
Multiple Regression

This chapter deals with the regression problem where the goal is to understand
the relationship between a specific variable called the response variable and several
other related variables called explanatory varibles. Here are some natural examples.

1. Prospective buyers and sellers might want to understand how the price of a
house depends on various characteristics of the house such as the total above
ground living space, total basement square footage, lot area, number of cars
that can be parked in the garage, construction year and presence or absence
of a fireplace. This is an instance of a regression problem where the response
variable is the house price and the other characteristics of the house listed above
are the explanatory variables.

2. A bike rental company wants to understand how the number of bike rentals in
a given hour depends on environmental and seasonal variables (such as tem-
perature, humidity, presence of rain etc.) and various other factors such as
weekend or weekday, holiday etc. This is also an instance of a regression prob-
lems where the response variable is the number of bike rentals and all other
variables mentioned are explanatory variables.

3. We might want to understand how the retention rates of colleges depend on
various aspects such as tuition fees, faculty salaries, number of faculty members
that are full time, number of undergraduates enrolled, number of students on
federal loans etc. This is again a regression problem with the response variable
being the retention rate and other variables being the explanatory variables.

4. I might be interested in understanding the proportion of my body weight that is
fat (body fat percentage). Directly measuring this quantity is probably hard but
I can easily obtain various body measurements such as height, weight, age, chest
circumeference, abdomen circumference, hip circumference and thigh circum-
ference. Can I predict my body fat percentage based on these measurements?
This is again a regression problem with the response variable being body fat
percentage and all the measurements are explanatory variables.

How does one solve such problems? The first step is to obtain data on the relevant
variables. Below we shall look at datasets which will enable us to provide some
reasonable answers to each of the above questions.

1



1 Datasets

1.1 The Ames Housing Dataset

This dataset contains information on sales of houses in Ames, Iowa from 2006 to
2010. The full dataset can be obtained by following links given in the paper: https:
//ww2.amstat.org/publications/jse/v19n3/decock.pdf). I have shortened the
dataset slightly to make life easier for us.

dataDir <- "../../finalDataSets"

dd = read.csv(file.path(dataDir, "Ames_Short.csv"),

header = T)

dim(dd)

## [1] 1314 7

names(dd)

## [1] "Lot.Area" "Total.Bsmt.SF" "Gr.Liv.Area" "Garage.Cars"

## [5] "Fireplaces.YN" "Year.Built" "SalePrice"

head(dd)

## Lot.Area Total.Bsmt.SF Gr.Liv.Area Garage.Cars Fireplaces.YN Year.Built

## 1 11622 882 896 1 N 1961

## 2 14267 1329 1329 1 N 1958

## 3 4920 1338 1338 2 N 2001

## 4 5005 1280 1280 2 N 1992

## 5 7980 1168 1187 2 N 1992

## 6 8402 789 1465 2 Y 1998

## SalePrice

## 1 105000

## 2 172000

## 3 213500

## 4 191500

## 5 185000

## 6 180400

summary(dd)
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## Lot.Area Total.Bsmt.SF Gr.Liv.Area Garage.Cars

## Min. : 1300 Min. : 105.0 Min. : 438 Min. :0.00

## 1st Qu.: 6346 1st Qu.: 732.0 1st Qu.: 984 1st Qu.:1.00

## Median : 8472 Median : 923.0 Median :1151 Median :2.00

## Mean : 8515 Mean : 938.1 Mean :1149 Mean :1.49

## 3rd Qu.:10200 3rd Qu.:1138.0 3rd Qu.:1344 3rd Qu.:2.00

## Max. :41600 Max. :1645.0 Max. :1500 Max. :5.00

## Fireplaces.YN Year.Built SalePrice

## N:830 Min. :1875 Min. : 35000

## Y:484 1st Qu.:1950 1st Qu.:120000

## Median :1966 Median :138750

## Mean :1964 Mean :141447

## 3rd Qu.:1981 3rd Qu.:160500

## Max. :2010 Max. :290000

1.2 Bike Sharing Dataset

This dataset (from the UCI machine learning repository) contains information on bike
rentals for two years (2011 and 2012) from Capital Bikeshare System, Washington
D.C. The data is collected to address the problem of predicting the number of bike
rentals in a given hour given the environmental and seasonal conditions for that hour.

bike <- read.csv(file.path(dataDir, "BikeSharingDataset.csv"))

dim(bike)

## [1] 17379 17

names(bike)

## [1] "instant" "dteday" "season" "yr" "mnth"

## [6] "hr" "holiday" "weekday" "workingday" "weathersit"

## [11] "temp" "atemp" "hum" "windspeed" "casual"

## [16] "registered" "cnt"

head(bike)

## instant dteday season yr mnth hr holiday weekday workingday
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## 1 1 2011-01-01 1 0 1 0 0 6 0

## 2 2 2011-01-01 1 0 1 1 0 6 0

## 3 3 2011-01-01 1 0 1 2 0 6 0

## 4 4 2011-01-01 1 0 1 3 0 6 0

## 5 5 2011-01-01 1 0 1 4 0 6 0

## 6 6 2011-01-01 1 0 1 5 0 6 0

## weathersit temp atemp hum windspeed casual registered cnt

## 1 1 0.24 0.2879 0.81 0.0000 3 13 16

## 2 1 0.22 0.2727 0.80 0.0000 8 32 40

## 3 1 0.22 0.2727 0.80 0.0000 5 27 32

## 4 1 0.24 0.2879 0.75 0.0000 3 10 13

## 5 1 0.24 0.2879 0.75 0.0000 0 1 1

## 6 2 0.24 0.2576 0.75 0.0896 0 1 1

summary(bike)

## instant dteday season yr

## Min. : 1 2011-01-01: 24 Min. :1.000 Min. :0.0000

## 1st Qu.: 4346 2011-01-08: 24 1st Qu.:2.000 1st Qu.:0.0000

## Median : 8690 2011-01-09: 24 Median :3.000 Median :1.0000

## Mean : 8690 2011-01-10: 24 Mean :2.502 Mean :0.5026

## 3rd Qu.:13034 2011-01-13: 24 3rd Qu.:3.000 3rd Qu.:1.0000

## Max. :17379 2011-01-15: 24 Max. :4.000 Max. :1.0000

## (Other) :17235

## mnth hr holiday weekday

## Min. : 1.000 Min. : 0.00 Min. :0.00000 Min. :0.000

## 1st Qu.: 4.000 1st Qu.: 6.00 1st Qu.:0.00000 1st Qu.:1.000

## Median : 7.000 Median :12.00 Median :0.00000 Median :3.000

## Mean : 6.538 Mean :11.55 Mean :0.02877 Mean :3.004

## 3rd Qu.:10.000 3rd Qu.:18.00 3rd Qu.:0.00000 3rd Qu.:5.000

## Max. :12.000 Max. :23.00 Max. :1.00000 Max. :6.000

##

## workingday weathersit temp atemp

## Min. :0.0000 Min. :1.000 Min. :0.020 Min. :0.0000

## 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:0.340 1st Qu.:0.3333

## Median :1.0000 Median :1.000 Median :0.500 Median :0.4848

## Mean :0.6827 Mean :1.425 Mean :0.497 Mean :0.4758

## 3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:0.660 3rd Qu.:0.6212

## Max. :1.0000 Max. :4.000 Max. :1.000 Max. :1.0000

##

## hum windspeed casual registered

## Min. :0.0000 Min. :0.0000 Min. : 0.00 Min. : 0.0

## 1st Qu.:0.4800 1st Qu.:0.1045 1st Qu.: 4.00 1st Qu.: 34.0

Guntuboyina & Purdom #5, Spring 2017, STAT 28 4



## Median :0.6300 Median :0.1940 Median : 17.00 Median :115.0

## Mean :0.6272 Mean :0.1901 Mean : 35.68 Mean :153.8

## 3rd Qu.:0.7800 3rd Qu.:0.2537 3rd Qu.: 48.00 3rd Qu.:220.0

## Max. :1.0000 Max. :0.8507 Max. :367.00 Max. :886.0

##

## cnt

## Min. : 1.0

## 1st Qu.: 40.0

## Median :142.0

## Mean :189.5

## 3rd Qu.:281.0

## Max. :977.0

##

Here is a description of the variables in this dataset: The dataset contains 17379
observations with each observation corresponding to one particular hour. The dataset
contains the following 17 variables:

1. instant : Serial number.

2. dteday: This is date.

3. season: Categorical variable (1: Spring, 2: Summer, 3: Fall, 4: Winter).

4. yr: Stands for year. Binary variable (0 stands for 2011 and 1 stands for 2012).

5. mnth: Stands for month. Takes the values 1, 2, . . . , 12.

6. hr: Indicates the hour of the day (takes values 0, . . . , 23).

7. holiday: Indicates whether the day is a holiday or not

8. weekday: Self explanatory

9. workingday: Takes the value 1 if the day is neither weekend nor holiday and
takes the value 0 otherwise.

10. weathersit: Takes four values:

(a) 1 if the weather is Clear, Few clouds, Partly cloudy, Partly cloudy.

(b) 2 if the weather is Mist + Cloudy, Mist + Broken clouds, Mist + Few
clouds, Mist.

(c) 3 if the weather is Light Snow, Light Rain + Thunderstorm + Scattered
clouds, Light Rain + Scattered clouds.

(d) 4 if the weather is Heavy Rain + Ice Pallets + Thunderstorm + Mist,
Snow + Fog.
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11. temp: Normalized temperature in Celsius. The values are divided by 41 (the
maximum temperature).

12. atemp: Normalized feeling temperature in Celsius. The values are divided by
50 (the maximum temperature).

13. hum: Normalized humidity. The values are divided by 100 (the maximum
humidity).

14. windspeed: Normalized wind speed. The values are divided by 67 (maximum
wind speed).

15. casual: The number of bikes rented by casual (unregistered) users for that
hour.

16. registered: The number of bikes rented by registered users for that hour.

17. cnt: The number of bikes rented by both casual and registered users for that
hour (this is the sum of casual and registered).

1.3 College Dataset

You have already seen this dataset in this class (when discussing linear regression as
part of curve fitting). This dataset contains information on colleges and universities
for the year 2014 such as data on tuition fees (both in state and out of state), enroll-
ments, demographics of student population, faculty salaries, student retention rates
etc. I have reduced the size of this dataset by omitting some of the variables.

