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We’ve spent a lot of time so far looking at analysis of the relationship of two
variables. When we compared groups, we had 1 continuous variable and 1 categorical
variable. In our curve fitting section, we looked at the relationship between two
continuous variables. The rest of the class is going to be focused on looking at many
variables.

This chapter will focus on visualization of the relationship between many variables
and using these tools to explore your data. This is often called exploratory data
analysis (EDA)

1 Relationships between Continous Variables

In the previous chapter we looked at college data, and just pulled out two variables.
What about expanding to the rest of the variables?

A useful plot is called a pairs plot. This is a plot that shows the scatter plot of
all pairs of variables in a matrix of plots.

dataDir <- "../../finalDataSets"

scorecard <- read.csv(file.path(dataDir, "college.csv"),

stringsAsFactors = FALSE, na.strings = c("NA",

"PrivacySuppressed"))

scorecard <- scorecard[-which(scorecard$CONTROL ==

3), ]

smallScores <- scorecard[, -c(1:3, 4, 5, 6, 9, 11,

14:17, 18:22, 24:27, 31)]

pairs(smallScores)
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What kind of patterns can you see? What is difficult about this plot?

How could we improve this plot?

We’ll skip the issue of the categorical Control variable, for now. But we can add
in some of these features.

panel.hist <- function(x, ...) {
usr <- par("usr")
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on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5))

h <- hist(x, plot = FALSE)

breaks <- h$breaks

nB <- length(breaks)

y <- h$counts

y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y)

}
pairs(smallScores, lower.panel = panel.smooth, col = c("red",

"black")[smallScores$CONTROL], diag.panel = panel.hist)

In fact double plotting on the upper and lower diagonal is often a waste of space.
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Here is code to plot the sample correlation value instead,∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

panel.cor <- function(x, y, digits = 2, prefix = "",

cex.cor, ...) {
usr <- par("usr")

on.exit(par(usr))

par(usr = c(0, 1, 0, 1))

r <- abs(cor(x, y, use = "pairwise.complete.obs"))

txt <- format(c(r, 0.123456789), digits = digits)[1]

txt <- paste0(prefix, txt)

if (missing(cex.cor))

cex.cor <- 0.8/strwidth(txt)

text(0.5, 0.5, txt, cex = cex.cor * r)

}
pairs(smallScores, lower.panel = panel.smooth, upper.panel = panel.cor,

col = c("red", "black")[smallScores$CONTROL], diag.panel = panel.hist)
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For many variables, we can look at the correlations using colors and a summary
of the data via loess smoothing curves. This is implemented in the gpairs function
that offers a lot of the above features we programmed in a easy format.

library(gpairs)

suppressWarnings(corrgram(scorecard[, -c(1:3)]))
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The lower panels gives only the loess smoothing curve and the upper panels indi-
cate the correlation of the variables, with dark colors representing higher correlation.

What do you see in this plot?

2 Categorical Variable

Let’s consider now how we would visualize categorical variables, starting with the
simplest, a single categorical variable.

Single Categorical Variable For a single categorical variable, how have you learn
how you might visualize the data?

Let’s demonstrate this with the following data that is pulled from the General
Social Survey (GSS) (http://gss.norc.org/). The GSS gathers data on contem-
porary American society via personal in-person interviews in order to monitor and
explain trends and constants in attitudes, behaviors, and attributes over time. Hun-
dreds of trends have been tracked since 1972. Each survey from 1972 to 2004 was
an independently drawn sample of English-speaking persons 18 years of age or over,
within the United States. Starting in 2006 Spanish-speakers were added to the target
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population. The GSS is the single best source for sociological and attitudinal trend
data covering the United States.

Here we look at a dataset where we have pulled out variables related to reported
measures of well-being (based on a report about trends in psychological well-being
https://gssdataexplorer.norc.org/documents/903/display). Like many sur-
veys, the variables of interest are categorical.

Then we can compute a table and visualize it with a barplot.

table(wellbeingRecent$General.happiness)

##

## Very happy Pretty happy Not too happy Don’t know Not applicable

## 4270 7979 1991 25 4383

## No answer

## 18

barplot(table(wellbeingRecent$General.happiness))

What would we do for relationship between a categorical and continuous variable?

Going back to our pairs plot of college, we can use the function gpairs (in the
package gpairs) to incorporate more appropriate plots for our variable that separated
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public and private colleges.

library(gpairs)

smallScores$CONTROL <- factor(smallScores$CONTROL,

levels = c(1, 2), labels = c("public", "private"))

gpairs(smallScores, lower.pars = list(scatter = "loess"),

upper.pars = list(scatter = "loess", conditional = "boxplot"),

scatter.pars = list(col = c("red", "black")[smallScores$CONTROL]))

Instructor: Purdom #4, Fall 2019, STAT 131A 10



2.1 Relationships between two (or more) categorical vari-
ables

When we get to two categorical variables, then the natural way to summarize their
relationship is to cross-tabulate the values of the levels.

Cross-tabulations You have seen that contingency tables are a table that give
the cross-tabulation of two categorical variables.

tabGeneralJob <- with(wellbeingRecent, table(General.happiness,

Job.or.housework))

tabGeneralJob

## Job.or.housework

## General.happiness Very satisfied Mod. satisfied A little dissat

## Very happy 2137 843 154

## Pretty happy 2725 2569 562

## Not too happy 436 527 247

## Don’t know 11 1 4

## Not applicable 204 134 36

## No answer 8 2 1

## Job.or.housework

## General.happiness Very dissatisfied Don’t know Not applicable No answer

## Very happy 61 25 1011 39

## Pretty happy 213 61 1776 73

## Not too happy 161 39 549 32

## Don’t know 0 1 8 0

## Not applicable 12 1 3990 6

## No answer 3 0 4 0

We can similarly make barplots to demonstrate these relationships.

barplot(tabGeneralJob, legend = TRUE)
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This barplot is not very satisfying. In particular, since the two variables have the
same names for their levels, we don’t know which is which!

colnames(tabGeneralJob) <- paste(colnames(tabGeneralJob),

"(Job)")

rownames(tabGeneralJob) <- paste(rownames(tabGeneralJob),

"(General)")

barplot(tabGeneralJob, legend = TRUE)

barplot(t(tabGeneralJob), legend = TRUE)
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It can also be helpful to separate out the other variables, rather than stacking
them, and to change the colors.

barplot(tabGeneralJob, beside = TRUE, legend = TRUE,

col = palette()[1:6])

Conditional Distributions from Contingency Tables When we look at the
contingency table, a natural question we ask is whether the distribution of the data
changes across the different categories. For example, for people answering ‘Very
Satisfied’ for their job, there is a distribution of answers for the ‘General Happiness’
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question. And similarly for ‘Moderately Satisfied’. We can get these by making the
counts into proportions within each category.

prop.table(tabGeneralJob, margin = 2)

## Job.or.housework

## General.happiness Very satisfied (Job) Mod. satisfied (Job)

## Very happy (General) 0.3870675602 0.2068204122

## Pretty happy (General) 0.4935700054 0.6302747792

## Not too happy (General) 0.0789712009 0.1292934249

## Don’t know (General) 0.0019923927 0.0002453386

## Not applicable (General) 0.0369498279 0.0328753680

## No answer (General) 0.0014490129 0.0004906771

## Job.or.housework

## General.happiness A little dissat (Job) Very dissatisfied (Job)

## Very happy (General) 0.1533864542 0.1355555556

## Pretty happy (General) 0.5597609562 0.4733333333

## Not too happy (General) 0.2460159363 0.3577777778

## Don’t know (General) 0.0039840637 0.0000000000

## Not applicable (General) 0.0358565737 0.0266666667

## No answer (General) 0.0009960159 0.0066666667

## Job.or.housework

## General.happiness Don’t know (Job) Not applicable (Job)

## Very happy (General) 0.1968503937 0.1377759608

## Pretty happy (General) 0.4803149606 0.2420278005

## Not too happy (General) 0.3070866142 0.0748160262

## Don’t know (General) 0.0078740157 0.0010902153

## Not applicable (General) 0.0078740157 0.5437448896

## No answer (General) 0.0000000000 0.0005451077

## Job.or.housework

## General.happiness No answer (Job)

## Very happy (General) 0.2600000000

## Pretty happy (General) 0.4866666667

## Not too happy (General) 0.2133333333

## Don’t know (General) 0.0000000000

## Not applicable (General) 0.0400000000

## No answer (General) 0.0000000000

barplot(prop.table(tabGeneralJob, margin = 2), beside = TRUE)
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We could ask if these proportions are the same in each column (i.e. each level
of ‘Job Satisfaction’). If so, then the value for ‘Job Satisfaction’ is not affecting the
answer for ‘General Happiness’, and so we would say the variables are unrelated.

