
Regression and Classification Trees

1 Regression Trees

The basic idea behind regression trees is the following: Group the n subjects into a
bunch of groups based solely on the explanatory variables. Prediction for a future
subject is then done in the following way. Look at the explanatory variable values
for the future subject to figure which group he belongs to. Then predict his response
value by the mean response for his group.

The main thing to understand here is how the grouping is constructed. Finding the
best grouping is a computationally challenging task. In practice, a greedy algorithm,
called Recursive Partitioning, is employed which produces a reasonable albeit not the
best grouping.

1.1 Recursive Partitioning for Regression Trees

Recursive Partitioning is done in R via the function rpart from the library rpart. The
grouping produced by recursive partitioning can be nicely represented by a tree. The
tree is relatively easy to interpret.

Let us first use the rpart function to fit a regression tree to the bodyfat dataset.

dataDir <- "../../finalDataSets"

body = read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T)

Let us fit a regression tree to Bodyfat percentage in terms of the explanatory
variables Age, Weight, Height, Chest, Abdomen, Hip and Thigh.

1

library(rpart)

rt = rpart(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

ABDOMEN + HIP + THIGH, data = body)

rt

n= 252

##

node), split, n, deviance, yval

* denotes terminal node

##

1) root 252 17578.99000 19.150790

2) ABDOMEN< 91.9 132 4698.25500 13.606060

4) ABDOMEN< 85.45 66 1303.62400 10.054550

8) ABDOMEN< 75.5 7 113.54860 5.314286 *

9) ABDOMEN>=75.5 59 1014.12300 10.616950 *

5) ABDOMEN>=85.45 66 1729.68100 17.157580

10) HEIGHT>=71.875 19 407.33790 13.189470 *

11) HEIGHT< 71.875 47 902.23110 18.761700 *

3) ABDOMEN>=91.9 120 4358.48000 25.250000

6) ABDOMEN< 103 81 1752.42000 22.788890 *

7) ABDOMEN>=103 39 1096.45200 30.361540

14) ABDOMEN< 112.3 28 413.60000 28.300000

28) HEIGHT>=72.125 8 89.39875 23.937500 *

29) HEIGHT< 72.125 20 111.04950 30.045000 *

15) ABDOMEN>=112.3 11 260.94910 35.609090 *

We shall interpret the output above a little later. But before that, let us plot the
regression tree. This is easily done as follows.

plot(rt)

text(rt)

Guntuboyina & Purdom #7, Spring 2017, STAT 28 2

How to interpret this tree? At each node of the tree, there is a clause involving
a variable and a cut-off. If the clause is met, then we go left and if it is not met,
we go right. Here is how prediction works. Suppose we need to predict the bodyfat
percentage of an individual who is 30 years of age, 180 pounds in weight, 70 inches
tall and whose chest circumference is 95 cm, abdomen circumference is 90 cm, hip
circumference is 100 cm and thigh circumference is 60 cm. The clause at the top of
the tree is “ABDOMEN < 91.9” which is met for this person, so we move left. We
then encounter the clause “ABDOMEN < 85.45” which is not met so we move right.
This leads to the clause “HEIGHT >= 71.88” which is true for this person. So we
move left. We then hit a “terminal node” where the displayed value is 13.19. We
therefore predict this person’s bodyfat as 13.19%.

How does rpart construct this tree? At each node of the tree, there is a clause
involving a variable and a cut-off. How does rpart choose the variable and the cut-off.

Let us first understand how the clause is selected at the top of the tree (i.e., the
first clause). Given a variable Xj and a cut-off c, we can divide the subjects into two
groups: G1 given by Xj ≤ c and G2 given by Xj > c. The RSS corresponding to this
split is defined as:

RSS(j, c) :=
∑
i∈G1

(yi − ȳ1)2 +
∑
i∈G2

(yi − ȳ2)2

where ȳ1 and ȳ2 denote the mean values of the response in the groups G1 and G2

respectively.