Here are the variable descriptions:

1. SATAVGALL: SAT average score.

2. AVGFACSAL: average faculty monthly salary.

3. TUITIONFEEIN: annual in-state students tuition.

4. TUITIONFEEOUT: annual out-of-state students tuition.

5. UGDS: number of undergraduate students.

6. RETFT4: full time student retention rate (students who return to the institu-
tion after the first year)

7. PCTFLOAN: percentage of undergraduates receiving federal loans.

8. PFTFAC: proportion of faculty that is full time.
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9. TYPE: public(1), private nonprofit (2) or private for profit (3) (previously this
variable was called CONTROL; I changed the name because TYPE seems a
better name for this variable compared to CONTROL).

scorecard = read.csv(file.path(dataDir, "college_short.csv"))

dim(scorecard)

## [1] 1241 9

names(scorecard)

## [1] "SAT_AVG_ALL" "AVGFACSAL" "TUITIONFEE_IN" "TUITIONFEE_OUT"

## [5] "UGDS" "RET_FT4" "PCTFLOAN" "PFTFAC"

## [9] "TYPE"

head(scorecard)

## SAT_AVG_ALL AVGFACSAL TUITIONFEE_IN TUITIONFEE_OUT UGDS RET_FT4

## 1 823 7079 7182 12774 4051 0.6314

## 2 1146 10170 7206 16398 11200 0.8016

## 3 1180 9341 9192 21506 5525 0.8098

## 4 830 6557 8720 15656 5354 0.6219

## 5 1171 9605 9450 23950 28692 0.8700

## 6 1215 9429 9852 26364 19761 0.8946

## PCTFLOAN PFTFAC TYPE

## 1 0.8204 0.8856 1

## 2 0.5397 0.9106 1

## 3 0.4728 0.6555 1

## 4 0.8735 0.6641 1

## 5 0.4148 0.7109 1

## 6 0.3610 0.8780 1

summary(scorecard)

## SAT_AVG_ALL AVGFACSAL TUITIONFEE_IN TUITIONFEE_OUT

## Min. : 666 Min. : 1476 Min. : 2082 Min. : 3850

## 1st Qu.: 980 1st Qu.: 6152 1st Qu.: 9356 1st Qu.:18395

## Median :1050 Median : 7280 Median :22290 Median :24566
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## Mean :1067 Mean : 7594 Mean :21708 Mean :25651

## 3rd Qu.:1137 3rd Qu.: 8626 3rd Qu.:30990 3rd Qu.:31500

## Max. :1534 Max. :19862 Max. :49138 Max. :49138

## UGDS RET_FT4 PCTFLOAN PFTFAC

## Min. : 82 Min. :0.0000 Min. :0.0000 Min. :0.0403

## 1st Qu.: 1313 1st Qu.:0.6852 1st Qu.:0.4922 1st Qu.:0.5281

## Median : 2466 Median :0.7640 Median :0.6133 Median :0.7111

## Mean : 5545 Mean :0.7609 Mean :0.5990 Mean :0.7037

## 3rd Qu.: 6308 3rd Qu.:0.8457 3rd Qu.:0.7209 3rd Qu.:0.9363

## Max. :50919 Max. :1.0000 Max. :1.0000 Max. :1.0000

## TYPE

## Min. :1.000

## 1st Qu.:1.000

## Median :2.000

## Mean :1.646

## 3rd Qu.:2.000

## Max. :3.000

1.4 Bodyfat Dataset

A dataset that is often used in classrooms to demonstrate regression techniques is
the bodyfat dataset. Body fat percentage (computed by a complicated underwater
weighing technique) along with various body measurements are given for 252 adult
men.

body = read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T)

dim(body)

## [1] 252 8

names(body)

## [1] "BODYFAT" "AGE" "WEIGHT" "HEIGHT" "CHEST" "ABDOMEN" "HIP"

## [8] "THIGH"

head(body)
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## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 1 12.3 23 154.25 67.75 93.1 85.2 94.5 59.0

## 2 6.1 22 173.25 72.25 93.6 83.0 98.7 58.7

## 3 25.3 22 154.00 66.25 95.8 87.9 99.2 59.6

## 4 10.4 26 184.75 72.25 101.8 86.4 101.2 60.1

## 5 28.7 24 184.25 71.25 97.3 100.0 101.9 63.2

## 6 20.9 24 210.25 74.75 104.5 94.4 107.8 66.0

summary(body)

## BODYFAT AGE WEIGHT HEIGHT

## Min. : 0.00 Min. :22.00 Min. :118.5 Min. :29.50

## 1st Qu.:12.47 1st Qu.:35.75 1st Qu.:159.0 1st Qu.:68.25

## Median :19.20 Median :43.00 Median :176.5 Median :70.00

## Mean :19.15 Mean :44.88 Mean :178.9 Mean :70.15

## 3rd Qu.:25.30 3rd Qu.:54.00 3rd Qu.:197.0 3rd Qu.:72.25

## Max. :47.50 Max. :81.00 Max. :363.1 Max. :77.75

## CHEST ABDOMEN HIP THIGH

## Min. : 79.30 Min. : 69.40 Min. : 85.0 Min. :47.20

## 1st Qu.: 94.35 1st Qu.: 84.58 1st Qu.: 95.5 1st Qu.:56.00

## Median : 99.65 Median : 90.95 Median : 99.3 Median :59.00

## Mean :100.82 Mean : 92.56 Mean : 99.9 Mean :59.41

## 3rd Qu.:105.38 3rd Qu.: 99.33 3rd Qu.:103.5 3rd Qu.:62.35

## Max. :136.20 Max. :148.10 Max. :147.7 Max. :87.30

These datasets allow us to provide reasonable answers to the four questions that
we asked at the beginning of the lecture. The goal of a regression problem is always to
understand the relationship between a response variable and a bunch of explanatory
variables. This will, in turn, allow one to predict the value of the response variable
given the explanatory variable values of future observations.

Multiple linear regression is one of the most widely used techniques for solving
the regression problem. This is the subject of this chapter. Before goint to multiple
linear regression however, let us first do a brief recap of simple linear regression.

2 Brief review of Simple Linear Regression

In simple regression, there are two variables: one response variable and one explana-
tory variable. The goal is to understand the relation between the response and the
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explanatory variables.

Let us take a simple example.

load(file.path(dataDir, "campus.Rdata"))

campus = data

campus.desc = desc

summary(campus)

## enroll priv police crime

## Min. : 1799 Min. :0.0000 Min. : 1.00 Min. : 1.0

## 1st Qu.: 6485 1st Qu.:0.0000 1st Qu.: 9.00 1st Qu.: 85.0

## Median :11990 Median :0.0000 Median :16.00 Median : 187.0

## Mean :16076 Mean :0.1237 Mean :20.49 Mean : 394.5

## 3rd Qu.:21836 3rd Qu.:0.0000 3rd Qu.:27.00 3rd Qu.: 491.0

## Max. :56350 Max. :1.0000 Max. :74.00 Max. :2052.0

## lcrime lenroll lpolice

## Min. :0.000 Min. : 7.495 Min. :0.000

## 1st Qu.:4.443 1st Qu.: 8.777 1st Qu.:2.197

## Median :5.231 Median : 9.392 Median :2.773

## Mean :5.277 Mean : 9.379 Mean :2.731

## 3rd Qu.:6.196 3rd Qu.: 9.991 3rd Qu.:3.296

## Max. :7.627 Max. :10.939 Max. :4.304

Suppose now that we are interested in the relationship between crime (response
variable) and police (explanatory variable). The scatter plot between these two vari-
ables is:

plot(crime ~ police, data = campus)
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Simple linear regression will now fit a line to this dataset. This line can be obtained
in R via the following line of code.

m1 = lm(crime ~ police, data = campus)

summary(m1)

##

## Call:

## lm(formula = crime ~ police, data = campus)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1024.79 -152.96 -35.38 89.48 1540.16

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -42.557 53.730 -0.792 0.43

## police 21.323 2.089 10.210 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 319.9 on 95 degrees of freedom

## Multiple R-squared: 0.5232,Adjusted R-squared: 0.5182

## F-statistic: 104.2 on 1 and 95 DF, p-value: < 2.2e-16

plot(crime ~ police, data = campus)

abline(m1)
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The fitted line here has the equation

y = −42.557 + 21.323x (1)

where y represents the crime variable and x represents the police variable. Some
FAQs and answers:

1. How does R determine this equation?: This line is determined by mini-
mizing sum of squares.

2. What is the interpretation of this equation?: The equation (1) clearly
implies that y increases by 21.323 for every unit increase in x. Note here that
y represents the variable crime and x represents the variable police.

3. Is the equation (1) reasonable? I would argue that it does not make much
sense in this context. One way of interpreting (1) is to say that if the number
of police officers increases by 1, then there will be 21 more incidents of crime
on average (this statement should not be interpreted causally). Now if
there are 100 police officers in a particular campus, increasing the number of
police officers to 101 should not really change anything all that much. On the
other hand, there might be bigger differences when the number changes from 3
to 4. But the equation (1), in both of these scenarios, says that the incidents
of crime increase in number by 21.

Another issue here is heteroscedasticity. There seems to be much more variability
in the values of y for large values of x compared to the small values of x. As we shall
see later, heteroscedasticity causes some problems for the least squares line.
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Log-transformation Suppose now that instead of fitting a regression line to crime
in terms of police, we now fit a line to log(crime) in terms of log(police) (these two
logged variables are saved in the campus dataset as lcrime and lpolice respectively).

The scatter plot between lcrime and lpolice along with the least squares line are
given below.

m2 = lm(lcrime ~ lpolice, data = campus)

summary(m2)

##

## Call:

## lm(formula = lcrime ~ lpolice, data = campus)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.0819 -0.3726 0.0857 0.6388 2.0967

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.0643 0.3641 5.670 1.53e-07 ***

## lpolice 1.1765 0.1279 9.197 8.62e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.01 on 95 degrees of freedom

## Multiple R-squared: 0.471,Adjusted R-squared: 0.4654

## F-statistic: 84.58 on 1 and 95 DF, p-value: 8.621e-15

plot(lcrime ~ lpolice, data = campus)

abline(m2)
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The fitted regression now is

log(crime) = 2.0643 + 1.1765 log(police). (2)

What is the interpretation of this regression line? This equation says that when
log(police) increases by 1, the variable log(crime) increases by 1.1765. The equation
(2) also has the following percentage interpretation: When the number of police
officers goes up by 1%, then the number of crime incidences also goes up by 1.1765%.
To understand why this is true, suppose that the number of police officers increases
by 1% from xold to xnew. Then

xnew
xold

− 1 = 0.01

Now it is a fact that log(x) ≈ x− 1 when x is close to one. We therefore have

0.01 =
xnew
xold

− 1 ≈ log

(
xnew
xold

)
= log xnew − log xold.

Therefore when x (which is the number of police officers) increases by 1%, then log x
increases approximately by 0.01. This means, using (2), that log y (where y is the
number of incidents of crime) increases by 0.011765 i.e.,

log

(
ynew
yold

)
= 0.011765.

Again using log x ≈ x− 1, we deduce that

ynew − yold
yold

× 100 ≈ 1.1765.

This leads to the percentage interpretation for (2): When the number of police officers
goes up by 1%, then the number of crime incidences also goes up by 1.1765%. This
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equation should not be interpreted causally; it merely reflects the fact that campuses
with more police officers tend to me generally affected by more crime.

Two important things to remember about simple linear regression are:

1. Always look at the scatterplot of the data before fitting a linear regression.

2. In R, linear regression is fit using the lm function which has a very simple
syntax.

Further questions: What do the standard errors in the lm() output mean? Very
loosely speaking, they are supposed to provide us with some idea of the variability
of the slope and intercept estimates of the least squares regression line. There are
two main ways of obtaining a quantification of this variability: (i) Bootstrap, and (ii)
Using Normal distribution theory.

To review the bootstrap method for obtaining standard errors, consider the fol-
lowing which is very similar to the bootstrap functions that Prof. Purdom described
in Chapter 3. the following bootstrap function that Prof. Purdom introduced:

y = campus$lcrime

x = campus$lpolice

nrep = 100

bslope = rep(-999, nrep)

bint = rep(-999, nrep)

for (i in 1:nrep) {
sampled = sample(1:length(y), size = length(y),

replace = T)

bslope[i] = coef(lm(y[sampled] ~ x[sampled]))[2]

bint[i] = coef(lm(y[sampled] ~ x[sampled]))[1]

}
c(sd(bint), sd(bslope))

## [1] 0.4612715 0.1503481

summary(m2)

##

## Call:

## lm(formula = lcrime ~ lpolice, data = campus)

##
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## Residuals:

## Min 1Q Median 3Q Max

## -5.0819 -0.3726 0.0857 0.6388 2.0967

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.0643 0.3641 5.670 1.53e-07 ***

## lpolice 1.1765 0.1279 9.197 8.62e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.01 on 95 degrees of freedom

## Multiple R-squared: 0.471,Adjusted R-squared: 0.4654

## F-statistic: 84.58 on 1 and 95 DF, p-value: 8.621e-15

3 Multiple Linear Regression

3.1 Exploratory Data Analysis of the Bodyfat Dataset

We now start our formal discussion of multiple linear regression. Let us first look at
the bodyfat dataset.

body <- read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T)

dim(body)

## [1] 252 8

names(body)

## [1] "BODYFAT" "AGE" "WEIGHT" "HEIGHT" "CHEST" "ABDOMEN" "HIP"

## [8] "THIGH"

head(body)
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## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 1 12.3 23 154.25 67.75 93.1 85.2 94.5 59.0

## 2 6.1 22 173.25 72.25 93.6 83.0 98.7 58.7

## 3 25.3 22 154.00 66.25 95.8 87.9 99.2 59.6

## 4 10.4 26 184.75 72.25 101.8 86.4 101.2 60.1

## 5 28.7 24 184.25 71.25 97.3 100.0 101.9 63.2

## 6 20.9 24 210.25 74.75 104.5 94.4 107.8 66.0

The goal here is to understand the relationship between body fat percentage and
the explanatory variables: age, height, weight, chest circumference, abdomen circum-
ference, hip circumference and thigh circumference.