Looking at the barplot, what would you say? Are the variables related?

We can, of course, flip the variables around.

prop.table(tabGeneralJob, margin = 1)

## Job.or.housework

## General.happiness Very satisfied (Job) Mod. satisfied (Job)

## Very happy (General) 0.5004683841 0.1974238876

## Pretty happy (General) 0.3415214939 0.3219701717

## Not too happy (General) 0.2189854345 0.2646911100

## Don’t know (General) 0.4400000000 0.0400000000

## Not applicable (General) 0.0465434634 0.0305726671

## No answer (General) 0.4444444444 0.1111111111

## Job.or.housework

## General.happiness A little dissat (Job) Very dissatisfied (Job)

## Very happy (General) 0.0360655738 0.0142857143

## Pretty happy (General) 0.0704348916 0.0266950746

## Not too happy (General) 0.1240582622 0.0808638875

## Don’t know (General) 0.1600000000 0.0000000000

## Not applicable (General) 0.0082135524 0.0027378508

## No answer (General) 0.0555555556 0.1666666667
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## Job.or.housework

## General.happiness Don’t know (Job) Not applicable (Job)

## Very happy (General) 0.0058548009 0.2367681499

## Pretty happy (General) 0.0076450683 0.2225842837

## Not too happy (General) 0.0195881467 0.2757408338

## Don’t know (General) 0.0400000000 0.3200000000

## Not applicable (General) 0.0002281542 0.9103353867

## No answer (General) 0.0000000000 0.2222222222

## Job.or.housework

## General.happiness No answer (Job)

## Very happy (General) 0.0091334895

## Pretty happy (General) 0.0091490162

## Not too happy (General) 0.0160723255

## Don’t know (General) 0.0000000000

## Not applicable (General) 0.0013689254

## No answer (General) 0.0000000000

barplot(t(prop.table(tabGeneralJob, margin = 1)), beside = TRUE,

legend = TRUE)

Notice that flipping this question gives me different proportions. This is because
we are asking different question of the data. These are what we would call Condi-
tional Distributions, and they depend on the order in which you condition your
variables. The first plots show: conditional on being in a group in Job Satisfaction,
what is your probability of being in a particular group in General Happiness? That
is different than what is shown in the second plot: conditional on being in a group
in General Happiness, what is your probability of being in a particular group in Job
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Satisfaction?

2.2 Alluvial Plots

It can be complicated to look beyond two categorical variables. But we can create
cross-tabulations for an arbitrary number of variables.

with(wellbeingRecent, table(General.happiness, Job.or.housework,

Happiness.of.marriage))

This is not the nicest output once you start getting several variables. We can also
use the aggregate command to calculate these same numbers, but not making them
a table, but instead a data.frame where each row is a different cross-tabulation. This
isn’t helpful for looking at, but is an easier way to store and access the numbers.

wellbeingRecent$Freq <- 1

wellbeingAggregates <- aggregate(Freq ~ General.happiness +

Job.or.housework, data = wellbeingRecent[, -2],

FUN = sum)

head(wellbeingAggregates, 10)

## General.happiness Job.or.housework Freq

## 1 Very happy Very satisfied 2137

## 2 Pretty happy Very satisfied 2725

## 3 Not too happy Very satisfied 436

## 4 Don’t know Very satisfied 11

## 5 Not applicable Very satisfied 204

## 6 No answer Very satisfied 8

## 7 Very happy Mod. satisfied 843

## 8 Pretty happy Mod. satisfied 2569

## 9 Not too happy Mod. satisfied 527

## 10 Don’t know Mod. satisfied 1

This format extends more easily to more variables:

wellbeingAggregatesBig <- aggregate(Freq ~ General.happiness +

Job.or.housework + Satisfaction.with.financial.situation +

Happiness.of.marriage + Is.life.exciting.or.dull,

data = wellbeingRecent[, -2], FUN = sum)

head(wellbeingAggregatesBig, 5)
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## General.happiness Job.or.housework Satisfaction.with.financial.situation

## 1 Very happy Very satisfied Satisfied

## 2 Pretty happy Very satisfied Satisfied

## 3 Not too happy Very satisfied Satisfied

## 4 Very happy Mod. satisfied Satisfied

## 5 Pretty happy Mod. satisfied Satisfied

## Happiness.of.marriage Is.life.exciting.or.dull Freq

## 1 Very happy Exciting 333

## 2 Very happy Exciting 54

## 3 Very happy Exciting 3

## 4 Very happy Exciting 83

## 5 Very happy Exciting 38

An alluvial plot uses this input to try to track how different observations “flow”
through the different variables. Consider this alluvial plot for the two variables ‘Gen-
eral Happiness’ and ‘Satisfaction with Job or Housework’.

library(alluvial)

alluvial(wellbeingAggregates[, c("General.happiness",

"Job.or.housework")], freq = wellbeingAggregates$Freq,

col = palette()[wellbeingAggregates$General.happiness])

Notice how you can see the relative numbers that go through each category.

We can actually expand this to be many variables, though it gets to be a bit of a
mess when you have many levels in each variable as we do. Moreover, this is a very
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slow command when you start adding additional variables, so I’ve run the following
code off line and just saved the result:

alluvial(wellbeingAggregatesBig[, -ncol(wellbeingAggregatesBig)],

freq = wellbeingAggregatesBig$Freq, col = palette()[wellbeingAggregatesBig$General.happiness])

Very happy

Pretty happy

Not too happy

Don't know

Not applicable

No answer

Very satisfied

Mod. satisfied

A little dissat

Very dissatisfied
Don't know

Not applicable

No answer

Satisfied

More or less

Not at all sat

Don't know

Not applicable

No answer

Very happy

Pretty happy

Not too happyDon't know

Not applicable

No answer

Exciting

Routine

Dull
Don't know

Not applicable

No answer

General.happiness Job.or.housework Satisfaction.with.financial.situation Happiness.of.marriage Is.life.exciting.or.dull

Putting aside the messiness, we can at least see some big things about the data.
For example, what would you say about people’s willingness to answer these questions,
and more generally about non-response?

What other things can you see about the data?

These are obviously self-reported measures of happiness, meaning only what the
respondent says is their state; these are not external, objective measures (and indeed,
with happiness, that is hard!).

What are the possible problems in interpreting these results?

Instructor: Purdom #4, Fall 2019, STAT 131A 19



While you are generally stuck with some problems about self-reporting, there
are other questions you could ask that might be more concrete and might suffer
somewhat less from people instinct to say ‘fine’ to every question. For example,
for marital happiness, you could ask questions like whether fighting more with your
partner lately, feeling about partner’s supportiveness, how often you tell your partner
your feelings etc., that would perhaps get more specific responses. Of course, you
would then be in a position of interpreting whether that adds up to a happy marriage
when in fact a happy marriage is quite different for different couples!

Based on this plot, however, it does seem reasonable to exclude some of the
categories as being unhelpful and adding additional complexity without being useful
for interpretation. We will exclude observations that say ‘Not applicable’ on all of
these questions. We will also exclude those that do not answer or say ‘don’t know’ on
any of these questions (considering non-response is quite important, as anyone who
followed the problems with 2016 polls should know, but these are a small number of
observations here).