The values of j and c for which RSS(j, c) is the smallest give the best first split.
The quantity minj,cRSS(j, c) should be compared with TSS =

∑
i(yi − ȳ)2. The

ratio minj,cRSS(j, c)/TSS is always smaller than 1 and the smaller it is, the greater
we are gaining by the split.

Guntuboyina & Purdom #7, Spring 2017, STAT 28 3

For example, for the bodyfat dataset, the total sum of squares here is 17578.99.
After spliitting based on “Abdomen < 91.9”, one gets two groups with residuals
sums of squares given by 4698.255 and 4358.48. Therefore the reduction in the sum
of squares is:

(4698.255 + 4358.48)/17578.99

[1] 0.5152022

The reduction in error due to this split is therefore 0.5152. This is the greatest
reduction possible by splitting the data into two groups based on a variable and a
cut-off.

The recursive partitioning algorithm for constructing the regression tree proceeds
as follows: Find j and c (or S) such that RSS(j, c) (or RSS(j, S)) is the smallest.
Use the jth variable and the cut-off c (or the subset S) to divide the data into two
groups: G1 given by Xj ≤ c and G2 given by Xj > c (or G1 given by Xj ∈ S and G2

given by Xj /∈ S). Repeat this process within each group separately.

The depth of the branches in the tree are proportional to the reduction in error
(residual sum of squares) due to the split. In the bodyfat dataset, the reduction in
sum of squares due to the first split was 0.5152. For this dataset, this is apparently
a big reduction compared to subsequence reductions and this is why it is plotted by
a big branch.

Note that the tree here only uses the variables Abdomen and Height. The other
variables are not being used; therefore rpart() automatically does some model selec-
tion.

How are categorical explanatory variables dealt with? For a categorical
explanatory variable, it clearly does not make sense to put a cut-off across its value.
For such variables, the groups (or splits) are created in the following way. Suppose
Xj is a categorical variable that takes k values: {a1, . . . , ak}. Then for every subset
S ⊆ {a1, . . . , ak}, the data are split into the two groups: G1 given by Xj ∈ S and G2

given by Xj /∈ S.

Here is an example with categorical explanatory variables. This is the college
dataset.

scorecard = read.csv(file.path(dataDir, "college_short.csv"))

names(scorecard)

[1] "SAT_AVG_ALL" "AVGFACSAL" "TUITIONFEE_IN" "TUITIONFEE_OUT"

Guntuboyina & Purdom #7, Spring 2017, STAT 28 4

[5] "UGDS" "RET_FT4" "PCTFLOAN" "PFTFAC"

[9] "TYPE"

Note that TYPE is a categorical variable. Let us fit a regression tree with retention
rate as the response and tuition fee and type as the explanatory variables.

req = rpart(RET_FT4 ~ TUITIONFEE_OUT + as.factor(TYPE),

data = scorecard)

plot(req)

text(req)

req

n= 1241

##

node), split, n, deviance, yval

* denotes terminal node

##

1) root 1241 16.8642000 0.7609155

2) TUITIONFEE_OUT< 34290 1005 11.1054700 0.7312472

4) TUITIONFEE_OUT< 26855 731 8.1311670 0.7128963

8) as.factor(TYPE)=2,3 345 4.0915040 0.6787971

16) TUITIONFEE_OUT< 18785 100 1.3470310 0.6421740 *

17) TUITIONFEE_OUT>=18785 245 2.5556030 0.6937453 *

9) as.factor(TYPE)=1 386 3.2799700 0.7433736

18) TUITIONFEE_OUT< 16097.5 118 1.0737510 0.7004661 *

Guntuboyina & Purdom #7, Spring 2017, STAT 28 5

19) TUITIONFEE_OUT>=16097.5 268 1.8933230 0.7622657 *

5) TUITIONFEE_OUT>=26855 274 2.0713890 0.7802051

10) as.factor(TYPE)=2 225 1.4400930 0.7613084 *

11) as.factor(TYPE)=1,3 49 0.1820255 0.8669755 *

3) TUITIONFEE_OUT>=34290 236 1.1070330 0.8872572

6) TUITIONFEE_OUT< 41516 142 0.5717404 0.8537951 *

7) TUITIONFEE_OUT>=41516 94 0.1361027 0.9378064 *

Note the clauses “as.factor(TYPE) = bc” and “as.factor(TYPE) = b” appearing
in the tree. How does one interpret this tree?

