233 1466.137 1.1568934 385.6684

## 5 0.6861644 0.6371276 1087.184 1548.041 1536.496 3.0359952 387.5105

## 6 0.6864310 0.6257403 1086.261 1739.475 1610.457 5.0113282 389.4782

## 7 0.6865154 0.6133690 1085.968 1911.701 1685.051 7.0035240 391.4680

## 8 0.6865535 0.6000855 1085.836 1975.415 1759.804 9.0000000 393.4634

## BIC

## 1 389.8188

## 2 391.1694

## 3 392.2691

## 4 395.4939

## 5 398.9736

## 6 402.5789

## 7 406.2062

## 8 409.8392

Notice that for the carseat dataset, the stepwise procedure doesn’t give us the
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same best model as we had when we compared the size-k best models – it uses “Ht
Shoes” rather than “Ht”.

If we calculate all criterion on the model found by the stepwise method, we see
that that the AIC for the model found by the stepwise method is actually slightly
larger than the best AIC found by looking at all submodels.

## R2 R2adj RSS/n LOOCV Cp

## 0.6812662 0.6531427 1201.5776327 1412.6121485 1276.4629022

## CpAlt AIC BIC

## -3.9088387 384.0989931 392.2869239

Drawbacks of Stepwise Regression Stepwise procedures are relatively cheap
computationally but they do have drawbacks because of the one-at-a-time nature of
adding/dropping variables, it is possible to miss the optimal model. We’ve already
mentioned that most stepwise methods use a combination of adding and dropping
variables to allow to reach more possible combinations. But ultimately, there may be
a best model that can’t be “found” by adding or dropping a single variable.

7.5 Inference After Selection

After finding the best fitting model, it is tempting to then do inference on this model,
e.g. by looking at the p-values given by summary on the reduced model:

##

## Call:

## lm(formula = BODYFAT ~ WEIGHT + ABDOMEN + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.4832 -3.2651 -0.0695 3.2634 10.1647

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -52.96313 4.30641 -12.299 < 2e-16 ***

## WEIGHT -0.18277 0.02681 -6.817 7.04e-11 ***

## ABDOMEN 0.99191 0.05637 17.595 < 2e-16 ***

## THIGH 0.21897 0.10749 2.037 0.0427 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##
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## Residual standard error: 4.428 on 248 degrees of freedom

## Multiple R-squared: 0.7234,Adjusted R-squared: 0.7201

## F-statistic: 216.2 on 3 and 248 DF, p-value: < 2.2e-16

However, these p-values are no-longer valid. Bootstrap inference would also no
longer be valid. Once you start using the data to pick and choose between the
variables, then you no longer have valid p-values. You can think of this as a multiple
testing problem – we’ve implicitly run many tests to find this model, and so these
p-values don’t account for the many tests.

Another way of thinking about it is that every set of variables will have the “best”
possible subset, even if they are just pure random noise. But your hypothesis testing
is not comparing to the distribution you would expect of the best possible subset from
random noise, so you are comparing to the wrong distribution. Note that this problem
with the p-values are present whether you use the formal methods we described above,
or just manually play around with the variables, taking some in and out based on
their p-values.

The first question for doing inference after selection is “why”? You are getting
the best prediction error (at least based on your estimates) with these variables, and
there’s not a better model. One reason you might want to is that there is noise in our
estimates of prediction error that we are not worrying about in picking the minimum.

Solution 1: Don’t look for submodels! You should really think about why
you are looking for a smaller number of variables. If you have a large number of
variables relative to your sample size, a smaller model will often generalize better to
future observations (i.e. give better predictions). If that is the goal (i.e. predictive
modeling) then it can be important to get concise models, but then often inference
on the individual variables is not terribly important.

In practice, often times people look for small models to find only the variables
that “really matter”, which is sort of implicitly trying to infer causality. And then
they want inferential results (p-values, CI) to prove that these particular variables
are significant. This is hedging very close to looking for causality in your variables.
A great deal of meaningful knowledge about causality has cummulatively been found
in observational data (epidemiological studies on human populations, for example),
but it’s really important to keep straight the interpretation of the coefficients in the
model and what they are not telling you.

Generally, if you have a moderate number of variables relative to your sample
size, and you want to do inference on the variables, you will probably do well to just
keep all the variables in. In some fields, researchers are actually required to state in
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advance of collecting any data what variables they plan to analyze precisely so they
don’t go “fishing” for important variables.

Solution 2: Use different data for finding model and inference If you do
want to do inference after selection of submodels the simplest solution is to use a
portion of your dataset to find the best model, and then use the remaining portion of
the data to do inference. Since you will have used completely different data for finding
the model than from doing inference, then you have avoided the problems with the
p-values. This requires, however, that you have a lot of data. Moreover, using smaller
amounts of data in each step will mean both that your choice of submodels might not
be as good and that your inference will be less powerful.
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