I’ve also asked the alluvial plot to hide the very small categories, which makes it
faster to plot. Again, this is slow, so I’ve created the plot off-line.

wh <- with(wellbeingRecent, which(General.happiness ==

"Not applicable" | Job.or.housework == "Not applicable" |

Satisfaction.with.financial.situation == "Not applicable"))

wellbeingCondenseGroups <- wellbeingRecent[-wh, ]

wellbeingCondenseGroups <- subset(wellbeingCondenseGroups,

!General.happiness %in% c("No answer", "Don’t know") &

!Job.or.housework %in% c("No answer", "Don’t know") &

!Satisfaction.with.financial.situation %in%

c("No answer", "Don’t know") & !Happiness.of.marriage %in%

c("No answer", "Don’t know") & !Is.life.exciting.or.dull %in%

c("No answer", "Don’t know"))

wellbeingCondenseGroups <- droplevels(wellbeingCondenseGroups)

wellbeingCondenseAggregates <- aggregate(Freq ~ General.happiness +

Job.or.housework + Satisfaction.with.financial.situation +

Happiness.of.marriage + Is.life.exciting.or.dull,

data = wellbeingCondenseGroups, FUN = sum)

alluvial(wellbeingCondenseAggregates[, -ncol(wellbeingCondenseAggregates)],

freq = wellbeingCondenseAggregates$Freq, hide = wellbeingCondenseAggregates$Freq <

quantile(wellbeingCondenseAggregates$Freq,

0.5), col = palette()[wellbeingCondenseAggregates$General.happiness])

It’s still rather messy, partly because we have large groups of people for whom
some of the questions aren’t applicable (’Happiness in marriage’ only applies if you
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are married!) We can limit ourselves to just married, working individuals (including
housework).

wh <- with(wellbeingCondenseGroups, which(Marital.status ==

"Married" & Labor.force.status %in% c("Working fulltime",

"Working parttime", "Keeping house")))

wellbeingMarried <- wellbeingCondenseGroups[wh, ]

wellbeingMarried <- droplevels(wellbeingMarried)

wellbeingMarriedAggregates <- aggregate(Freq ~ General.happiness +

Job.or.housework + Satisfaction.with.financial.situation +

Happiness.of.marriage + Is.life.exciting.or.dull,

data = wellbeingMarried, FUN = sum)

alluvial(wellbeingMarriedAggregates[, -ncol(wellbeingMarriedAggregates)],

freq = wellbeingMarriedAggregates$Freq, hide = wellbeingMarriedAggregates$Freq <

quantile(wellbeingMarriedAggregates$Freq, 0.5),

col = palette()[wellbeingMarriedAggregates$General.happiness])

Cleaner example The alluvial package comes with an example that provides a
cleaner depiction of alluvial plots on several categories. They use data from the list
of passangers on the Titantic disaster to demonstrate the demographic composition
of those who survived.

data(Titanic)

tit <- as.data.frame(Titanic)
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alluvial(tit[, 1:4], freq = tit$Freq, border = NA,

col = ifelse(tit$Survived == "No", "red", "gray"))

Like so many visualization tools, the effectiveness of a particular plot depends on
the dataset.

2.3 Mosaic Plots

In looking at alluvial plots, we often turn to the question of asking whether the
percentage, say happy in their jobs, is very different depending on whether they
report that they are generally happy. . Visualizing these percentages is often done
better by a mosaic plot.

Let’s first look at just 2 variables again.

mosaicplot(~General.happiness + Job.or.housework, data = wellbeingMarried,

las = 1, col = palette())
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How do we interpret this plot? Well first, like the plots above, these are showing
conditional dependencies, so there is an order to these variables, based on how we
put them in. First was General Happiness (x-axis). So the amount of space on the
x-axis for ‘Very Happy’ is proportional to the number of people who responded ‘Very
Happy’ on the general happiness question. Next is ‘Job Satisfaction’ (y-axis). Within
each group of general happiness, the length on the y-axis is the proportion within that
group answering each of the categories for ‘Job Satisfaction’. That is the conditional
dependencies that we saw above.

Let’s add a third variable, ‘Satisfaction with financial situation’.

mosaicplot(~General.happiness + Job.or.housework +

Satisfaction.with.financial.situation, data = wellbeingMarried,

las = 1, col = palette())
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This makes another subdivision on the x-axis. This is now subsetting down to the
people, for example, that are very satisfied with both Job and their General life, and
looking at the distribution of ‘Satisfaction with financial situation’ for just those set
of people.

Using this information, how do you interpret this plot? What does this tell you
about people who are ‘Very Happy’ in general happiness?
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2.4 Pairs plots including categorical data

We can use some of these visualizations of categorical data in our pairs plots in the
gpairs function. Our college data has only 1 categorical variable, and our well-being
data has only categorical variables. So to have a mix of the two, we are going to
return to our flight data, and bring in some variables that we didn’t consider. We
will also create a variable that indicates the cause of the delay (there is no such
variable, but only the amount of delay time due to different delay causes so we will
use this information to create such a variable).

We will consider only delayed flights, and use ‘gpairs’ to visualize the data.

gpairs(droplevels(flightSFOSRS[whDelayed, c("AirTime",

"DepDelay", "DayOfWeek", "DelayCause")]), upper.pars = list(conditional = "boxplot"))
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How do you interpret the different elements of this pairs plot?

3 Heatmaps

Let’s consider another dataset. This will consist of “gene expression” measurements
on breast cancer tumors from the Cancer Genome Project. This data measures for
all human genes the amount of each gene that is being used in the tumor being
measured. There are measurements for 19,000 genes but we limited ourselves to
around 275 genes.
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breast <- read.csv(file.path(dataDir, "highVarBreast.csv"))

One common goal of this kind of data is to be able to identify different types of
breast cancers. The idea is that by looking at the genes in the tumor, we can discover
similarities between the tumors, which might lead to discovering that some patients
would respond better to certain kinds of treatment, for example.

We have so many variables, that we might consider simplifying our analysis and
just considering the pairwise correlations of each variable (gene) – like the upper half
of the pairs plot we drew before. Rather than put in numbers, which we couldn’t easily
read, we will put in colors to indicate the strength of the correlation. Representing
a large matrix of data using a color scale is called a heatmap. Basically for any
matrix, we visualize the entire matrix by putting a color for the value of the matrix.

In this case, our matrix is the matrix of correlations.

library(pheatmap)

corMat <- cor(breast[, -c(1:7)])

pheatmap(corMat, cluster_rows = FALSE, cluster_cols = FALSE)
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Why is the diagonal all dark red?

This is not an informative picture, however – there are so many variables (genes)
that we can’t discover anything here.

However, if we could reorder the genes so that those that are highly correlated are
near each other, we might see blocks of similar genes like we did before. In fact this
is exactly what heatmaps usually do by default. They reorder the variables so that
similar patterns are close to each other.