It may be noted that rpart gives an error if you try to put in interaction terms.
Interaction is automatically included in regression trees.

For every regression tree T , we can define its RSS in the following way. Let the
final groups generated by T be G1, . . . , Gk. Then the RSS of T is defined as

RSS(T) :=
m∑
j=1

∑
i∈Gj

(yi − ȳj)2

where ȳ1, . . . , ȳm denote the mean values of the response in each of the groups.

We can also define a notion of R2 for the regression tree as:

R2(T) := 1− RSS(T)

TSS
.

rt = rpart(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

ABDOMEN + HIP + THIGH, data = body)

1 - (sum(residuals(rt)^2))/(sum((body$BODYFAT - mean(body$BODYFAT))^2))

[1] 0.7354195

Let us now briefly look at the biggest and most complicated issue for trees. How
large should the tree be grown? How is rpart() deciding when to stop growing the
regression tree? Very large trees obviously lead to over-fitting. One strategy is to
stop when minj minc or S RSS(j, c or S)/TSS for a group is not small. This would be
the case when we are not gaining all that much by splitting further. This is actually
not a very smart strategy. Why? Because incremental improvements due to each
expansion of the tree may not necessarily always be decreasing.

Regression and classification trees were invented by Leo Breiman from UC Berke-
ley. He also had an idea for the tree size issue. He advocates against stopping the

Guntuboyina & Purdom #7, Spring 2017, STAT 28 6

recursive partitioning algorithm at some step. Instead, he recommends growing a full
tree or a very large tree, Tmax. Now, given a parameter α ≥ 0 (called the complexity
parameter and referred to as cp), Breiman recommends choosing T (α) as the subtree
of Tmax which minimizes

Rα(T) := RSS(T) + α(TSS)|T |

where |T | is the number of terminal nodes of the tree T . This is done via a slightly
complicated algorithm involving weakest link cutting. Because the number of possible
subtrees of Tmax is finite, it follows that the set of possible trees {T (α), α ≥ 0} has
to be finite as well. Breiman showed that one can obtain α1 > α2 > . . . and nested
subtrees T (α1) < T (α2) < . . . such that

T (α) = T (αk) if αk ≤ α < αk−1.

Here we take α0 to be +∞. After obtaining this sequence of trees T (α1), T (α2), . . . ,
the default choice in R is to take α = 0.01 and then generating the tree corresponding
to T (αk) for which αk ≤ 0.01 < αk−1. The parameter α is referred to as cp in R.

The printcp() function in R gives the values of α1, α2, . . . (up to the actual α)
and also gives the number of splits of the tree T (αk) for each k.

printcp(rt)

##

Regression tree:

rpart(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

##

Variables actually used in tree construction:

[1] ABDOMEN HEIGHT

##

Root node error: 17579/252 = 69.758

##

n= 252

##

CP nsplit rel error xerror xstd

1 0.484798 0 1.00000 1.00435 0.081140

2 0.094713 1 0.51520 0.57129 0.048806

3 0.085876 2 0.42049 0.51532 0.044394

4 0.024000 3 0.33461 0.39068 0.034624

5 0.023899 4 0.31061 0.39926 0.035027

6 0.012125 5 0.28672 0.36550 0.030966

7 0.010009 6 0.27459 0.37344 0.030195

8 0.010000 7 0.26458 0.38311 0.030910

Guntuboyina & Purdom #7, Spring 2017, STAT 28 7

The rows in the printcp output are different trees corresponding to their α values.
Also given in the printcp() output are three other quantities: relerror, xerror and
xstd. These mean the following. relerror for a tree T is simply RSS(T)/TSS.
Because more deep trees have smaller RSS, this quantity will always decrease as we
go down the column. The xerror term is an accuracy measure calculated by 10-
fold cross validation (and then divided by TSS). This quantity will be random (i.e.,
different runs of rpart() will result in different values for xerror); this is because
10-fold cross-validation relies on randomly partitioning the data into 10 parts and
the randomness of this partition results in xerror being random. The quantity xstd
provides a standard deviation for the random quantity xerror. If we do not like the
default choice of 0.01 for cp, we can choose a higher value of cp using xerror and
xstd.