Before fitting any model to this data, let us first look at the data more carefully

summary(body)

## BODYFAT AGE WEIGHT HEIGHT

## Min. : 0.00 Min. :22.00 Min. :118.5 Min. :29.50

## 1st Qu.:12.47 1st Qu.:35.75 1st Qu.:159.0 1st Qu.:68.25

## Median :19.20 Median :43.00 Median :176.5 Median :70.00

## Mean :19.15 Mean :44.88 Mean :178.9 Mean :70.15

## 3rd Qu.:25.30 3rd Qu.:54.00 3rd Qu.:197.0 3rd Qu.:72.25

## Max. :47.50 Max. :81.00 Max. :363.1 Max. :77.75

## CHEST ABDOMEN HIP THIGH

## Min. : 79.30 Min. : 69.40 Min. : 85.0 Min. :47.20

## 1st Qu.: 94.35 1st Qu.: 84.58 1st Qu.: 95.5 1st Qu.:56.00

## Median : 99.65 Median : 90.95 Median : 99.3 Median :59.00

## Mean :100.82 Mean : 92.56 Mean : 99.9 Mean :59.41

## 3rd Qu.:105.38 3rd Qu.: 99.33 3rd Qu.:103.5 3rd Qu.:62.35

## Max. :136.20 Max. :148.10 Max. :147.7 Max. :87.30

body[body$HEIGHT < 30, ]

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 42 32.9 44 205 29.5 106 104.3 115.5 70.6

par(mfrow = c(3, 3))

for (i in 1:8) {
hist(body[, i], xlab = "", main = names(body)[i],

breaks = 500)

}
par(mfrow = c(1, 1))
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body[body$HIP > 140, ]

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 39 35.2 46 363.15 72.25 136.2 148.1 147.7 87.3

We can see the pairwise relationships between the variables using the pairs plot.

pairs(body)

There are outliers in the data and they make it hard to look at the relationships
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between the variables. We can try to look at the pairs plots after deleting some
outlying observations.

ou1 = which(body$HEIGHT < 30)

ou2 = which(body$WEIGHT > 300)

ou3 = which(body$HIP > 120)

ou = c(ou1, ou2, ou3)

pairs(body[-ou, ])

Many of the explanatory variables seem correlated with each other which is ex-
pected. Let us look at the plots between the response variable (bodyfat) and all the
explanatory variables.

par(mfrow = c(3, 3))

for (i in 2:8) {
plot(body[, i], body[, 1], xlab = names(body)[i],

ylab = "BODYFAT")

}
par(mfrow = c(1, 1))
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The same plot after removing the outliers reveals more information.

par(mfrow = c(3, 3))

for (i in 2:8) {
plot(body[-ou, i], body[-ou, 1], xlab = names(body)[i],

ylab = "BODYFAT")

}
par(mfrow = c(1, 1))

Most pairwise relationships seem to be linear. The clearest relationship is between
bodyfat and abdomen. The next clearest is between bodyfat and chest.
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3.2 Fitted regression equation via lm()

Let us now start the topic of multiple linear regression. Multiple linear regression is
performed in R using the same function lm() that you have previously used for simple
linear regression. Only the syntax needs to be changed slightly.

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

summary(ft)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

Notice how similar the output to the function above is to the case of simple
linear regression. The meaning of this regression output is the following. R has fit a
linear equation for the variable BODYFAT in terms of the variables AGE, WEIGHT,
HEIGHT, CHEST, ABDOMEN, HIP and THIGH. The specific equation that it has
fit is (the following numbers are copied from the Estimate column in the table given
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by summary(ft)):

BODY FAT = −37.48 + 0.012 ∗ AGE − 0.139 ∗WEIGHT − 0.102 ∗HEIGHT
(3)

− 0.0008 ∗ CHEST + 0.968 ∗ ABDOMEN − 0.183 ∗HIP + 0.286 ∗ THIGH

Why does R produce this equation with these particular numbers and not some other
set of numbers? For example, why did R not produce an equation like:

BODY FAT = −30 + 0.05 ∗ AGE − 0.013 ∗WEIGHT − 0.2 ∗HEIGHT
− 0.8 ∗ CHEST + 0.0009 ∗ ABDOMEN − 0.03 ∗HIP − 0.6 ∗ THIGH

The reason is that the sum of squares will be smaller for the equation that R produced
compared to my arbitrary equation. We can check this fact in R in the following way:

eqn = -37.48 + 0.012 * body$AGE - 0.139 * body$WEIGHT -

0.102 * body$HEIGHT - 8e-04 * body$CHEST + 0.968 *

body$ABDOMEN - 0.183 * body$HIP + 0.286 * body$THIGH

sum.sq = sum((body$BODYFAT - eqn)^2)

sum.sq

## [1] 4809.504

Now let us compute the sum of squares of my arbitrary equation:

my.eqn = -30 + 0.05 * body$AGE - 0.013 * body$WEIGHT -

0.2 * body$HEIGHT - 0.8 * body$CHEST + 9e-04 *

body$ABDOMEN - 0.03 * body$HIP + 0.6 * body$THIGH

my.sum.sq = sum((body$BODYFAT - my.eqn)^2)

my.sum.sq

## [1] 3153233

Clearly the sum of squares for R’s regression equation is almost 650 times smaller
than my arbitrary equation.

The main fact here is that The sum of squares of R’s regression equation
will be smaller than any equation that you can come up with. In other
words, R outputs the linear equation which has the smallest possible sum
of squares. This is the reason why R’s equation is also called the least squares
equation.
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You will need some more math to understand how exactly the lm function is able
to find the least squares equation. We will skip this part in this course. It is enough
for our purposes to simply know that the linear equation outputted by R is indeed
the least squares equation.

3.3 Interpretation of the fitted regression equation

Consider a fitted regression equation:

y = b0 + b1x1 + b2x2 + · · ·+ bpxp. (4)

Here the coefficient b1 is interpreted as the average increase in y for unit increase in x1
provided all other explanatory variables x2, . . . , xp are kept constant. More generally
for j ≥ 1, the coefficient bj is interpreted as the average increase in y for unit increase
in xj provided all other explanatory variables xk for k 6= j are kept constant. The
intercept b0 is interpreted as the average value of y when all the explanatory variables
are equal to zero.

In the body fat example, the fitted regression equation as we have seen is:

BODY FAT = −37.48 + 0.012 ∗ AGE − 0.139 ∗WEIGHT − 0.102 ∗HEIGHT
(5)

− 0.0008 ∗ CHEST + 0.968 ∗ ABDOMEN − 0.183 ∗HIP + 0.286 ∗ THIGH

The coefficient of 0.968 can be interpreted as the average percentage increase in body-
fat percentage per unit (i.e., 1 cm) increase in Abdomen circumference provided all
the other explanatory variables age, weight, height, chest circumference, hip circum-
ference and thigh circumference are kept unchanged.

Do the signs of the fitted regression coefficients in (7) make sense?

The interpretation of the coefficient bj in (4) depends crucially on the other ex-
planatory variables xk, k 6= j that are present in the equation (this is because of the
phrase “all other explanatory variables kept constant”).

For the bodyfat data, we have seen that the variables chest circumference and
abdomen circumference are highly correlated:

cor(body$CHEST, body$ABDOMEN)

## [1] 0.9158277
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This effectively means that these two variables are measuring essentially the same
thing and, therefore, it might make more sense to just have one of these two vari-
ables in the regression equation. Similarly the variables hip circumference and thigh
circumference are also highly correlated. Let us therefore fit a linear model for the
body fat percentage based on age, weight, height, chest and thigh:

ft1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

THIGH, data = body)

summary(ft1)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + THIGH,

## data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12.4106 -3.8409 -0.1898 3.6800 15.0222

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -45.22628 13.79574 -3.278 0.001195 **

## AGE 0.15899 0.03271 4.860 2.09e-06 ***

## WEIGHT -0.02991 0.04384 -0.682 0.495714

## HEIGHT -0.31266 0.11466 -2.727 0.006854 **

## CHEST 0.52668 0.10763 4.893 1.79e-06 ***

## THIGH 0.52895 0.15701 3.369 0.000876 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.503 on 246 degrees of freedom

## Multiple R-squared: 0.5762,Adjusted R-squared: 0.5676

## F-statistic: 66.89 on 5 and 246 DF, p-value: < 2.2e-16

The regression equation now is

BODY FAT = −45.226 + 0.159 ∗ AGE − 0.03 ∗WEIGHT − 0.313 ∗HEIGHT
(6)

+ 0.527 ∗ CHEST + 0.529 ∗ THIGH

See now that the regression equation is quite different from the previous one. The
coefficients are different now (and they have different interpretations as well).
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3.4 Regression Line vs Regression Plane

In simple linear regression (when there is only one explanatory variable), the fitted
regression equation describes a line. In multiple linear regression, there are multiple
explanatory variables, and in this case, the fitted regression equation describes a plane
called the fitted regression plane.

This plane can be plotted in a 3D plot when there are two explanatory variables.
When the number of explanatory variables is 3 or more, we cannot plot this plane.