Here is the same plot of the correlation matrix, only now the rows and columns
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have been reordered.

pheatmap(corMat, cluster_rows = TRUE, cluster_cols = TRUE,

treeheight_row = 0, treeheight_col = 0)

What do we see in this heatmap?
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3.1 Heatmaps for Data Matrices

Before we get into how that ordering was determined, lets consider heatmaps more.
Heatmaps are general, and in fact can be used for the actual data matrix, not just
the correlation matrix.

pheatmap(breast[, -c(1:7)], cluster_rows = TRUE, cluster_cols = TRUE,

treeheight_row = 0, treeheight_col = 0)

What do we see in this heatmap?
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We can improve upon this heatmap. I prefer different colors for this type of data,
and we can add some information we have about these samples. I am also going to
change how the heatmap assigns colors to the data. Specifically, heatmap gives a
color for data by binning it and all data within a particular range of values gets a
particular color. By default it is based on equally spaced bins across all of the data
in the matrix – sort of like a histogram. However, this can frequently backfire if you
have a few outlying points. One big value will force the range to cover it. The effect
of this can be that most of the data is only in a small range of colors, so you get a
heatmap where everything is mostly one color, so you don’t see much. I am going to
change it so that most of the bins go from the 1% to the 99% quantile of data, and
then there is one end bin on each end that covers all of the remaining large values.

typeCol <- c("red", "black", "yellow")

names(typeCol) <- levels(breast$TypeSample)

estCol <- palette()[c(4, 3, 5)]

names(estCol) <- levels(breast$EstReceptor)

proCol <- palette()[5:7]

names(proCol) <- levels(breast$Progesteron)

qnt <- quantile(as.numeric(data.matrix((breast[, -c(1:7)]))),

c(0.01, 0.99))

brks <- seq(qnt[1], qnt[2], length = 20)

head(brks)

## [1] -5.744770 -4.949516 -4.154261 -3.359006 -2.563751 -1.768496

seqPal5 <- colorRampPalette(c("black", "navyblue",

"mediumblue", "dodgerblue3", "aquamarine4", "green4",

"yellowgreen", "yellow"))(length(brks) - 1)

row.names(breast) <- c(1:nrow(breast))

fullHeat <- pheatmap(breast[, -c(1:7)], cluster_rows = TRUE,

cluster_cols = TRUE, treeheight_row = 0, treeheight_col = 0,

color = seqPal5, breaks = brks, annotation_row = breast[,

5:7], annotation_colors = list(TypeSample = typeCol,

EstReceptor = estCol, Progesteron = proCol))
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What do we see now?

whCancer <- which(breast$Type != "Normal")

pheatmap(breast[whCancer, -c(1:7)], cluster_rows = TRUE,

cluster_cols = TRUE, treeheight_row = 0, treeheight_col = 0,

color = seqPal5, breaks = brks, annotation_row = breast[whCancer,

5:7], annotation_colors = list(TypeSample = typeCol,

EstReceptor = estCol, Progesteron = proCol))
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Centering/Scaling Variables Some genes have drastic differences in their mea-
surements for different samples. But we might also can notice that many of the genes
are all high, or all low. They might show similar patterns of differences, but at a
lesser scale. It would be nice to put them on the same basis. A simple way to do this
is to subtract the mean or median of each variable.

Notice our previous breaks don’t make sense for this centered data. Moreover,
now that we’ve centered the data, it makes sense to make the color scale symmetric
around 0, and also to have a color scale that emphasizes zero. Why this focus on
zero?
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breastCenteredMean <- scale(breast[, -c(1:7)], center = TRUE,

scale = FALSE)

colMedian <- apply(breast[, -c(1:7)], 2, median)

breastCenteredMed <- sweep(breast[, -c(1:7)], MARGIN = 2,

colMedian, "-")

qnt <- max(abs(quantile(as.numeric(data.matrix((breastCenteredMed[,

-c(1:7)]))), c(0.01, 0.99))))

brksCentered <- seq(-qnt, qnt, length = 50)

seqPal2 <- colorRampPalette(c("orange", "black", "blue"))(length(brksCentered) -

1)

seqPal2 <- (c("yellow", "gold2", seqPal2))

seqPal2 <- rev(seqPal2)

pheatmap(breastCenteredMed[whCancer, -c(1:7)], cluster_rows = TRUE,

cluster_cols = TRUE, treeheight_row = 0, treeheight_col = 0,

color = seqPal2, breaks = brksCentered, annotation_row = breast[whCancer,

6:7], annotation_colors = list(TypeSample = typeCol,

EstReceptor = estCol, Progesteron = proCol))
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We could also make their range similar by scaling them to have a similar variance.
This is helpful when your variables are really on different scales, for example weights in
kg and heights in meters. This helps put them on a comparable scale for visualizing
the patterns with the heatmap. For this gene expression data, the scale is more
roughly similar, though it is common in practice that people will scale them as well
for heatmaps.

3.2 Clustering

How do heatmaps find the ordering of the samples and genes? It performs a form of
clustering on the samples. Let’s get an idea of how clustering works generally, and
then we’ll return to heatmaps.
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The idea behind clustering is that there is an unknown variable that would tell
you the ‘true’ groups of the samples, and you want to find it. This may not actually
be true in practice, but it’s a useful abstraction. The basic idea of clustering relies on
examining the distances between samples and putting into the same cluster samples
that are close together. There are countless number of clustering algorithms, but
heatmaps rely on what is called hierarchical clustering. It is called hiearchical
clustering because it not only puts observations into groups/clusters, but does so by
first creating a hierarchical tree or dendrogram that relates the samples.

Here we show this on a small subset of the samples and genes. We see on the left
the dendrogram that relates the samples (rows).1

smallBreast <- read.csv(file.path(dataDir, "smallVarBreast.csv"),

header = TRUE)

row.names(smallBreast) <- 1:nrow(smallBreast)

pheatmap(smallBreast[, -c(1:7)], cluster_rows = TRUE,

cluster_cols = FALSE, treeheight_col = 0, breaks = brks,

col = seqPal5)

1I have also clustered the variables (columns) in this figure because otherwise it is hard to see
anything, but have suppressed the drawing of the dendrogram to focus on the samples – see the next
figure where we draw both.
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We can use the same principle for clustering the variables:

pheatmap(smallBreast[, -c(1:7)], , cluster_rows = TRUE,

cluster_cols = TRUE, breaks = brks, col = seqPal5,

annotation_row = smallBreast[, 5:7], annotation_colors = list(TypeSample = typeCol,

EstReceptor = estCol, Progesteron = proCol))
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Notice that with this small subset of genes and samples, we don’t see the same
discrimination between normal and cancer samples.

Where are the clusters? If hierarchical clustering is a clustering routine, were are
the clusters. The idea is that the dendrogram is just a first step toward clustering.
To get a cluster, you draw a line across the dendrogram to “cut” the dendrogram into
pieces, which correspond to the clusters. For the purposes of a heatmap, however,
what is interesting is not the clustesr, but ordering of the samples that it provides.
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3.2.1 How Hierarchical Clustering Works

Hierarchical clustering is an iterative process, that builds the dendrogram by itera-
tively creating new groups of samples by either

1. joining pairs of individual samples into a group

2. add an individual samples to an existing group

3. combine two groups into a larger group2

Step 1: Pairwise distance matrix between groups We consider each sample to
be a separate group (i.e. n groups), and we calculate the pairwise distances between
all of the n groups.

For simplicity, let’s assume we have only one variable, so our data is y1, . . . , yn.
Then the standard distance between samples i and j could be

dij = |yi − yj|

or alternatively squared distance,

dij = (yi − yj)
2.

So we can get all of the pairwise distances between all of the samples (a distance
matrix of all the n× n pairs)

Step 2: Make group by joining together two closest “groups” Your available
choices from the list above are to join together two samples to make a group. So we
choose to join together the two samples that are closest together, and forming our
first real group of samples.

Step 3: Update distance matrix between groups Specifically, say you have
already joined together samples i and j to make the first true group. To join update
our groups, our options from the list above are:

1. Combine two samples k and ` to make next group (i.e. do nothing with the
group previously formed by i and j.

2This is called an agglomerative method, where you start at the bottom of the tree and build up.
There are also divisive method for creating a hiearchical tree that starts at the “top” by continually
dividing the samples into two group.
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2. Combine some sample k with your new group

Clearly, if we join together two samples k and ` it’s the same as above (pick two
closest). But how do you decide to do that versus add sample k to my group of
samples i and j? We need to decide whether a sample k is closer to the group
consisting of i and j than it is to any other sample `.

We do this by recalculating the pairwise distances we had before, replacing these
two samples i and j by the pairwise distance of the new group to the other samples.