For this particular run, the xerror seems to be smallest at cp = 0.012125 and then
this seems to increase. So we can use this value of cp instead of the default cp = 0.01.
We will then get a smaller tree.

rt = rpart(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

ABDOMEN + HIP + THIGH, data = body, cp = 0.0122)

plot(rt)

text(rt)

Now we get a tree with 5 splits or 6 terminal nodes.

Guntuboyina & Purdom #7, Spring 2017, STAT 28 8

1.2 Classification Trees

The idea behind classification trees is similar. Just as in the case of regression trees,
we can run recursive partitioning as follows. Given a variable Xj and a cut-off c, the
subjects are divided into the two groups G1 where Xj ≤ c and G2 where Xj > c. The
efficiency of this split is measured by the RSS:

RSS(j, c) :=
∑
i∈G1

(yi − ȳ1)2 +
∑
i∈G2

(yi − ȳ2)2

where ȳ1 and ȳ2 denote the mean values of the response in the Groups G1 and G2

respectively. In classification problems, the response values are 0 or 1. Therfore ȳ1
equals the proportion of ones in G1 while ȳ2 equals the proportion of ones in G2. It
is better to denote ȳ1 and ȳ2 by p̄1 and p̄2 respectively.

The formula for RSS(j, c) then becomes:

RSS(j, c) = n1p̄1(1− p̄1) + n2p̄2(1− p̄2).

This quantity is also called the Gini index of the split corresponding to the jth
variable and cut-off c. The function p(1 − p) takes its largest value at p = 1/2 and
it is small when p is close to 0 or 1. Therefore the quantity n1p̄1(1 − p̄1) is small if
either most of the response values in the group G1 are 0 (in which case p̄1 ≈ 0) or
when most of the response values are 1 (in which case p̄1 ≈ 1). A group is said to be
pure if either most of the response values in the group are 0 or if most of the response
values are 1. Thus the quantity n1p̄1(1 − p̄1) measures the impurity of a group. If
n1p̄1(1− p̄1) is low, then the group is pure and if it is high, it is impure. The group
is maximally impure if p̄1 = 1/2.

The Gini Index, RSS(j, c), is the sum of the impurities of the groups given by
Xj ≤ c and Xj > c. The recursive partitioning algorithm determines j and c such
that RSS(j, c) is the smallest. This divides the data into two groups with Xj ≤ c
and Xj > c. The process is then continued within each of these groups separately.

The quantity n1p̄1(1− p̄1) is not the only function used for measuring the impurity
of a group in classification. The key property of the function p 7→ p(1− p) is that it
is symmetric about 1/2, takes its maximum value at 1/2 and it is small near the end
points p = 0 and p = 1. Two other functions having this property are:

1. Cross-entropy or Deviance: Defined as−2n1 (p̄1 log p̄1 + (1− p̄1) log(1− p̄1)).
This also takes its smallest value when p̄1 is 0 or 1 and it takes its maximum
value when p̄1 = 1/2.

2. Misclassification Error: This is defined as n1 min(p̄1, 1 − p̄1). This equals 0
when p̄1 is 0 or 1 and takes its maximum value when p̄1 = 1/2. If we classify all

Guntuboyina & Purdom #7, Spring 2017, STAT 28 9

the response values in the group G1 by the majority value, then the number of
response values misclassified in G1 equals n1 min(p̄1, 1− p̄1). This explains the
name misclassification error.

One can use Deviance or Misclassification error instead of the Gini index while growing
a classification tree. The default in R is to use the Gini index.