To illustrate this, let us fit a regression equation to bodyfat percentage in terms
of age and chest circumference:

ft2 = lm(BODYFAT ~ AGE + CHEST, data = body)

summary(ft2)

##

## Call:

## lm(formula = BODYFAT ~ AGE + CHEST, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -13.4657 -4.3271 0.1406 3.9607 14.9866

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -53.27135 4.43061 -12.023 < 2e-16 ***

## AGE 0.11479 0.02954 3.886 0.000131 ***

## CHEST 0.66720 0.04416 15.109 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.805 on 249 degrees of freedom

## Multiple R-squared: 0.5226,Adjusted R-squared: 0.5188

## F-statistic: 136.3 on 2 and 249 DF, p-value: < 2.2e-16

The fitted regression plane can be plotted in a 3D plot as follows:

library(scatterplot3d)

sp = scatterplot3d(body$AGE, body$CHEST, body$BODYFAT)

sp$plane3d(ft2, lty.box = "solid", draw_lines = TRUE,

draw_polygon = TRUE, col = "red")
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3.5 Fitted Values and Multiple R2

Any regression equation can be used to predict the value of the response variable
given values of the explanatory variables. For example, consider the fitted regression
equation obtained by applying lm() with bodyfat percentage as the response and age,
weight, height, chest circumference, abdomen circumference, hip circumference and
thigh circumference as the explanatory variables:

BODY FAT = −37.48 + 0.01202 ∗ AGE − 0.1392 ∗WEIGHT − 0.1028 ∗HEIGHT
(7)

− 0.0008312 ∗ CHEST + 0.9685 ∗ ABDOMEN − 0.1834 ∗HIP + 0.2857 ∗ THIGH

Suppose a person X (who is of 30 years of age, weighs 180 pounds and is 70 inches
tall) wants to find out his bodyfat percentage. Let us say that he is able to measure
his chest circumference as 90 cm, abdomen circumference as 86 cm, hip circumference
as 97 cm and thigh circumference as 60 cm. Then he can simply use the regression
equation to predict his bodyfat percentage as:

bf.pred = -37.48 + 0.01202 * 30 - 0.1392 * 180 - 0.1028 *

70 - 0.0008312 * 90 + 0.9685 * 86 - 0.1834 * 97 +

0.2857 * 60

bf.pred

## [1] 13.19699
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The predictions given by the fitted regression equation for each of the observations
are known as fitted values. For example, in the bodyfat dataset, the first observation
(first row) is given by:

obs1 = body[1, ]

obs1

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 1 12.3 23 154.25 67.75 93.1 85.2 94.5 59

The observed value of the response (bodyfat percentage) for this individual is 12.3
%. The prediction for this person’s response given by the regression equation (7) is

-37.48 + 0.01202 * body[1, "AGE"] - 0.1392 * body[1,

"WEIGHT"] - 0.1028 * body[1, "HEIGHT"] - 0.0008312 *

body[1, "CHEST"] + 0.9685 * body[1, "ABDOMEN"] -

0.1834 * body[1, "HIP"] + 0.2857 * body[1, "THIGH"]

## [1] 16.32398

Therefore the fitted value for the first observation is 16.424%. R directly calculates
all fitted values and they are stored in the lm() object. You can obtain these via:

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

names(ft)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"

head(ft$fitted.values)

## 1 2 3 4 5 6

## 16.32670 10.22019 18.42600 11.89502 25.97564 16.28529

If the regression equation fits the data well, we would expect the fitted values
to be close to the observed responses. We can check this by just plotting the fitted
values against the observed response values.
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plot(ft$fitted.values, body$BODYFAT, xlab = "Fitted Values",

ylab = "Bodyfat Percentage")

The square of the correlation between the obseved response values and the fitted
values obtained by the regression equation is an important and widely used measure
of the effectiveness of the regression equation. This squared correlation is known as
the Coefficient of Determination or Multiple R2 or simply R2:

R2 = (correlation(response, fitted values))2 .

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

Rsquared = (cor(body$BODYFAT, ft$fitted.values))^2

Rsquared

## [1] 0.7265596

The value of R2 is so standard that it is included in the summary for the lm()
function.

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

summary(ft)

##
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## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

A high value of R2 means that the fitted values (given by the fitted regression
equation) are close to the observed values and hence indicates that the regression
equation fits the data well. A low value, on the other hand, means that the fitted
values are far from the observed values and hence the regression line does not fit the
data well.

Note that R2 has no units. In other words, it is scale-free.

3.6 Residuals and Residual Sum of Squares (RSS)

For every point in the scatter plot, its distance to the corresponding point on the
regression plane is called the residual. It can also be defined as

residual = response− fitted value

For example, for the first observation (row) in the bodyfat dataset, the residual can
be calculated as:
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ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

res.1 = body[1, "BODYFAT"] - ft$fitted.values[1]

res.1

## 1

## -4.026695

Residuals are again so important that lm() automatically calculates them for us.

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

names(ft)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"

head(ft$residuals)

## 1 2 3 4 5 6

## -4.026695 -4.120189 6.874004 -1.495017 2.724355 4.614712

A common way of looking at the residuals is to plot them against the fitted values.

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

plot(ft$fitted.values, ft$residuals, xlab = "Fitted Values",

ylab = "Residuals")
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One can also plot the residuals against each of the explanatory variables.

par(mfrow = c(3, 3))

for (i in 2:8) {
plot(body[, i], ft$residuals, xlab = names(body)[i],

ylab = "Residuals")

}
par(mfrow = c(1, 1))

The residuals represent what is left in the response (y) after all the linear effects of
the explanatory variables are taken out. One consequence of this is that the residuals
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are uncorrelated with every explanatory variable. We can check this in easily
in the body fat example.

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

cor(ft$residuals, body$AGE)

## [1] -1.754044e-17

cor(ft$residuals, body$WEIGHT)

## [1] 4.71057e-17

cor(ft$residuals, body$HEIGHT)

## [1] -1.720483e-15

cor(ft$residuals, body$CHEST)

## [1] -4.672628e-16

cor(ft$residuals, body$ABDOMEN)

## [1] -7.012368e-16

cor(ft$residuals, body$HIP)

## [1] -8.493675e-16

cor(ft$residuals, body$THIGH)

## [1] -5.509094e-16
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Moreover, the residuals always have mean zero:

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

mean(ft$residuals)

## [1] 2.467747e-16

Also, if one were to fit a regression equation to the residuals in terms of the same
explanatory variables, then the fitted regression equation will have all coefficients
exactly equal to zero:

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

m.res = lm(ft$residuals ~ body$AGE + body$WEIGHT +

body$HEIGHT + body$CHEST + body$ABDOMEN + body$HIP +

body$THIGH)

summary(m.res)

##

## Call:

## lm(formula = ft$residuals ~ body$AGE + body$WEIGHT + body$HEIGHT +

## body$CHEST + body$ABDOMEN + body$HIP + body$THIGH)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.154e-14 1.449e+01 0 1

## body$AGE 1.282e-17 2.934e-02 0 1

## body$WEIGHT 1.057e-16 4.509e-02 0 1

## body$HEIGHT -1.509e-16 9.787e-02 0 1

## body$CHEST 1.180e-16 9.989e-02 0 1

## body$ABDOMEN -2.452e-16 8.531e-02 0 1

## body$HIP -1.284e-16 1.448e-01 0 1

## body$THIGH -1.090e-16 1.362e-01 0 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 6.384e-32,Adjusted R-squared: -0.02869

## F-statistic: 2.225e-30 on 7 and 244 DF, p-value: 1
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If the regression equation fits the data well, the residuals are supposed to be
small. One popular way of assessing the size of the residuals is to compute their sum
of squares. This quantity is called the Residual Sum of Squares (RSS).

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

rss.ft = sum((ft$residuals)^2)

rss.ft

## [1] 4806.806

Note that RSS depends on the units in which the response variable is measured.

There is a very simple relationship between RSS and R2 (recall from the last
lecture that R2 is the square of the correlation between the response values and the
fitted values):

R2 = 1− RSS

TSS

where TSS stands for Total Sum of Squares and is defined as

TSS =
n∑

i=1

(yi − ȳ)2 .

It is easy to verify this formula in R.

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

rss.ft = sum((ft$residuals)^2)

rss.ft

## [1] 4806.806

tss = sum(((body$BODYFAT) - mean(body$BODYFAT))^2)

1 - (rss.ft/tss)

## [1] 0.7265596

summary(ft)
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##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

If we did not have any explanatory variables, then we would predict the value of
bodyfat percentage for any individual by simply the mean of the bodyfat values in
our sample. The total squared error for this prediction is given by TSS. On the other
hand, the total squared error for the prediction using linear regression based on the
explanatory variables is given by RSS. Therefore 1 − R2 represents the reduction in
the squared error because of the explanatory variables.

3.7 Behaviour of RSS (and R2) when variables are added or
removed from the regression equation

The value of RSS always increases when one or more explanatory variables are re-
moved from the regression equation. For example, suppose that we remove the vari-
able abdomen circumeference from the regression equation. The new RSS will then
be:
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ft.1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

HIP + THIGH, data = body)

rss.ft1 = sum((ft.1$residuals)^2)

rss.ft1

## [1] 7345.724

rss.ft

## [1] 4806.806

Notice that there is a quite a lot of increase in the RSS. What if we had kept
ABDOMEN in the model but dropped the variable CHEST?

ft.2 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + ABDOMEN +

HIP + THIGH, data = body)

rss.ft2 = sum((ft.2$residuals)^2)

rss.ft2

## [1] 4806.808

rss.ft

## [1] 4806.806

The RSS again increases but by a very very small amount. This therefore suggests
that Abdomen circumference is a more important variable in this regression compared
to Chest circumference.

The moral of this exercise is the following. The RSS always increases when vari-
ables are dropped from the regression equation. However the amount of increase
varies for different variables. We can understand the importance of variables in a
multiple regression equation by noting the amount by which the RSS increases when
the individual variables are dropped. We will come back to this point while studying
inference in the multiple regression model.

Because RSS has a direct relation to R2 via R2 = 1 − (RSS/TSS), one can see
R2 decreases when variables are removed from the model. However the amount of
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decrease will be different for different variables. For example, in the body fat dataset,
after removing the abdomen circumference variable, R2 changes to:

ft.1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

HIP + THIGH, data = body)

R2.ft1 = (cor(body$BODYFAT, ft.1$fitted.values))^2

R2.ft1

## [1] 0.5821305

R2.ft = (cor(body$BODYFAT, ft$fitted.values))^2

R2.ft

## [1] 0.7265596

Notice that there is a lot of decrease in R2. What happens if the variable Chest
circumference is dropped.

ft.2 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + ABDOMEN +

HIP + THIGH, data = body)

R2.ft2 = (cor(body$BODYFAT, ft.2$fitted.values))^2

R2.ft2

## [1] 0.7265595

R2.ft

## [1] 0.7265596

There is now a very very small decrease.

3.8 Residual Degrees of Freedom and Residual Standard Er-
ror

In a regression with p explanatory variables, the residual degrees of freedom is given
by n−p−1 (recall that n is the number of observations). This can be thought of as the
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effective number of residuals. Even though there are n residuals, they are supposed
to satisfy p+ 1 exact equations (they sum to zero and they have zero correlation with
each of the p explanatory variables).

The Residual Standard Error is defined as:√
Residual Sum of Squares

Residual Degrees of Freedom

This can be interpreted as the average magnitude of an individual residual and can
be used to assess the sizes of residuals (in particular, to find identify large residual
values).

For illustration,

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

n = nrow(body)

p = 7

rs.df = n - p - 1

rs.df

## [1] 244

ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

rss = sum((ft$residuals)^2)

rse = sqrt(rss/rs.df)

rse

## [1] 4.438471

Both of these are printed in the summary function in R:

summary(ft)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)
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##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

4 Multiple Regression when some explanatory vari-

ables are categorical

In many instances of regression, some of the explanatory variables are categorical
(note that the response variable is always continuous). For example, consider the
(short version of the) college dataset that you have already encountered.

scorecard <- read.csv(file.path(dataDir, "college_short.csv"))

dim(scorecard)

## [1] 1241 9

names(scorecard)

## [1] "SAT_AVG_ALL" "AVGFACSAL" "TUITIONFEE_IN" "TUITIONFEE_OUT"

## [5] "UGDS" "RET_FT4" "PCTFLOAN" "PFTFAC"

## [9] "TYPE"
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We can do a regression here with the retention rate (variable name RET-FT4) as
the response and all other variables as the explanatory variables. Note that one of the
explanatory variables (variable name TYPE) is categorical. This variable represents
whether the college is public (1), private non-profit (2) or private for profit (3).
Dealing with such categorical variables is a little tricky. To illustrate the ideas here,
let us focus on a regression for the retention rate based on just two explanatory
variables: the out-of-state tuition and the categorical variable TYPE.