Of course this is easier said than done, because how do we define how close a
group is to other samples or groups? There’s no single way to do that, and in fact
there are a lot of competing methods. The default method in R is to say that if we
have a group G consisting of i and j, then the distance of that group to a sample k
is the maximum distance of i and j to k3 ,

d(G, k) = max(dik, djk).

Now we have a updated n− 1×n− 1 matrix of distances between all our current list
of “groups” (remember the single samples form their own group).

Step 4: Join closest groups Now we find the closest two groups and join the
samples in the group together to form a new group.

Step 5+: Continue to update distance matrix and join groups Then you
repeat this process of joining together to build up the tree. Once you get more than
two groups, you will consider all of the three different kinds of joins described above
– i.e. you will also consider joining together two existing groups G1 and G2 that both
consist of multiple samples. Again, you generalize the definition above to define the
distance between the two groups of samples to be the maximum distance of all the
points in G1 to all the points in G2,

d(G1,G2) = max
i∈G1,j∈G2

dij.

Higher Dimension Distances The same process works if instead of having a
single number, your yi are now vectors – i.e. multiple variables. You just need a
definition for the distance between the yi, and then follow the same algorithm.

What is the equivalent distance when you have more variables? For each variable
`, we observe y

(`)
1 , . . . , y

(`)
n . And an observation is now the vector that is the collection

3This is called complete linkage.
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of all the variables for the sample:

yi = (y
(1)
i , . . . , y

(p)
i )

We want to find the distance between observations i and j which have vectors of data

(y
(1)
i , . . . , y

(p)
i )

and
(y

(1)
j , . . . , y

(p)
j )

The standard distance (called Euclidean distance) is

dij = d(yi, yj) =

√√√√ p∑
`=1

(y
(p)
i − y

(p)
j )2

So its the cummulative (i.e. sum) amount of the individual (squared) distance of each
variable. You don’t have to use this distance – there are other choices that can be
better depending on the data – but it is the default.

We generally work with squared distances, which would be

d2ij =

p∑
`=1

(y
(p)
i − y

(p)
j )2

4 Principal Components Analysis

In looking at both the college data and the gene expression data, it is clear that there
is a lot of redundancy in our variables, meaning that several variables are often giving
us the same information about the patterns in our observations. We could see this
by looking at their correlations, or by seeing their values in a heatmap.

For the purposes of illustration, let’s consider a hypothetical situation. Say that
you are teaching a course, and there are two exams:
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These are clearly pretty redundant information, in the sense that if I know a
student has a high score in exam 1, I know they are a top student, and exam 2 gives
me that same information.

Consider another simulated example. Say the first value is the midterm score of
a student, and the next value is the percentage of class and labs the student skipped.
These are negatively correlated, but still quite redundant.

The goal of principal components analysis is to reduce your set of variables into
the most informative. One way is of course to just manually pick a subset. But which
ones? And don’t we do better with more information – we’ve seen that averaging
together multiple noisy sources of information gives us a better estimate of the truth

Instructor: Purdom #4, Fall 2019, STAT 131A 42



than a single one. The same principle should hold for our variables; if the variables
are measuring the same underlying principle, then we should do better to use all of
the variables.

Therefore, rather than picking a subset of the variables, principal components
analysis creates new variables from the existing variables.

There are two equivalent ways to think about how principal components analysis
does this.

4.1 Linear combinations of existing variables

You want to find a single score to give a final grade.

What is the problem with taking the mean of our two exam scores?

Let’s assume we make them have the same mean, what is the problem?

If we are taking the mean, we are treating our two variables x(1) and x(2) equally,
so that we have a new variable z that is given by

zi =
1

2
x
(1)
i +

1

2
x
(2)
i
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The idea with principal components, then, is that we want to weight them differently
to take into account the scale and whether they are negatively or positively correlated.

zi = a1x
(1)
i + a2x

(2)
i

So the idea of principal components is to find the “best” constants (or coefficients),
a1 and a2. This is a little bit like regression, only in regression I had a response yi, and
so my best coefficients were the best predictors of yi. Here I don’t have a response. I
only have the variables, and I want to get the best summary of them, so we will need
a new definition of “best”.

So how do we pick the best set of coefficients? Similar to regression, we need
a criteria for what is the best set of coefficients. Once we choose the criteria, the
computer can run an optimization technique to find the coefficients. So what is a
reasonable criteria?

If I consider the question of exam scores, what is my goal? Well, I would like a
final score that separates out the students so that the students that do much better
than the other students are further apart, etc.

The criteria in principal components is to find the line so that the new variable
values have the most variance – so we can spread out the observations the most. So
the criteria we choose is to maximize the sample variance of the resulting z.

In other words, for every set of coefficients a1, a2, we will get a set of n new values
for my observations, z1, . . . , zn. We can think of this new z as a new variable.

Then for any set of cofficients, I can calculate the sample variance of my resulting
z as

ˆvar(z) =
1

n− 1

n∑
i=1

(zi − z̄)2

Of course, zi = a1x
(1)
i + a2x

(2)
i , this is actually

ˆvar(z) =
1

n− 1

n∑
i=1

(a1x
(1)
i + a2x

(2)
i − z̄)2

(I haven’t written out z̄ in terms of the coefficients, but you get the idea.) Now that
I have this criteria, I can use optimization routines implemented in the computer to
find the coefficients that maximize this quantity.

Here is a histogram of the PCA variable z and that of the mean.
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We’ll return to considering this criteria more but first let’s look at the other
interpretation of summarizing the data.

4.2 Geometric Interpretation

Another way to consider our redundancy is geometrically. If this was a regression
problem we would “summarize” the relationship betweeen our variables by the re-
gression line:
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This is a summary of how the x-axis variable predicts the y-axis variable. But
note that if we had flipped which was the response and which was the predictor, we
would give a different line.

The problem here is that our definition of what is the best line summarizing this
relationship is not symmetric in regression. Our best line minimizes error in the y
direction. Specifically, for every observation i, we project our data onto the line so
that the error in the y direction is minimized.
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However, if we want to summarize both variables symmetrically, we could instead
consider picking a line to minimize the distance from each point to the line.

By distance of a point to a line, we mean the minimimum distance of any point
to the line. This is found by drawing another line that goes through the point and
is orthogonal to the line. Then the length of that line segment from the point to the
line is the distance of a point to the line.

Just like for regression, we can consider all lines, and for each line, calculate the
average distance of the points to the line.

So to pick a line, we now find the line that minimizes the average distance to the
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line across all of the points. This is the PCA line:

Compare this to our regression line:

Creating a new variable from the PCA line Drawing lines through our data is
all very well, but what happened to creating a new variable, that is the best summary
of our two variables? In regression, we could view that our regression line gave us
the “best” prediction of the average y for an x (we called it our predicted value, or
ŷ). This best value was where our error line drawn from yi to the regression line
(vertically) intersected.
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Similarly, we used lines drawn from our data point to our PCA line to define
the best line summary, only we’ve seen that for PCA we are interested in the line
orthogonal to our point so as to be symmetric between our two variables – i.e. not
just in the y direction. In a similar way, we can say that the point on the line where
our perpendicular line hits the PCA line is our best summary of the value of our
point. This is called the orthogonal projection of our point onto the line. We
could call this new point (x̂(1), x̂(2).

This doesn’t actually give us a single variable in place of our original two variables,
since this point is defined by 2 coordinates as well. Specifically, for any line x(2) =
a + bx(1), we have that the coordinates of the projection onto the line are given by4

x̂(1) =
b

b2 + 1
(
x(1)

b
+ x(2) − a)

x̂(2) =
1

b2 + 1
(bx(1) + b2x(2) + a)

(and since we’ve centered our data, we want our line to go through (0, 0), so a = 0)

But geometrically, if we consider the points (x̂
(1)
i , x̂

(2)
i ) as a summary of our data,

then we don’t actually need two dimensions to describe these summaries. From a
geometric point of view, our coordinate system is arbitrary for describing the rela-
tionship of our points. We could instead make a coordinate system where one of the
coordiantes was the line we found, and the other coordinate the orthogonal projection
of that. We’d see that we would only need 1 coordinate (zi) to describe (x̂

(1)
i , x̂

(2)
i ) –

the other coordinate would be 0.