Let us apply the classificationt tree to the email spam dataset.

library(DAAG)

data(spam7)

spam = spam7

The only change to the rpart function to classification is to use method = ”class”.

library(rpart)

sprt = rpart(yesno ~ crl.tot + dollar + bang + money +

n000 + make, method = "class", data = spam)

plot(sprt)

text(sprt)

sprt

n= 4601

Guntuboyina & Purdom #7, Spring 2017, STAT 28 10

##

node), split, n, loss, yval, (yprob)

* denotes terminal node

##

1) root 4601 1813 n (0.6059552 0.3940448)

2) dollar< 0.0555 3471 816 n (0.7649092 0.2350908)

4) bang< 0.0915 2420 246 n (0.8983471 0.1016529) *

5) bang>=0.0915 1051 481 y (0.4576594 0.5423406)

10) crl.tot< 85.5 535 175 n (0.6728972 0.3271028)

20) bang< 0.7735 418 106 n (0.7464115 0.2535885) *

21) bang>=0.7735 117 48 y (0.4102564 0.5897436)

42) crl.tot< 17 43 12 n (0.7209302 0.2790698) *

43) crl.tot>=17 74 17 y (0.2297297 0.7702703) *

11) crl.tot>=85.5 516 121 y (0.2344961 0.7655039) *

3) dollar>=0.0555 1130 133 y (0.1176991 0.8823009) *

The tree construction works exactly as in the regression tree. We can look at the
various values of the α (cp) parameter and the associated trees and errors using the
function printcp().

printcp(sprt)

##

Classification tree:

rpart(formula = yesno ~ crl.tot + dollar + bang + money + n000 +

make, data = spam, method = "class")

##

Variables actually used in tree construction:

[1] bang crl.tot dollar

##

Root node error: 1813/4601 = 0.39404

##

n= 4601

##

CP nsplit rel error xerror xstd

1 0.476558 0 1.00000 1.00000 0.018282

2 0.075565 1 0.52344 0.54937 0.015408

3 0.011583 3 0.37231 0.38445 0.013414

4 0.010480 4 0.36073 0.37286 0.013246

5 0.010000 5 0.35025 0.37397 0.013262

Notice that the xerror seems to decrease as cp decreases. We might want to set
the cp to be lower than 0.01 so see how the xerror changes:

Guntuboyina & Purdom #7, Spring 2017, STAT 28 11

sprt = rpart(yesno ~ crl.tot + dollar + bang + money +

n000 + make, method = "class", cp = 0.001, data = spam)

printcp(sprt)

##

Classification tree:

rpart(formula = yesno ~ crl.tot + dollar + bang + money + n000 +

make, data = spam, method = "class", cp = 0.001)

##

Variables actually used in tree construction:

[1] bang crl.tot dollar money n000

##

Root node error: 1813/4601 = 0.39404

##

n= 4601

##

CP nsplit rel error xerror xstd

1 0.4765582 0 1.00000 1.00000 0.018282

2 0.0755654 1 0.52344 0.55268 0.015442

3 0.0115830 3 0.37231 0.38224 0.013382

4 0.0104799 4 0.36073 0.37176 0.013229

5 0.0063431 5 0.35025 0.35907 0.013040

6 0.0055157 10 0.31660 0.34970 0.012896

7 0.0044126 11 0.31109 0.33701 0.012696

8 0.0038610 12 0.30667 0.33480 0.012661

9 0.0027579 16 0.29123 0.32929 0.012572

10 0.0022063 17 0.28847 0.32819 0.012554

11 0.0019305 18 0.28627 0.32708 0.012536

12 0.0016547 20 0.28240 0.32653 0.012527

13 0.0010000 25 0.27413 0.32377 0.012482

Now the minimum xerror seems to be the tree with 16 splits (at cp = 0.0027).
A reasonable choice of cp here is thereore 0.0028. We can refit the classification tree
with this value of cp:

sprt = rpart(yesno ~ crl.tot + dollar + bang + money +

n000 + make, method = "class", cp = 0.0028, data = spam)

plot(sprt)

text(sprt)