The important thing to note about the variable TYPE is that its levels 1, 2 and
3 are completely arbitrary and have no particular meaning. For example, we could
have called its levels A, B, C or Pu, Pr − np, Pr − fp as well. If we use the lm()
function in the usual way with TUITIONFEE and TYPE as the explanatory variables,
then R will treat TYPE as a continuous variable which does not make sense:

req.bad = lm(RET_FT4 ~ TUITIONFEE_OUT + TYPE, data = scorecard)

summary(req.bad)

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + TYPE, data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.69041 -0.04915 0.00516 0.05554 0.33165

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.661e-01 9.265e-03 71.90 <2e-16 ***

## TUITIONFEE_OUT 9.405e-06 3.022e-07 31.12 <2e-16 ***

## TYPE -8.898e-02 5.741e-03 -15.50 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.08741 on 1238 degrees of freedom

## Multiple R-squared: 0.4391,Adjusted R-squared: 0.4382

## F-statistic: 484.5 on 2 and 1238 DF, p-value: < 2.2e-16

The regression coefficient for TYPE has the usual interpretation (if TYPE increases
by one unit, . . . ) which does not make much sense because TYPE is categorical and so
increasing it by one unit is nonsensical. You can check that R is treating TYPE as a
numeric variable by:
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is.numeric(scorecard$TYPE)

## [1] TRUE

The correct way to deal with categorical variables in R is to treat them as factors:

req = lm(RET_FT4 ~ TUITIONFEE_OUT + as.factor(TYPE),

data = scorecard)

summary(req)

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + as.factor(TYPE), data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68856 -0.04910 0.00505 0.05568 0.33150

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.765e-01 7.257e-03 79.434 < 2e-16 ***

## TUITIONFEE_OUT 9.494e-06 3.054e-07 31.090 < 2e-16 ***

## as.factor(TYPE)2 -9.204e-02 5.948e-03 -15.474 < 2e-16 ***

## as.factor(TYPE)3 -1.218e-01 3.116e-02 -3.909 9.75e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.08732 on 1237 degrees of freedom

## Multiple R-squared: 0.4408,Adjusted R-squared: 0.4394

## F-statistic: 325 on 3 and 1237 DF, p-value: < 2.2e-16

Why is the coefficient of TUITIONFEE so small?

This equation can be written in full as:

RET = 0.5765+9.4×10−6∗TUITIONFEE−0.0092∗I (TY PE = 2)−0.1218∗I (TY PE = 3) .
(8)

The variable I (TY PE = 2) takes the value 1 if the college has TYPE equal to 2
(i.e., if the college is private non-profit) and 0 otherwise. Similarly the variable
I (TY PE = 3) takes the value 1 if the college has TYPE equal to 3 (i.e., if the college
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is private for profit) and 0 otherwise. Variables which take only the two values 0 and
1 are called indicator variables.

Note that the variable I (TY PE = 1) does not appear in the regression equation
(8). This means that the level 1 (i.e., the college is public) is the baseline level here
and the effects of −0.0092 and 0.1218 for private for-profit and private non-profit
colleges respectively should be interpreted relative to public colleges.

The regression equation (8) can effectively be broken down into three equations.
For public colleges, the two indicator variables in (8) are zero and the equation be-
comes:

RET = 0.5765 + 9.4× 10−6 ∗ TUITIONFEE. (9)

For private non-profit colleges, the equation becomes

RET = 0.5673 + 9.4× 10−6 ∗ TUITIONFEE. (10)

and for private for-profit colleges,

RET = 0.4547 + 9.4× 10−6 ∗ TUITIONFEE. (11)

Note that the coefficient of TUITIONFEE is the same in each of these equations (only
the intercept changes). We can plot a scatterplot together with all these lines.

plot(RET_FT4 ~ TUITIONFEE_OUT, data = scorecard, xlab = "Tuition Fee (out of state)",

ylab = "Retention Rate", type = "n")

w1 = (scorecard$TYPE == 1)

points(RET_FT4[w1] ~ TUITIONFEE_OUT[w1], data = scorecard,

col = "blue")

abline(c(req$coefficients[1], req$coefficients[2]),

col = "blue")

w2 = (scorecard$TYPE == 2)

points(RET_FT4[w2] ~ TUITIONFEE_OUT[w2], data = scorecard,

col = "red")

abline(c(req$coefficients[1] + req$coefficients[3],

req$coefficients[2]), col = "red")

w3 = (scorecard$TYPE == 3)

points(RET_FT4[w3] ~ TUITIONFEE_OUT[w3], data = scorecard,

col = "green")

abline(c(req$coefficients[1] + req$coefficients[4],

req$coefficients[2]), col = "green")
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What if we want these regression equations to have different slopes? We can do
separate regressions for each of the three groups given by the TYPE variable. Alterna-
tively, we can do this in multiple regression by adding an interaction variable between
TYPE and TUITIONFEE as follows:

req.1 = lm(RET_FT4 ~ TUITIONFEE_OUT + as.factor(TYPE) +

TUITIONFEE_OUT:as.factor(TYPE), data = scorecard)

summary(req.1)

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + as.factor(TYPE) + TUITIONFEE_OUT:as.factor(TYPE),

## data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68822 -0.04982 0.00491 0.05555 0.32900

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.814e-01 1.405e-02 41.372 < 2e-16 ***

## TUITIONFEE_OUT 9.240e-06 6.874e-07 13.441 < 2e-16 ***

## as.factor(TYPE)2 -9.830e-02 1.750e-02 -5.617 2.4e-08 ***

## as.factor(TYPE)3 -2.863e-01 1.568e-01 -1.826 0.0681 .

## TUITIONFEE_OUT:as.factor(TYPE)2 2.988e-07 7.676e-07 0.389 0.6971

## TUITIONFEE_OUT:as.factor(TYPE)3 7.215e-06 6.716e-06 1.074 0.2829

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 0.08734 on 1235 degrees of freedom

## Multiple R-squared: 0.4413,Adjusted R-squared: 0.4391

## F-statistic: 195.1 on 5 and 1235 DF, p-value: < 2.2e-16

Note that this regression equation has two more variables compared to the pre-
vious regression (which did not have the interaction term). The two additional vari-
ables are the product terms TUITIONFEE ∗ I(TY PE = 2) and TUITIONFEE ∗
I(TY PE = 3). The presence of these product terms means that three separate
regressions are essentially being fit here (why?).

Alternatively, this regression with interaction can also be done in R via:

req.2 = lm(RET_FT4 ~ TUITIONFEE_OUT * as.factor(TYPE),

data = scorecard)

summary(req.2)

##

## Call:

## lm(formula = RET_FT4 ~ TUITIONFEE_OUT * as.factor(TYPE), data = scorecard)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68822 -0.04982 0.00491 0.05555 0.32900

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.814e-01 1.405e-02 41.372 < 2e-16 ***

## TUITIONFEE_OUT 9.240e-06 6.874e-07 13.441 < 2e-16 ***

## as.factor(TYPE)2 -9.830e-02 1.750e-02 -5.617 2.4e-08 ***

## as.factor(TYPE)3 -2.863e-01 1.568e-01 -1.826 0.0681 .

## TUITIONFEE_OUT:as.factor(TYPE)2 2.988e-07 7.676e-07 0.389 0.6971

## TUITIONFEE_OUT:as.factor(TYPE)3 7.215e-06 6.716e-06 1.074 0.2829

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.08734 on 1235 degrees of freedom

## Multiple R-squared: 0.4413,Adjusted R-squared: 0.4391

## F-statistic: 195.1 on 5 and 1235 DF, p-value: < 2.2e-16

The three separate regressions can be plotted in one plot as before.
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plot(RET_FT4 ~ TUITIONFEE_OUT, data = scorecard, xlab = "Tuition Fee (out of state)",

ylab = "Retention Rate", type = "n")

w1 = (scorecard$TYPE == 1)

points(RET_FT4[w1] ~ TUITIONFEE_OUT[w1], data = scorecard,

col = "blue")

abline(c(req.1$coefficients[1], req.1$coefficients[2]),

col = "blue")

w2 = (scorecard$TYPE == 2)

points(RET_FT4[w2] ~ TUITIONFEE_OUT[w2], data = scorecard,

col = "red")

abline(c(req.1$coefficients[1] + req.1$coefficients[3],

req.1$coefficients[2] + req.1$coefficients[5]),

col = "red")

w3 = (scorecard$TYPE == 3)

points(RET_FT4[w3] ~ TUITIONFEE_OUT[w3], data = scorecard,

col = "green")

abline(c(req.1$coefficients[1] + req.1$coefficients[4],

req.1$coefficients[2] + req.1$coefficients[6]),

col = "green")

Interaction terms make regression equations complicated (have more variables)
and also slightly harder to interpret although, in some situations, they really improve
predictive power. In this particular example, note that the multiple R2 only increased
from 0.4408 to 0.4413 after adding the interaction terms. This small increase means
that the interaction terms are not really adding much to the regression equation so
we are better off using the previous model with no interaction terms.
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To get more practice with regressions having categorical variables, let us consider
the bike sharing dataset. This dataset contains information on bike rentals for two
years (2011-2012) from Capital Bikeshare System in Washington, D. C:

bike = read.csv(file.path(dataDir, "BikeSharingDataset.csv"))

dim(bike)

## [1] 17379 17

names(bike)

## [1] "instant" "dteday" "season" "yr" "mnth"

## [6] "hr" "holiday" "weekday" "workingday" "weathersit"

## [11] "temp" "atemp" "hum" "windspeed" "casual"

## [16] "registered" "cnt"

head(bike)

## instant dteday season yr mnth hr holiday weekday workingday

## 1 1 2011-01-01 1 0 1 0 0 6 0

## 2 2 2011-01-01 1 0 1 1 0 6 0

## 3 3 2011-01-01 1 0 1 2 0 6 0

## 4 4 2011-01-01 1 0 1 3 0 6 0

## 5 5 2011-01-01 1 0 1 4 0 6 0

## 6 6 2011-01-01 1 0 1 5 0 6 0

## weathersit temp atemp hum windspeed casual registered cnt

## 1 1 0.24 0.2879 0.81 0.0000 3 13 16

## 2 1 0.22 0.2727 0.80 0.0000 8 32 40

## 3 1 0.22 0.2727 0.80 0.0000 5 27 32

## 4 1 0.24 0.2879 0.75 0.0000 3 10 13

## 5 1 0.24 0.2879 0.75 0.0000 0 1 1

## 6 2 0.24 0.2576 0.75 0.0896 0 1 1

Let us fit a basic regression equation with casual (number of bikes rented by
casual users hourly) as the response variable and the explanatory variables being
atemp (normalized feeling temperature), workingday (takes the value 1 if the day is
neither weekend or a holiday and 0 otherwise) and weathersit. The weathersit

variable takes four values:

1. 1 if the weather is Clear, Few clouds, Partly cloudy, Partly cloudy.
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2. 2 if the weather is Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds,
Mist.

3. 3 if the weather is Light Snow, Light Rain + Thunderstorm + Scattered clouds,
Light Rain + Scattered clouds.

4. 4 if the weather is Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow +
Fog.

summary(bike$atemp)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0000 0.3333 0.4848 0.4758 0.6212 1.0000

summary(as.factor(bike$workingday))

## 0 1

## 5514 11865

summary(as.factor(bike$weathersit))

## 1 2 3 4

## 11413 4544 1419 3

Note that there are only 3 observations where the weathersit variable takes the
value 4. Because workingday and weathersit are categorical variables, we fit the
regression equation as

md1 = lm(casual ~ atemp + as.factor(workingday) + as.factor(weathersit),

data = bike)

summary(md1)

##

## Call:

## lm(formula = casual ~ atemp + as.factor(workingday) + as.factor(weathersit),

## data = bike)

##

## Residuals:
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## Min 1Q Median 3Q Max

## -100.104 -24.209 -3.655 14.379 292.104

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.4416 1.0366 -1.391 0.164

## atemp 132.7107 1.8076 73.418 < 2e-16 ***

## as.factor(workingday)1 -34.1359 0.6642 -51.393 < 2e-16 ***

## as.factor(weathersit)2 -5.5858 0.7156 -7.805 6.27e-15 ***

## as.factor(weathersit)3 -15.3972 1.1488 -13.403 < 2e-16 ***

## as.factor(weathersit)4 2.0619 23.4727 0.088 0.930

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 40.64 on 17373 degrees of freedom

## Multiple R-squared: 0.3208,Adjusted R-squared: 0.3206

## F-statistic: 1641 on 5 and 17373 DF, p-value: < 2.2e-16

How are the coefficients in the above regression interpreted?