4See, for example, https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line, on
Wikipedia, where they give a proof of these statements
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That coordiante, zi, would equivalently, from a geometric perspective, describe
our projected points. And the value zi is found as the distance of the projected point
along the line (from (0, 0)).5 So we can consider zi as our new variable.

Relationship to linear combinations Is zi a linear combination of our original
x(1) and x(2)? Yes. In fact, as a general rule, if a line going through (0, 0) is given by
x(2) = bx(1), then the distance along the line of the projection is given by6

zi =
1√

1 + b2
(x(1) + bx(2))

Relationship to variance interpretation Finding zi from the geometric proce-
dure described above (finding line with minimimum orthogonal distance to points,
then getting zi from the projection of the points on to the line) is actually mathemat-
ically equivalent to finding the linear combination zi = a1x

(1) + a2x
(2) that results in

the greatest variance of our points. In other words, finding a1, a2 to minimize ˆvar(zi)

is the same as finding the slope b that minimizes the average distance of (x
(1)
i , x

(2)
i )

to its projected point (x̂
(1)
i , x̂

(2)
i ).

To think why this is true, notice that if I assume I’ve centered my data, as I’ve
done above, then the total variance in my two variables (i.e. sum of the variances of

5From (0, 0), because I centered the data, so the center of the points is at (0, 0).
6You can see this by using the coordinates of x̂ = (x̂(1), x̂(2)) given above, and using the

pythagorean theorem, since the points (0, 0), x̂ = (x̂(1), x̂(2)), and (x(1), x(2)) form a right angled
triangle. Note that it is important that our line has a = 0 for this calculation.
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each variable) is given by

1

n− 1

∑
i

(x
(1)
i )2 +

1

n− 1

∑
i

(x
(2)
i )2

1

n− 1

∑
i

[
(x

(1)
i )2 + (x

(2)
i )2

]
So that variance is a geometrical idea once you’ve centered the variables – the sum
of the squared length of the vector ((x

(1)
i , x

(2)
i ). Under the geometric interpretation

your new point (x̂
(1)
i , x̂

(2)
i ), or equivalently zi, has mean zero too, so the total variance

of the new points is given by
1

n− 1

∑
i

z2i

Since we know that we have an orthogonal projection then we know that the distance
di from the point (x

(1)
i , x

(2)
i ) to (x̂

(1)
i , x̂

(2)
i ) satisfies the Pythagorean theorem,

zi(b)
2 + di(b)

2 = [x
(1)
i ]2 + [x

(2)
i ]2.

That means that finding b that minimizes
∑

i di(b)
2 will also maximize

∑
i zi(b)

2

because ∑
i

di(b)
2 = constant−

∑
i

zi(b)
2

so minimizing the left hand size will maximize the right hand side.

Therefore since every zi(b) found by projecting the data to a line through the origin

is a linear combination of x
(1)
i , x

(2)
i AND minimizing the squared distance results in

the zi(b) having maximum variance across all such z2i (b), then it MUST be the same
zi we get under the variance-maximizing procedure.

The above explanation is to help give understanding of the mathematical under-
pinnings of why they are equivalent. But the important take-home fact is that both
of these procedures are the same: if we minimize the distance to the line, we also find
the linear combination so that the projected points have the most variance (i.e. we
can spread out the points the most).

Compare to Mean We can use the geometric interpretation to consider what is
the line corresponding to the linear combination defined by the mean,

1

2
x(1) +

1

2
x(2)

It is the line y = x,
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We could see geometrically how the mean is not a good summary of our cloud of
data points.

Note on Standardizing the Variables You might say, “Why not standardize
your scores by the standard deviation so they are on the same scale?” For the case
of combining 2 scores, if I normalized my variables, I would get essentially the same
z from the PCA linear combination and the mean.7 However, as we will see, we can
extend PCA summarization to an arbitrary number of variables, and then the scaling
of the variables does not have this equivalency with the mean. This is just a freak
thing about combining 2 variables.

Why maximize variance – isn’t that wrong? This geometric interpretation
allows us to understand something that is often confusing to students. Usually we
think we want low variability because we think of variability as noise, so it seems
wrong to maximize the variance. But variability amongst samples should only be
considered noise among homogeneous samples, i.e. after we have remove the inter-
esting patterns. Otherwise we can have variability in our variables due to patterns in
the data. Consider this simple simulated example where there are two groups that
distinguish our observations. Then the difference in the groups is creating a large
spread in our observations. Capturing the variance is capturing these differences.

7If the data is scaled so the two variances have the same st.deviation, then they are exactly the
same up to a constant; PCA uses 1√

2
rather than 1

2 for the constant. But they both give equal

weight to the two variables.
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Example on real data We will look at data on scores of students taking AP
statistics. First we will draw a heatmap of the pair-wise correlation of the variables.

Not surprisingly, many of these measures are highly correlated.

Let’s look at 2 scores, the midterm score (MT) and the pre-class evaluation (Lo-
cus.Aug) and consider how to summarize them using PCA.
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4.3 More than 2 variables

We could similarly combine three measurements. Here is some simulated test scores
in 3 dimensions.

Now a good summary of our data would be a line that goes through the cloud of
points. Just as in 2 dimensions, this line corresponds to a linear combination of the
three variables. A line in 3 dimensions is written in it’s standard form as:

c = b1x
(1)
i + b2x

(2)
i + b3x

(3)
i
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Since again, we will center our data first, the line will be with c = 0.8

The exact same principles hold. Namely, that we look for the line with the smallest
average distance to the line from the points. Once we find that line (drawn in the
picture above), our zi is again the distance from 0 of our point projected onto the
line. The only difference is that now distance is in 3 dimensions, rather than 2. This
is given by the Euclidean distance, that we discussed earlier.

Just like before, this is exactly equivalent to setting zi = a1x
(1)
i + a2x

(2)
i + a3x

(3)
i

and searching for the ai that maximize ˆvar(zi).

Many variables We can of course expand this to as many variables as we want,
but it gets hard to visualize the geometric version of it. But the variance-maximizing
version is easy to write out.

Specifically, any observation i is a vector of values, (x
(1)
i , . . . , x

(p)
i ) where p is the

number of variables. With PCA, I am looking for a linear combination of these p
variables. This means some set of adding and subtracting of these variables to get a
new variable z,

zi = a1x
(1)
i + . . . + apx

(p)
i

So a linear combination is just a set of p constants that I will multiply my variables
by.

Q: If I take the mean of my p variables, what are my choices of ak for each of my
variables?

I can similarly find the coefficients ak so that my resulting zi have maximum
variance. As before, this is equivalent the geometric interpretation of finding a line
in higher dimensions, though it’s harder to visualize in higher dimensions than 3.

4.4 Adding another principal component

What if instead my three scores look like this (i.e. line closer to a plane than a line)?

8This is the standard way to write the equation for a line in higher dimensions and is symmetric
in the treatment of the variables. Note the standard way you were probably taught to write a line
in 2-dimensions, y = a + bx can also be written in this form with c = b, b1 = b, and b2 = −1.
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I can get one line through the cloud of points, corresponding to my best linear
combination of the three variables. But I might worry whether this really represented
my data, since as we rotate the plot around we can see that my points appear to be
closer to a lying near a plane than a single line.

For example, can you find a single line so that if you projected your data onto
that line, you could separate the three groups shown?

So there’s some redundancy, in the sense that I don’t need three dimensions to
geometrically represent this data, but it’s not clear that with only 1 new variable (i.e.
line) we can summarize this cloud of data geometrically.
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4.4.1 The geometric idea

I might ask whether I could better summarize these three variables by two variables,
i.e. as a plane. I can use the same geometric argument – find the best plane, so that
the orthogonal projection of the points to the plane is the smallest. This is equivalent
to finding two lines, rather than one, since a plane can be defined by any two lines
that lie on it.