Guntuboyina & Purdom #7, Spring 2017, STAT 28 12

Let us now talk about getting predictions from the classification tree. Prediction
is obtained in the usual way using the predict() function. The predict() function
results in predicted probabilities (not 0-1 values). Suppose we have an email where
crl.tot = 100, dollar = 3, bang = 0.33, money = 1.2, n000 = 0 and make = 0.3.
Then the predicted probability for this email being spam is given by:

x0 = data.frame(crl.tot = 100, dollar = 3, bang = 0.33,

money = 1.2, n000 = 0, make = 0.3)

predict(sprt, x0)

n y

1 0.04916201 0.950838

The predicted probability is 0.950838. If we want to conver this into a 0-1 predic-
tion, we can do this via a confusion matrix in the same way as for logistic regression.

y.tr = predict(sprt, spam)[, 2]

confusion <- function(y, yhat, thres) {
n <- length(thres)

conf <- matrix(0, length(thres), ncol = 4)

colnames(conf) <- c("a", "b", "c", "d")

for (i in 1:n) {
a <- sum((!y) & (yhat <= thres[i]))

b <- sum((!y) & (yhat > thres[i]))

c <- sum((y) & (yhat <= thres[i]))

d <- sum((y) & (yhat > thres[i]))

conf[i,] <- c(a, b, c, d)

Guntuboyina & Purdom #7, Spring 2017, STAT 28 13

}
return(conf)

}
v = seq(0.05, 0.95, by = 0.05)

y = as.numeric(spam$yesno == "y")

tree.conf = confusion(y, y.tr, v)

plot(v, tree.conf[, 2] + tree.conf[, 3], xlab = "threshold",

ylab = "b+c", type = "l")

It seems that it is reasonable to choose a cut-off of 0.5. This would give the
following precision and recall.

precision = 1449/(271 + 1449)

recall = 1449/(364 + 1449)

c(precision, recall)

[1] 0.8424419 0.7992278

2 Random Forests

Random forests is another technique for regression and classification problems. They
are best suited for problems where the main target is prediction (like most Kaggle

Guntuboyina & Purdom #7, Spring 2017, STAT 28 14

competitions). They are based on classification and regression trees. Essentially a
random forest is a collection of (classification or regression) trees.

We shall use the R function randomForest() (in the package randomForest()) for
constructing random forests. The algorithm underlying this function is the following.
A large number ntree (default choice is 500) of trees (regression trees if it is a regres-
sion problem or classification trees if it is a classification problem) are constructed
in the following manner. Two parameters mtry (whose default choice is p/3) and
nodesize (whose default size is 5) are used in the tree construction process.

The ith tree (for i = 1, . . . , ntree) is constructed in the following manner:

1. Generate a new dataset having n observations by resampling uniformly at ran-
dom with replacement from the existing set of observations. This resampling is
the same as in bootstrap. Of course, some of the original set of observations will
be repeated in this bootstrap sample (because of with replacement draws) while
some other observations might be dropped altogether. The observations that
do not appear in the bootstrap are referred to as out of bag (o.o.b) observations.

2. Construct a tree (regression tree if it is a regression problem or classification tree
if it is a classification problem) based on the bootstrap sample. This tree con-
struction is almost the same as the construction underlying the rpart() function
but with two important differences.

(a) At each stage of splitting the data into groups, mtry number of variables
are selected at random from the available set of p variables and only splits
based on thesemtry variables are considered (by putting various thresholds
across them). In contrast, in rpart, the best split is chosed by considering
splits corresponding to all explanatory variables and all thresholds. This
consequently makes random forests computationally fast. The mtry vari-
ables are chosen uniformly at random at each step of growing the tree.
So it can happen, for example, that the first split in the tree is based on
variables 1, 2, 3 (here mtry = 3) resulting in two groups G1 and G2. In
the group G1, the first split might be based on variables 4, 5, 6 and in the
group G2, the first split might be based on variables 1, 5, 6 and so on.

(b) The second important difference between tree construction in random
forests versus rpart() is that in random forests, the trees are grown to
full size. There is no pruning involved. More precisely, each tree is grown
till the number of observations in each terminal node is no more than
nodesize. This, of course, means that each individual tree will overfit the
data. However, each individual tree will overfit in a different way and,
finally, when we average the predictions due to the different trees, the
overfitting will be removed.