Now let me add an interaction between the two categorical variables above. This
can be done as:

md2 = lm(casual ~ atemp + as.factor(workingday) + as.factor(weathersit) +

as.factor(workingday):as.factor(weathersit), data = bike)

summary(md2)

##

## Call:

## lm(formula = casual ~ atemp + as.factor(workingday) + as.factor(weathersit) +

## as.factor(workingday):as.factor(weathersit), data = bike)

##

## Residuals:

## Min 1Q Median 3Q Max

## -102.67 -24.25 -3.42 14.37 289.49

##

## Coefficients:

## Estimate Std. Error t value

## (Intercept) 1.2457 1.0820 1.151

## atemp 132.5508 1.8039 73.480

## as.factor(workingday)1 -38.0378 0.8073 -47.119

## as.factor(weathersit)2 -12.8922 1.2866 -10.021

## as.factor(weathersit)3 -27.2829 2.1876 -12.471
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## as.factor(weathersit)4 -18.3256 40.5639 -0.452

## as.factor(workingday)1:as.factor(weathersit)2 10.5834 1.5432 6.858

## as.factor(workingday)1:as.factor(weathersit)3 16.5474 2.5635 6.455

## as.factor(workingday)1:as.factor(weathersit)4 30.4970 49.6749 0.614

## Pr(>|t|)

## (Intercept) 0.250

## atemp < 2e-16 ***

## as.factor(workingday)1 < 2e-16 ***

## as.factor(weathersit)2 < 2e-16 ***

## as.factor(weathersit)3 < 2e-16 ***

## as.factor(weathersit)4 0.651

## as.factor(workingday)1:as.factor(weathersit)2 7.22e-12 ***

## as.factor(workingday)1:as.factor(weathersit)3 1.11e-10 ***

## as.factor(workingday)1:as.factor(weathersit)4 0.539

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 40.55 on 17370 degrees of freedom

## Multiple R-squared: 0.3238,Adjusted R-squared: 0.3235

## F-statistic: 1040 on 8 and 17370 DF, p-value: < 2.2e-16

How are the coefficients interpreted now? Note that the multiple R2 has not
increased by that much. There are other interactons that one can add here too. For
example, I can add an interaction between workingday and atemp:

md3 = lm(casual ~ atemp + as.factor(workingday) + as.factor(workingday):atemp +

as.factor(weathersit), data = bike)

summary(md3)

##

## Call:

## lm(formula = casual ~ atemp + as.factor(workingday) + as.factor(workingday):atemp +

## as.factor(weathersit), data = bike)

##

## Residuals:

## Min 1Q Median 3Q Max

## -126.311 -19.432 -3.966 12.335 290.198

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -40.4566 1.5124 -26.751 < 2e-16 ***

## atemp 217.1180 3.0094 72.147 < 2e-16 ***
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## as.factor(workingday)1 25.3616 1.8420 13.768 < 2e-16 ***

## as.factor(weathersit)2 -5.4654 0.6924 -7.894 3.11e-15 ***

## as.factor(weathersit)3 -15.5520 1.1115 -13.992 < 2e-16 ***

## as.factor(weathersit)4 3.5877 22.7098 0.158 0.874

## atemp:as.factor(workingday)1 -126.9260 3.6827 -34.465 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 39.32 on 17372 degrees of freedom

## Multiple R-squared: 0.3643,Adjusted R-squared: 0.3641

## F-statistic: 1659 on 6 and 17372 DF, p-value: < 2.2e-16

What is the interpretation of the coefficients now? Note that this increases the
R2 more.

By the way, for the bike sharing dataset, will the above models work well for
prediction? They do not use hourly information all that much. Throwing in hourly
information such as rush hours etc. should improve prediction. Plus there are other
unused variables.

5 Inference in Multiple Regression

So far, we have learned how to fit multiple regression equations to observed data. We
have not made any modeling assumptions. Inference is necessary for answering ques-
tions such as: “Is the observed relationship between the response and the explanatory
variables real or is it merely caused by sampling variability?”

In order to perform inference, we need to assume a model. The inference will then
be valid only if the assumptions of the model hold true for the particular dataset.
The most standard multiple linear regression model (and the only one that we deal
with in this class) makes the following assumptions. It is very very similar to the
simple linear regression model that you learned in data 8.

5.1 The Multiple Linear Regression Model

There is a response variable y and p explanatory variables x1, . . . , xp. The model
specifies that the observations are generated at random as follows:
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1. The relation between y and x1, . . . , xp is perfectly linear and given by

y = β0 + β1x1 + · · ·+ βpxp. (12)

The numbers β0, . . . , βp are called parameters of the model. They are unknown
and they form a “true regression plane” that is unknown.

2. Suppose the explanatory variable values for the ith observation are denoted by
xi1, . . . , xip. Then first calculate the value of the response for these x-values
from the equation (12) and then add to the obtain value a random error that
is normal with mean zero and some variance σ2. This generates the response
value yi for the ith observation. In other words, the ith response yi is generated
according to the equation:

yi = β0 + β1xi1 + · · ·+ βpxip + εi

where εi represents a random error that is normally distributed with mean zero
and variance σ2.

3. The errors ε1, . . . , εn corresponding to the different observations are assumed to
be independent.

The numbers β0, . . . , βp capture the true relationship between y and x1, . . . , xp and
are unknown. Also unknown is the quantity σ2 which is the variance of the unknown
random errors ε1, . . . , εn. We call β0, . . . , βp and σ2 the unknown parameters in the
multiple linear regression model.

When we fit a regression equation to a dataset via lm() in R, we obtain an equation
of the form:

y = b0 + b1x1 + b2x2 + · · ·+ bpxp.

The coefficients b0, . . . , bp will be given to us by R which computes them so as to
minimize the sum of squares. When we assume the linear regression model, these
coefficients b0, . . . , bp can be thought naturally as estimates of the uknown parameters
β0, . . . , βp. More specifically, b0 is an estimate of β0, b1 is an estimate of β1 etc.

The residuals serve as natural proxies for the unknown random errors ε1, . . . , εn.
Therefore a natural estimate for the error standard deviation σ is the Residual Stan-
dard Error.

5.2 Hypothesis Testing in Multiple Linear Regression

Inference in the linear regression model involves getting standard errors of estimates of
β0, . . . , βp, confidence intervals for β0, . . . , βp and testing various hypotheses involving
β0, . . . , βp. We shall first study the problem of testing hypotheses.
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Examples of hypothesis testing problems include:

1. H0 : β1 = · · · = βp.

2. H0 : β1 = 0.

3. H0 : β1 = 1.

4. H0 : β1 = β2.

Let us now see some data examples where each of the hypothesis testing questions
above make sense. These examples are taken from the Wooldridge econometrics book.

5.2.1 Example One

load(file.path(dataDir, "wage1.Rdata"))

wages = data

wages.desc = desc

head(wages)

## wage educ exper tenure nonwhite female married numdep smsa northcen

## 1 3.10 11 2 0 0 1 0 2 1 0

## 2 3.24 12 22 2 0 1 1 3 1 0

## 3 3.00 11 2 0 0 0 0 2 0 0

## 4 6.00 8 44 28 0 0 1 0 1 0

## 5 5.30 12 7 2 0 0 1 1 0 0

## 6 8.75 16 9 8 0 0 1 0 1 0

## south west construc ndurman trcommpu trade services profserv profocc

## 1 0 1 0 0 0 0 0 0 0

## 2 0 1 0 0 0 0 1 0 0

## 3 0 1 0 0 0 1 0 0 0

## 4 0 1 0 0 0 0 0 0 0

## 5 0 1 0 0 0 0 0 0 0

## 6 0 1 0 0 0 0 0 1 1

## clerocc servocc lwage expersq tenursq

## 1 0 0 1.131402 4 0

## 2 0 1 1.175573 484 4

## 3 0 0 1.098612 4 0

## 4 1 0 1.791759 1936 784

## 5 0 0 1.667707 49 4

## 6 0 0 2.169054 81 64
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dim(wages)

## [1] 526 24

wages.desc

## variable label

## 1 wage average hourly earnings

## 2 educ years of education

## 3 exper years potential experience

## 4 tenure years with current employer

## 5 nonwhite =1 if nonwhite

## 6 female =1 if female

## 7 married =1 if married

## 8 numdep number of dependents

## 9 smsa =1 if live in SMSA

## 10 northcen =1 if live in north central U.S

## 11 south =1 if live in southern region

## 12 west =1 if live in western region

## 13 construc =1 if work in construc. indus.

## 14 ndurman =1 if in nondur. manuf. indus.

## 15 trcommpu =1 if in trans, commun, pub ut

## 16 trade =1 if in wholesale or retail

## 17 services =1 if in services indus.

## 18 profserv =1 if in prof. serv. indus.

## 19 profocc =1 if in profess. occupation

## 20 clerocc =1 if in clerical occupation

## 21 servocc =1 if in service occupation

## 22 lwage log(wage)

## 23 expersq exper^2

## 24 tenursq tenure^2

Suppose we fit a linear regression equation to log(wage) (why log(wage) as op-
posed to wage) based on educ (years of education), exper (years of potential ex-
perience) and tenure (years with current employer). Suppose we want to test the
hypothesis that the return on experience, controlling for education and tenure, is
zero in the population against the alternative that it is positive. This corresponds to
testing the hypothesis:

H0 : β2 = 0 against H1 : β2 > 0
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in the linear model:

log(wage) = β0 + β1educ+ β2exper + β3tenure.

5.2.2 Example Two

load(file.path(dataDir, "campus.Rdata"))

campus = data

campus.desc = desc

summary(campus)

## enroll priv police crime

## Min. : 1799 Min. :0.0000 Min. : 1.00 Min. : 1.0

## 1st Qu.: 6485 1st Qu.:0.0000 1st Qu.: 9.00 1st Qu.: 85.0

## Median :11990 Median :0.0000 Median :16.00 Median : 187.0

## Mean :16076 Mean :0.1237 Mean :20.49 Mean : 394.5

## 3rd Qu.:21836 3rd Qu.:0.0000 3rd Qu.:27.00 3rd Qu.: 491.0

## Max. :56350 Max. :1.0000 Max. :74.00 Max. :2052.0

## lcrime lenroll lpolice

## Min. :0.000 Min. : 7.495 Min. :0.000

## 1st Qu.:4.443 1st Qu.: 8.777 1st Qu.:2.197

## Median :5.231 Median : 9.392 Median :2.773

## Mean :5.277 Mean : 9.379 Mean :2.731

## 3rd Qu.:6.196 3rd Qu.: 9.991 3rd Qu.:3.296

## Max. :7.627 Max. :10.939 Max. :4.304

Suppose we fit a linear regression equation with lcrime as the response and lenroll
and lpolice as the explanatory variables. It is of interest here to test the hypothesis
H0 : β1 = 1 against the alternative H1 : β1 > 1. β1 has the interpretation as the
percentage change in crime for a 1 percentage increase in enrollment provide lpolice
remains unchanged. If β1 > 1, then, in a relative sense (not just an absolute sense),
crime is more of a problem on larger campuses.