I could just search for the plane that is closest to the points, just like previously
I searched for a line that is closest to the points – i.e. any two lines on the plane will
do, so long as I get the right plane. But that just gives me the plane. It doesn’t give
me new data points. To do that, I need coordiantes of each point projected onto the
plane, like previously we projected onto the line.

I need to set up an orthogonal coordinate axis so I can define (z
(1)
i , z

(2)
i ) for each

point.

Thus the new points (z
(1)
i , z

(2)
i ) represent the points after being projected on to

that plane in 3d. So we can summarize the 3 dimensional cloud of points by this two
dimensional cloud. This is now a summary of the 3D data. Which is nice, since it’s
hard to plot in 3D. Notice, I can still see the differences between my groups, so I have
preserved that important variability (unlike using just a single line):
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4.4.2 Finding the Best Plane

I want to be smarter than just finding any coordinate system for my “best” plane –
there is an infinite number of equivalent choices. So I would like the new coordinates
(z

(1)
i , z

(2)
i ) to be useful in the following way: I want my first coordinate z

(1)
i to cor-

respond to the coordinates I would get if I just did just 1 principal component, and
then pick the next coordinates to be the orthogonal direction from the 1st principal
component that also lies on the plane.9

This reduces the problem of finding the plane to 1) finding the 1st principal
component, as described above, then 2) finding the “next best” direction.

So we need to consider how we find the next best direction.

Consider 2-dimensions Let’s return to our 2-dim example to consider how we
can “add” another dimension to our summary. If I have my best line, and then draw
another line very similar to it, but slightly different slope, then it will have very low
average distance of the points to the line. And indeed, we wouldn’t be able to find
“next best” in this way, because the closest to the best line would be choosen – closer
and closer until in fact it is the same as the best line.

Moreover, such a line that is close to the best doesn’t give me very different
information from my best line. So I need to force “next best” to be separated and
distinct from my best line. How do we do that? We make the requirement that the

9The first principal component direction will by definition fall on the “best” plane.
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next best line be orthogonal from the best line – this matches our idea above that we
want an orthogonal set of lines so that we set up a new coordinate axes.

In two dimensions that’s a pretty strict constraint – there’s only 1 such line! (at
least that goes through the center of the points).

Return to 3 dimensions In three dimensions, however, there are a whole space of
lines to pick from that are orthogonal to the 1st PC and go through the center of the
points. Not all of these lines will be as close to the data as others lines. So there is
actually a choice to be made here. We can use the same criterion as before. Of all of
these lines, which minimize the distance of the points to the line? Or (equivalently)
which result in a linear combination with maximum variance?

To recap: we find the first principal component based on minimizing the points’
distance to line. To find the second principal component, we similarly find the line
that minimize the points’ distance to the line but only consider lines orthogonal to
the the first component.

If we follow this procedure, we will get two orthogonal lines that define a plane,
and this plane is the closest to the points as well (in terms of the orthogonal distance
of the points to the plane). In otherwords, we found the two lines without thinking
about finding the “best” plane, but in the end the plane they create will be the closest.
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4.4.3 Projecting onto Two Principal Components

Just like before, we want to be able to not just describe the best plane, but to
summarize the data. Namely, we want to project our data onto the plane. We do
this again, by projecting each point to the point on the plane that has the shortest
distance, namely it’s orthogonal projection.

We could describe this project point in our original coordinate space (i.e. with
respect to the 3 original variables), but in fact these projected points lie on a plane
and so we only need two dimensions to describe these projected points. So we want to
create a new coordinate system for this plane based on the two (orthogonal) principal
component directions we found.

Finding the coordiantes in 2Dim Let’s consider the simple 2-d case again. Since
we are in only 2D, our two principal component directions are equivalent to defining
a new orthogonal coordinate system.

Then the new coordinates of our points we will call (z
(1)
i , z

(2)
i ). To figure out their

values coordiantes of the points on this new coordinate system, we do what we did
before:

1. Project the points onto the first direction. The distance of the point along the
first direction is z

(1)
i

2. Project the points onto the second direction. The distance of the point along
the second direction is z

(w)
i
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You can now consider them as new coordinates of the points. It is common to plot
them as a scatter plot themselves, where now the PC1 and PC2 are the variables.

Preserving distances in 2D In two dimensions, we completely recapture the
pattern of the data with 2 principal components – we’ve just rotated the picture, but
the relationship of the points to each other (i.e. their distances to each other), are
exactly the same. So plotting the 2 PC variables instead of the 2 original variables
doesn’t tell us anything new about our data, but we can see that the relationship of
our variables to each other is quite different.

Of course this distance preserving wasn’t true if I projected only onto one principal
component; the distances in the 1st PC variable are not the same as the distances in
the whole dimension space.

3-dimensions and beyond For our points in 3 dimensions, we will do the same
thing: project the data points to each of our two PC directions separately, and make
z
(1)
i and z

(2)
i the distance of the projection along each PC line. These values will

define a set of coordinates for our points after being projected to the best plane.
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But unlike our 2D example, the projection of these points to the plane don’t
preserve the entire dataset, so the plot of the data based on these two coordinates is
not equivalent to their position in the 3-dimensional space. We are not representing
the noise around the plane (just like in 2D, where the projection of points to the
line misses any noise of the points around the line). In general, if we have less
principal components than the number of original variables, we will not have a perfect
recapitulation of the data.

But that’s okay, because what such a plot does is summarize the 3 dimensional
cloud of points by this two dimensional cloud, which captures most of the variablity
of the data. Which is nice, since it’s hard to plot in 3D.

4.4.4 z as variables

Now for each data point, we have (z
(1)
i , z

(2)
i ). If we think of this as data points, we

have a data matrix with columns corresponding to z(1) and z(2). So we’ve now created
two new variables. We know that they exactly represent the same points in space,
but they are using a different coordinate system to represent them.

So we have gone from 3-variables to 2. More generally, if we have many variables,
we can use the principal components to go from many variables to a smaller number.

Moreover, our new variables are both linear combinations of our original p vari-
ables:

z(1) = a
(1)
1 x(1) + . . . + a(1)p x(p)

z(2) = a
(2)
1 x(1) + . . . + a(2)p x(p)
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What can we say statistically regarding our z(1) and z(2) variables? Just like before
we have both a geometric and statistical interpretation. If we find z(1) as we described
above, we have also found the set of coefficients a

(1)
1 . . . a

(1)
p so that z(1) has the max-

imum variance. That makes sense, because we already said that we would choose it
as if we did just PC for 1 component.

If we find z(2) as we described above, we know that we have found the set of
coefficients a

(2)
1 . . . a

(2)
p that have the maximum variance out of all those that are

uncorrelated with z(1). This makes sense in our 2D example – we saw that we have
the same relationship between the points using the coordinates z(1), z(2), but that the
z(1) and z(2) no longer showed any relationship, unlike our original variables.

4.5 Return to real data (2 PCs)

We will turn now to illustrating finding the first 2 PCS on some real data examples.
We can find the top 2 PCs for our real data examples and plot the scatter plot of
these points.

Consider the college dataset, which we only considered the pairwise differences.
Now we show the scatter plot of the first two PCS. Notice that PCA only makes sense
for continuous variables, so we will remove variables (like the private/public split) that
are not continuous. PCA also doesn’t handle NA values, so I have removed samples
that have NA values in any of the observations.

This certainly shows us patterns among the data – what?
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Similarly we can see a big difference between cancer and normal observations in
the first two principal components.

Does PC1 separate normal from cancer? What about PC2?

If we remove the normal samples,

Does PC1 or PC2 separate the estrogen receptor or progesteron pathologies?
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What about metastastic samples?