Guntuboyina & Purdom #7, Spring 2017, STAT 28 15

At the end of the tree construction process, we will have ntree trees. These ntree
trees will all be different (because each tree will be based on a different bootstrapped
dataset and also because of randomness in the choice of variables to split) although
they may be similar. Prediction now works in the following natural way. Given a new
observation with explanatory variable values x1, . . . , xp, each tree in our forest will
yield a prediction for the response of this new obervation. Our final prediction will
simply take the average of the predictions of the individual trees in case of regression
or the majority vote of the predictions of the individual trees in case of classification.

Let us now see how random forests work for regression in the bodyfat dataset.

body = read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T)

The syntax for the randomForest function works as follows:

library(randomForest)

ft = randomForest(BODYFAT ~ AGE + WEIGHT + HEIGHT +

CHEST + ABDOMEN + HIP + THIGH, data = body, importance = TRUE)

ft

##

Call:

randomForest(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN + HIP + THIGH, data = body, importance = TRUE)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 2

##

Mean of squared residuals: 23.38991

% Var explained: 66.47

R tells us that ntree is 500 and mtry (number of variables tried at each split) is 2.
We can change these values if we want. The square of the mean of squared residuals
roughly indicates the size of each residual. These residuals are slightly different from
the usual residuals in that for each observation, the fitted value is computed from
those trees where this observation is out of bag. But you can ignore this detail. The
percent of variance explained is similar to R2. The importance = TRUE clause
inside the randomForest function gives some variable importance measures. These
can be seen by:

Guntuboyina & Purdom #7, Spring 2017, STAT 28 16

importance(ft)

%IncMSE IncNodePurity

AGE 8.445399 1044.474

WEIGHT 12.834322 2129.998

HEIGHT 11.518788 1220.295

CHEST 17.105418 3342.776

ABDOMEN 35.321460 5775.380

HIP 14.497659 2077.743

THIGH 11.898637 1302.661

The exact meaning of these importance measures is nicely described in the help
entry for the function importance. Basically, large values indicate importance. The
variable Abdomen seems to be the most important (this is unsurprising given our
previous experience with this dataset) for predicting bodyfat.

Now let us come to prediction with random forests. The R command for this
is exactly the same as before. Suppose we want to the body fat percentage for a
new individual whose AGE = 40, WEIGHT = 170, HEIGHT = 76, CHEST = 120,
ABDOMEN = 100, HIP = 101 and THIGH = 60. The prediction given by random
forest for this individual’s response is obtained via

x0 = data.frame(AGE = 40, WEIGHT = 170, HEIGHT = 76,

CHEST = 120, ABDOMEN = 100, HIP = 101, THIGH = 60)

predict(ft, x0)

1

24.14096

Now let us come to classification and consider the email spam dataset. The syntax
is almost the same as regression.

library(DAAG)

data(spam7)

spam = spam7

sprf = randomForest(as.factor(yesno) ~ crl.tot + dollar +

bang + money + n000 + make, data = spam)

sprf

##

Guntuboyina & Purdom #7, Spring 2017, STAT 28 17

Call:

randomForest(formula = as.factor(yesno) ~ crl.tot + dollar + bang + money + n000 + make, data = spam)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

##

OOB estimate of error rate: 11.69%

Confusion matrix:

n y class.error

n 2646 142 0.05093257

y 396 1417 0.21842250

Unlike classification tree, we do not have to explicitly mention method = class;
the fact the response is given as a factor variable tells R to use a classification forest
as opposed to a regression forest. The output is similar to the regression forest
except that now we are also given a confusion matrix as well as some estimate of
the misclassification error rate. Prediction is obtained in exactly the same was as
regression forest via:

x0 = data.frame(crl.tot = 100, dollar = 3, bang = 0.33,

money = 1.2, n000 = 0, make = 0.3)

predict(sprf, x0)

1

y

Levels: n y

Note that unlike logistic regression and classification tree, this directly gives a
binary prediction (instead of a probability). So we don’t even need to worry about
thresholds.

Guntuboyina & Purdom #7, Spring 2017, STAT 28 18