5.2.3 Example Three

load(file.path(dataDir, "twoyear.Rdata"))

ty = data

ty.desc = desc

head(ty)
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## female phsrank BA AA black hispanic id exper jc univ

## 1 1 65 0 0 0 0 19 161 0.0000000 0.000000

## 2 1 97 0 0 0 0 93 119 0.0000000 7.033333

## 3 1 44 0 0 0 0 96 81 0.0000000 0.000000

## 4 1 34 0 0 0 1 119 39 0.2666667 0.000000

## 5 1 80 0 0 0 0 132 141 0.0000000 0.000000

## 6 0 59 0 0 0 0 156 165 0.0000000 0.000000

## lwage stotal smcity medcity submed lgcity sublg vlgcity subvlg ne

## 1 1.925291 -0.4417497 0 0 0 0 1 0 0 1

## 2 2.796494 0.0000000 1 0 0 0 0 0 0 0

## 3 1.625600 -1.3570027 0 0 0 0 1 0 0 1

## 4 2.223312 -0.1900551 1 0 0 0 0 0 0 0

## 5 1.642083 0.0000000 0 0 0 0 0 0 0 0

## 6 2.079442 1.3887565 1 0 0 0 0 0 0 0

## nc south totcoll

## 1 0 0 0.0000000

## 2 1 0 7.0333333

## 3 0 0 0.0000000

## 4 0 0 0.2666667

## 5 0 1 0.0000000

## 6 0 1 0.0000000

It is natural to fit a regression equation here with log(wage) as the response and
jc (number of years in junior college), univ (number of years in university) and exper
(number of years in the workforce) as the explanatory variables. It is meaningful here
to test the null hypothesis H0 : β1 = β2.

5.2.4 Example Four

load(file.path(dataDir, "mlb1.Rdata"))

bb = data

bb.desc = desc

bb.desc

## variable label

## 1 salary 1993 season salary

## 2 teamsal team payroll

## 3 nl =1 if national league

## 4 years years in major leagues

## 5 games career games played

## 6 atbats career at bats
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## 7 runs career runs scored

## 8 hits career hits

## 9 doubles career doubles

## 10 triples career triples

## 11 hruns career home runs

## 12 rbis career runs batted in

## 13 bavg career batting average

## 14 bb career walks

## 15 so career strike outs

## 16 sbases career stolen bases

## 17 fldperc career fielding perc

## 18 frstbase = 1 if first base

## 19 scndbase =1 if second base

## 20 shrtstop =1 if shortstop

## 21 thrdbase =1 if third base

## 22 outfield =1 if outfield

## 23 catcher =1 if catcher

## 24 yrsallst years as all-star

## 25 hispan =1 if hispanic

## 26 black =1 if black

## 27 whitepop white pop. in city

## 28 blackpop black pop. in city

## 29 hisppop hispanic pop. in city

## 30 pcinc city per capita income

## 31 gamesyr games per year in league

## 32 hrunsyr home runs per year

## 33 atbatsyr at bats per year

## 34 allstar perc. of years an all-star

## 35 slugavg career slugging average

## 36 rbisyr rbis per year

## 37 sbasesyr stolen bases per year

## 38 runsyr runs scored per year

## 39 percwhte percent white in city

## 40 percblck percent black in city

## 41 perchisp percent hispanic in city

## 42 blckpb black*percblck

## 43 hispph hispan*perchisp

## 44 whtepw white*percwhte

## 45 blckph black*perchisp

## 46 hisppb hispan*percblck

## 47 lsalary log(salary)

head(bb)
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## salary teamsal nl years games atbats runs hits doubles triples hruns

## 1 6329213 38407380 1 12 1705 6705 1076 1939 320 67 231

## 2 3375000 38407380 1 8 918 3333 407 863 156 38 73

## 3 3100000 38407380 1 5 751 2807 370 840 148 18 46

## 4 2900000 38407380 1 8 1056 3337 405 816 143 18 107

## 5 1650000 38407380 1 12 1196 3603 437 928 19 16 124

## 6 700000 38407380 1 17 2032 7489 1136 2145 270 142 40

## rbis bavg bb so sbases fldperc frstbase scndbase shrtstop thrdbase

## 1 836 289 619 948 314 989 0 1 0 0

## 2 342 259 137 582 133 968 0 0 1 0

## 3 355 299 341 228 41 994 1 0 0 0

## 4 421 245 306 653 15 971 0 0 0 1

## 5 541 258 316 725 32 977 0 0 0 0

## 6 574 286 416 1098 660 987 0 0 0 0

## outfield catcher yrsallst hispan black whitepop blackpop hisppop pcinc

## 1 0 0 9 0 0 5772110 1547725 893422 18840

## 2 0 0 2 0 1 5772110 1547725 893422 18840

## 3 0 0 0 0 0 5772110 1547725 893422 18840

## 4 0 0 0 0 0 5772110 1547725 893422 18840

## 5 1 0 0 0 1 5772110 1547725 893422 18840

## 6 1 0 2 0 1 5772110 1547725 893422 18840

## gamesyr hrunsyr atbatsyr allstar slugavg rbisyr sbasesyr

## 1 142.08333 19.250000 558.7500 75.00000 46.02535 69.66666 26.166666

## 2 114.75000 9.125000 416.6250 25.00000 39.42394 42.75000 16.625000

## 3 150.20000 9.200000 561.4000 0.00000 41.39651 71.00000 8.200000

## 4 132.00000 13.375000 417.1250 0.00000 39.43662 52.62500 1.875000

## 5 99.66666 10.333333 300.2500 0.00000 37.49653 45.08333 2.666667

## 6 119.52941 2.352941 440.5294 11.76471 37.64188 33.76471 38.823528

## runsyr percwhte percblck perchisp blckpb hispph whtepw blckph

## 1 89.66666 70.27797 18.84423 10.8778 0.00000 0 70.27797 0.0000

## 2 50.87500 70.27797 18.84423 10.8778 18.84423 0 0.00000 10.8778

## 3 74.00000 70.27797 18.84423 10.8778 0.00000 0 70.27797 0.0000

## 4 50.62500 70.27797 18.84423 10.8778 0.00000 0 70.27797 0.0000

## 5 36.41667 70.27797 18.84423 10.8778 18.84423 0 0.00000 10.8778

## 6 66.82353 70.27797 18.84423 10.8778 18.84423 0 0.00000 10.8778

## hisppb lsalary

## 1 0 15.66069

## 2 0 15.03191

## 3 0 14.94691

## 4 0 14.88022

## 5 0 14.31629

## 6 0 13.45884

It is reasonable here to fit a regression equation for log(salary) based on years
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(number of years in the league), gamesyr (average number of games played per year),
bavg (career batting average), hrunsyr (home runs per year) and rbisyr (runs batted
in per year).

In this regression, what does it mean to test the hypothesis that the betas corre-
sponding to bavg, hrunsyr and rbisyr are all simultaneously zero.

5.3 Every null hypothesis leads to a submodel

Hypothesis testing in the linear model is based on the observation that every null
hypothesis leads to a submodel. This is easily seen in the examples.

5.3.1 Example One

load(file.path(dataDir, "wage1.Rdata"))

wages = data

wages.desc = desc

In this case, we are fitting a linear regression equation to log(wage) based on educ
(years of education), exper (years of potential experience) and tenure (years with
current employer). Let us call this linear model M :

M = lm(lwage ~ educ + exper + tenure, data = wages)

summary(M)

##

## Call:

## lm(formula = lwage ~ educ + exper + tenure, data = wages)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.05802 -0.29645 -0.03265 0.28788 1.42809

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.284360 0.104190 2.729 0.00656 **

## educ 0.092029 0.007330 12.555 < 2e-16 ***

## exper 0.004121 0.001723 2.391 0.01714 *

## tenure 0.022067 0.003094 7.133 3.29e-12 ***
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4409 on 522 degrees of freedom

## Multiple R-squared: 0.316,Adjusted R-squared: 0.3121

## F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16

Now suppose that we want to test the hypothesis that H0 : β2 = 0. If this
hypothesis is true, it means that we can drop the variable exper. Therefore, the null
hypothesis here corresponds to the model:

m = lm(lwage ~ educ + tenure, data = wages)

summary(m)

##

## Call:

## lm(formula = lwage ~ educ + tenure, data = wages)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.10350 -0.29287 -0.04081 0.28672 1.44967

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.404474 0.091696 4.411 1.25e-05 ***

## educ 0.086528 0.006991 12.377 < 2e-16 ***

## tenure 0.025814 0.002680 9.634 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4428 on 523 degrees of freedom

## Multiple R-squared: 0.3085,Adjusted R-squared: 0.3059

## F-statistic: 116.7 on 2 and 523 DF, p-value: < 2.2e-16

5.3.2 Example Two

load(file.path(dataDir, "campus.Rdata"))

campus = data

campus.desc = desc
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Suppose we fit a linear regression equation with lcrime as the response and lenroll
and lpolice as the explanatory variables. This model will be denoted by M :

M = lm(lcrime ~ lenroll + lpolice, data = campus)

summary(M)

##

## Call:

## lm(formula = lcrime ~ lenroll + lpolice, data = campus)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.6362 -0.2223 0.1047 0.4480 1.7519

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -4.7938 1.1120 -4.311 4.01e-05 ***

## lenroll 0.9235 0.1440 6.414 5.67e-09 ***

## lpolice 0.5164 0.1487 3.473 0.000779 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.8467 on 94 degrees of freedom

## Multiple R-squared: 0.632,Adjusted R-squared: 0.6242

## F-statistic: 80.72 on 2 and 94 DF, p-value: < 2.2e-16

Now the hypothesis H0 : β1 = 1 corresponds to the submodel m given by

m = lm(lcrime ~ offset(1 * lenroll) + lpolice, data = campus)

summary(m)

##

## Call:

## lm(formula = lcrime ~ offset(1 * lenroll) + lpolice, data = campus)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.5992 -0.2191 0.0912 0.4321 1.7575

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -5.3621 0.3041 -17.63 < 2e-16 ***
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## lpolice 0.4617 0.1069 4.32 3.83e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.8435 on 95 degrees of freedom

## Multiple R-squared: 0.6413,Adjusted R-squared: 0.6375

## F-statistic: 169.8 on 1 and 95 DF, p-value: < 2.2e-16

5.3.3 Example Three

load(file.path(dataDir, "twoyear.Rdata"))

ty = data

ty.desc = desc

It is natural to fit a regression equation here with log(wage) (which is same as
lwage) as the response and jc (number of years in junior college), univ (number of
years in university) and exper (number of years in the workforce) as the explanatory
variables. Let us denote this model by M :

M = lm(lwage ~ jc + univ + exper, data = ty)

summary(M)

##

## Call:

## lm(formula = lwage ~ jc + univ + exper, data = ty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.10362 -0.28132 0.00551 0.28518 1.78167

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.4723256 0.0210602 69.910 <2e-16 ***

## jc 0.0666967 0.0068288 9.767 <2e-16 ***

## univ 0.0768762 0.0023087 33.298 <2e-16 ***

## exper 0.0049442 0.0001575 31.397 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4301 on 6759 degrees of freedom
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## Multiple R-squared: 0.2224,Adjusted R-squared: 0.2221

## F-statistic: 644.5 on 3 and 6759 DF, p-value: < 2.2e-16

Now the hypothesis H0 : β1 = β2 corresponds to the submodel m given by

m = lm(lwage ~ I(jc + univ) + exper, data = ty)

summary(m)

##

## Call:

## lm(formula = lwage ~ I(jc + univ) + exper, data = ty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.09708 -0.28069 0.00532 0.28324 1.78332

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.4719702 0.0210606 69.89 <2e-16 ***