4.5.1 Loadings

The scatterplots doen’t tell us how the original variables relate to our new variables,
i.e. the coefficients aj which tell us how much of each of the original variables we
used. These aj are sometimes called the loadings. We can go back to what their
coefficients are in our linear combination

We can see that the first PC is a combination of variables related to the cost
of the university (TUITFTE, TUITIONFEE IN, TUITIONFEE OUT are related to
the tuition fees, and mn earn wne p10/md earn wne p10 are related to the total of
amount financial aid students earn by working in aggregate across the whole school,
so presumably related to cost of university); so it makes sense that in aggregate the
public universities had lower PC1 scores than private in our 2-D scatter plot. Note
all the coefficients in PC1 are positive, so we can think of this as roughly mean of
these variables.

PC2, however, has negative values for the tuition related variables, and positive
values for the financial aid earnings variables; and UGDS is the number of Undergrad-
uate Students, which has also positive coefficients. So university with high tuition
relative to the aggregate amount of financial aid they give and student size, for ex-
ample, will have low PC2 values. This makes sense: PC2 is the variable that pretty
cleanly divided private and public schools, with private schools having low PC2 values.
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Correlations It’s often interesting to look at the correlation between the new vari-
ables and the old variables. Below, I plot the heatmap of the correlation matrix
consisting of all the pair-wise correlations of the original variables with the new PCs

corPCACollege <- cor(pcaCollege$x, scale(scorecard[-whNACollege,

-c(1:3, 12)], center = TRUE, scale = FALSE))

pheatmap(corPCACollege[1:2, ], cluster_cols = FALSE,

col = seqPal2)

Notice this is not the same thing as which variables contributed to PC1/PC2. For
example, suppose a variable was highly correlated with tuition, but wasn’t used in
PC1. It would still be likely to be highly correlated with PC1. This is the case, for
example, for variables like SAT scores.

4.5.2 Biplot

We can put information regarding the variables together in what is called a biplot.
We plot the observations as points based on their value of the 2 principal components.
Then we plot the original variables as vectors (i.e. arrows).

par(mfrow = c(1, 2))

plot(pcaCollege$x[, 1:2], col = c("red", "black")[scorecard$CONTROL[-whNACollege]],

asp = 1)

legend("topright", c("public", "private"), fill = c("red",

"black"))

suppressWarnings(biplot(pcaCollege, pch = 19, main = "Biplot"))
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Notice that the axes values are not the same as the basic scatterplot on the left.
This is because biplot is scaling the PC variables.

Interpretation The arrow for a variable points in the direction that is most like
that variable.10 So points that are in the direction of that vector tend to have large
values of that variable, while points in the opposite direction of that vector have large
negative values of that variable. Vectors that point in the same direction correspond
to variables where the observations show similar patterns.

The length of the vector corresponds to how well that vector in this 2-dim plot
actually represents the variable.11 So long vectors tell you that the above interpre-
tation I gave regarding the direction of the vector is a good one, while short vectors
indicate that the above interpretation is not very accurate.

If we see vectors that point in the direction of one of the axes, this means that
the variable is highly correlated with the principal component in that axes. I.e. the
resulting new variable z that we get from the linear combination for that principal
component is highly correlated with that original variable.

So the variables around tuition fee, we see that it points in the direction of large
PC1 scores meaning observations with large PC1 scores will have higher values on
those variables (and they tend to be private schools). We can see that the number
of undergraduates (UGDS) and the aggregate amount of financial aid go in positive

10Specifically, if you projected the points in the biplot onto the line designated for that line, the
values of the points on that line would be most correlated with the original variable.

11Specifically the size of the correlation of the points projected onto that vector and the actual
variable.
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directions on PC2, and tuition are on negative directions on PC2. So we can see that
some of the same conclusions we got in looking at the loadings show up here.

AP Scores We can perform PCA on the full set of AP scores variables and make
the same plots for the AP scores. There are many NA values if I look at all the
variables, so I am going to remove ‘Locus.Aug’ (the score on the diagnostic taken at
beginning of year) and ‘AP.Ave’ (average on other AP tests) which are two variables
that have many NAs, as well as removing categorical variables.

Not surprisingly, this PCA used all the variables in this first 2 PCs and there’s no
clear dominating set of variables in either the biplot or the heatmap of the loadings
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for the first two components. This matches the nature of the data, where all of the
scores are measuring similar qualities of a student, and many are on similar scales.

Scaling Even after centering our data, our variables are on different scales. If
we want to look at the importance of variables and how to combine variables that
are redundant, it is more helpful to scale each variable by its standard deviation.
Otherwise, the coefficients ak represent a lot of differences in scale of the variables,
and not the redundancy in the variables. Doing so can change the PCA coordinates
a lot.

There is still a slight preference for public schools to be lower on the 1st principal
component, but its quite slight.

We see that many more variables contribute to the first 2 PCs after scaling them.
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4.6 More than 2 PC coordinates

In fact, we can find more than 2 PC variables. We can continue to search for more
components in the same way, i.e. the next best line, orthogonal to both of the lines
that came before. The number of possible such principal components is equal to the
number of variables (or the number of observations, whichever is smaller; but in all
our datasets so far we have more observations than variables).

We can plot a scatter plot of the resulting third and 4th PC variables from the
college data just like before.
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This is a very different set of coordinates for the points in 2 PCs. However,
some of the same set of variables are still dominating, they are just different linear
combinations of them (the two PCs lines are orthogonal to each other, but they can
still just involve these variables because its such a high dimensional space).

In these higher dimensions the geometry becomes less intuitive, and it can be
helpful to go back to the interpretation of linear combinations of the original variables,
because it is easy to scale that up in our minds.

We can see this by a heatmap of all the coefficients. It’s also common to scale
each set of PC coefficients by the standard deviation of the final variable z that the
coefficients create. This makes later PCs not stand out so much. 12

12We haven’t discussed this, but in fact the coefficients are scaled so the sum of the square of
the coefficients equal 1 (norm is one). Otherwise there’s not a unique set of coefficients, since you
could always just multiply all the coefficients by a number and get larger and larger variance. So
the coefficients are all on the similar scale, regardless of the original variability or importance of the
PC in explaining the data.
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Breast data We can also look at the higher PCs from the breast data (with the
normal samples). If there are 500 genes and 878 observations, how many PCs are
there?

We can see that there are distinct patterns in what genes/variables contribute to
the final PCs (we plot only the top 25 PCs). However, it’s rather hard to see, because
there are large values in later PCs that mask the pattern.
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This is an example of why it is useful to scale the variables by their variance
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4.7 How many dimensions?

If I can draw my data in 3d, then I can guess what is the write number of coordinates
– not 1 but 2 in our toy example case were needed. When I have a lot of coordinates,
like the college data, how can I possibly know? One technique is to look at how much
variability there is in each of the coordinates – how much variance is there in the new
variable created by each linear combination. If there’s not a lot of variability, then it
indicates that when the points are projected onto that PC, they are huddled on top
of each other, and its more likely to be noise than signal.

Consider our simple simulation example, where there was more or less a plane
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describing the data. If we look at the variance in each set of linear combinations
we create, there is practically 0 left in the last variable, meaning that most of the
representation of the points is captured in two dimensions. This is a measure of how
much we are “missing” by ignoring a coordinate.

For the college data, we similarly see that the first two dimensions both have much
larger amounts compared to other dimensions. The AP Statistics data is strongly in
just the first dimension.

We can also plot this a percentage
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2 dimensions is not always the answer It is just a happenstance of this data
that 1-2 dimensions is summarizing the data. There is nothing magical about two
dimensions, other than the fact that they are easy to plot! Looking at the top two
dimensions can be misleading if there is a lot of additional variability in the other
dimensions (in this case, it can be helpful to look at visualizations like pairs plots on
the principal components to get an idea of what you might be missing.)

We can do a similar plot for the breast cancer data. What does this tell you about
the PCA?
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