## I(jc + univ) 0.0761563 0.0022562 33.75 <2e-16 ***

## exper 0.0049323 0.0001573 31.36 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4302 on 6760 degrees of freedom

## Multiple R-squared: 0.2222,Adjusted R-squared: 0.222

## F-statistic: 965.6 on 2 and 6760 DF, p-value: < 2.2e-16

5.3.4 Example Four

load(file.path(dataDir, "mlb1.Rdata"))

bb = data

bb.desc = desc

It is reasonable here to fit a regression equation for log(salary) based on years
(number of years in the league), gamesyr (average number of games played per year),
bavg (career batting average), hrunsyr (home runs per year) and rbisyr (runs batted
in per year). Let us call this model M .
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M = lm(lsalary ~ years + gamesyr + bavg + hrunsyr +

rbisyr, data = bb)

summary(M)

##

## Call:

## lm(formula = lsalary ~ years + gamesyr + bavg + hrunsyr + rbisyr,

## data = bb)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.02508 -0.45034 -0.04013 0.47014 2.68924

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.119e+01 2.888e-01 38.752 < 2e-16 ***

## years 6.886e-02 1.211e-02 5.684 2.79e-08 ***

## gamesyr 1.255e-02 2.647e-03 4.742 3.09e-06 ***

## bavg 9.786e-04 1.104e-03 0.887 0.376

## hrunsyr 1.443e-02 1.606e-02 0.899 0.369

## rbisyr 1.077e-02 7.175e-03 1.500 0.134

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.7266 on 347 degrees of freedom

## Multiple R-squared: 0.6278,Adjusted R-squared: 0.6224

## F-statistic: 117.1 on 5 and 347 DF, p-value: < 2.2e-16

Suppose now that we want to test the hypothesis that the betas corresponding
to bavg, hrunsyr and rbisyr are all simultaneously zero. This corresponds to the
submodel:

m = lm(lsalary ~ years + gamesyr, data = bb)

summary(m)

##

## Call:

## lm(formula = lsalary ~ years + gamesyr, data = bb)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.66858 -0.46412 -0.01176 0.49219 2.68829
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.223804 0.108312 103.625 < 2e-16 ***

## years 0.071318 0.012505 5.703 2.5e-08 ***

## gamesyr 0.020174 0.001343 15.023 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.7527 on 350 degrees of freedom

## Multiple R-squared: 0.5971,Adjusted R-squared: 0.5948

## F-statistic: 259.3 on 2 and 350 DF, p-value: < 2.2e-16

In all these examples, we are first fitting a regression equation to the response
involving some explanatory variables. We are calling this regression model M . In this
model, we want to test some null hypothesis involving the parameters. Incorporating
this null hypothesis in the model M results in a submodel m. The problem of testing
the null hypothesis then effectively boils down to comparison between the model m
and the larger model M . This is done by comparing the RSS values of the two
regressions which results in the F -statistic.

5.4 F -statistic and F -test

Let RSS(m) and RSS(M) denote the values of the residual sum of squares for the
two models m and M respectively. Note that m is a smaller model (contains fewer
variables) compared to M and hence RSS(m) will always be atleast as large as
RSS(M). The difference

RSS(m)−RSS(M)

is a natural comparison between m and M . But this quantity depends on scale so
one divides by RSS(M) to obtain

RSS(m)−RSS(M)

RSS(M)
. (13)

The above quantity is scale-free. It is also customary to divide the numerator and
denominator in the above fraction by the corresponding degrees of freedom. The
degrees of freedom corresponding to RSS(M) is the residual degrees of freedom in
the model M which is n − p − 1 where p is the number of explanatory variables in
the model M . The degrees of freedom corresponding to RSS(m) is n− q − 1 where
q is the number of explanatory variables in the model m. Therefore the degrees of
freedom corresponding to RSS(m)−RSS(M) (the numerator in (13)) is (n−q−1)−

Guntuboyina & Purdom #5, Spring 2017, STAT 28 64



(n − p − 1) = p − q. And the degrees of freedom corresponding to the denominator
is n− p− 1. Dividing by the degrees of freedom, we obtain the quantity:

F :=
(RSS(m)−RSS(M)) /(p− q)

RSS(M)/(n− p− 1)
. (14)

The above quantity is called the F -statistic and we will denote it by F .

We will reject the null hypothesis (i.e., reject the model m in favor of the larger
model M) if the F -statistic is large. The important question though is: how large
is large?

To answer the question of how large is large, we need to know how the value of
F looks like if, indeed, the null hypothesis is true (i.e., the data are coming from the
smaller model m). Under the assumptions of the multiple linear regression model, it
can be shown (this is done in upper division classes on linear models) that, when the
null hypothesis is true, the F -statistic has a known distribution. This distribution is
called the F -distribution with degrees of freedom given by p− q and n− p− 1. The
F -distribution is a distribution (just like the t-distribution and normal distribution
that you have already studied) with two parameters called the degrees of freedom.
You can plot its density curve in R easily for any specified choices of the degrees of
freedom.

d1 = 5

d2 = 30

xx = seq(0, 10, 0.01)

plot(xx, df(xx, d1, d2), type = "l", xlab = "x", ylab = "F-density")

We can now easily test any hypotheses in the linear model by simply comparing the
observed value of the F -statistic with the corresponding density of the F -distribution.
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Let us revisit our four examples.

5.4.1 Example One

load(file.path(dataDir, "wage1.Rdata"))

wages = data

wages.desc = desc

In this case, we are fitting a linear regression equation to log(wage) based on educ
(years of education), exper (years of potential experience) and tenure (years with
current employer). Let us call this linear model M :

M = lm(lwage ~ educ + exper + tenure, data = wages)

summary(M)

##

## Call:

## lm(formula = lwage ~ educ + exper + tenure, data = wages)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.05802 -0.29645 -0.03265 0.28788 1.42809

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.284360 0.104190 2.729 0.00656 **

## educ 0.092029 0.007330 12.555 < 2e-16 ***

## exper 0.004121 0.001723 2.391 0.01714 *

## tenure 0.022067 0.003094 7.133 3.29e-12 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4409 on 522 degrees of freedom

## Multiple R-squared: 0.316,Adjusted R-squared: 0.3121

## F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16

Now suppose that we want to test the hypothesis that H0 : β2 = 0. If this
hypothesis is true, it means that we can drop the variable exper. Therefore, the null
hypothesis here corresponds to the model:
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m = lm(lwage ~ educ + tenure, data = wages)

summary(m)

##

## Call:

## lm(formula = lwage ~ educ + tenure, data = wages)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.10350 -0.29287 -0.04081 0.28672 1.44967

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.404474 0.091696 4.411 1.25e-05 ***

## educ 0.086528 0.006991 12.377 < 2e-16 ***

## tenure 0.025814 0.002680 9.634 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4428 on 523 degrees of freedom

## Multiple R-squared: 0.3085,Adjusted R-squared: 0.3059

## F-statistic: 116.7 on 2 and 523 DF, p-value: < 2.2e-16

We can calculate the F -statistic easily via:

rss.M = sum((M$residuals)^2)

rss.M

## [1] 101.4556

p = 3

rss.m = sum((m$residuals)^2)

rss.m

## [1] 102.5671

q = 2

n = nrow(wages)

F = ((rss.m - rss.M)/(p - q))/(rss.M/(n - p - 1))

F
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## [1] 5.718971

The distribution of F -statistic under the null hypothesis is given by the F -distribution
with degrees of freedom equal to p− q and n− p− 1. This density looks like

d1 = p - q

d2 = n - p - 1

xx = seq(0, 10, 0.01)

plot(xx, df(xx, d1, d2), type = "l", xlab = "x", ylab = "F-density")

abline(v = F)

It seems that the observed F -statistic is quite extreme compared to the null den-
sity. We can get a numerical quantification of this extremeness by computing the
probability that the null distribution is larger than the observed F -statistic. This
gives us the p-value for testing the null hypothesis.

1 - pf(F, d1, d2)

## [1] 0.01713562

We get a p-value of 0.0171 which is small (smaller than the usual cutoff of 0.05).
We would therefore reject the null hypothesis of β2 = 0. This means that even after
controlling for educ and tenure, the explanatory variable exper still has an effect on
the response.
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The p-value for testing the null hypothesis H0 : β2 = 0 can also be obtained from
the lm() summary for the model M in R.

summary(M)

##

## Call:

## lm(formula = lwage ~ educ + exper + tenure, data = wages)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.05802 -0.29645 -0.03265 0.28788 1.42809

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.284360 0.104190 2.729 0.00656 **

## educ 0.092029 0.007330 12.555 < 2e-16 ***

## exper 0.004121 0.001723 2.391 0.01714 *

## tenure 0.022067 0.003094 7.133 3.29e-12 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4409 on 522 degrees of freedom

## Multiple R-squared: 0.316,Adjusted R-squared: 0.3121

## F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16

Note the value 0.01714 appearing as the p-value corresponding to the variable
exper. This p-value can also be calculated using a t-distribution. The idea is that the
estimate of β2 divided by its standard error follows the t-distribution with degrees of
freedom equal to n− p− 1.

5.5 The anova function in R

Hypothesis testing is so common that R has an inbuilt function for doing this (you
do not have to manually compute the F -statistic and the p-value everytime). This is
the anova function and it works in the following very simple way. You simply type
in anova(m,M) in R and it gives all the necessary information for carrying out the
test.
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anova(m, M)

## Analysis of Variance Table

##

## Model 1: lwage ~ educ + tenure

## Model 2: lwage ~ educ + exper + tenure

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 523 102.57

## 2 522 101.46 1 1.1115 5.719 0.01714 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let us now revisit our remaining three examples and test the associated null
hypothesis in each of them via the anova() function.

5.5.1 Example Two

In the campus dataset, we fit a linear regression equation to lcrime (response) using
the explanatory variables lenroll and lpolice. This is the model M .

M = lm(lcrime ~ lenroll + lpolice, data = campus)

In this model, we want to test the null hypothesis H0 : β1 = 1. This null hypothesis
corresponds to the model m given by

m = lm(lcrime ~ offset(1 * lenroll) + lpolice, data = campus)

The null hypothesis H0 can then be tested via

anova(m, M)

## Analysis of Variance Table

##

## Model 1: lcrime ~ offset(1 * lenroll) + lpolice

## Model 2: lcrime ~ lenroll + lpolice

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 95 67.589

## 2 94 67.387 1 0.20249 0.2825 0.5963
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This p-value is quite large (0.5963) so we cannot reject the null hypothesis that
β1 = 1.

5.5.2 Example Three

For the “twoyear” data, we fit a regression equation M to log(wage) in terms of jc
(number of years in junior college), univ (number of years in university) and exper
(number of years in the workforce). This the model M .

M = lm(lwage ~ jc + univ + exper, data = ty)

We want to test the null hypothesis H0 : β1 = β2. This null hypothesis corresponds
to the submodel:

m = lm(lwage ~ I(jc + univ) + exper, data = ty)

The test can be done by

anova(m, M)

## Analysis of Variance Table

##

## Model 1: lwage ~ I(jc + univ) + exper

## Model 2: lwage ~ jc + univ + exper

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 6760 1250.9

## 2 6759 1250.5 1 0.39853 2.154 0.1422

The p-value is large so we cannot reject the null hypothesis which means that there
is not enough evidence to believe that the effects of junior college and university are
different in terms of wages.

5.5.3 Example Four

For the baseball data, we fit a regression equation for log(salary) based on years
(number of years in league), gamesyr (average number of games played per year),
bavg (career batting average), hrunsyr (home runs per year) and rbisyr (runs batted
in per year). This is the model M :
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M = lm(lsalary ~ years + gamesyr + bavg + hrunsyr +

rbisyr, data = bb)

We wanted to test the hypothesis that the betas corresponding to bavg, hrunsyr
and rbisyr are all simultaneously zero. This corresponds to the submodel:

m = lm(lsalary ~ years + gamesyr, data = bb)

And the test is done via

anova(m, M)

## Analysis of Variance Table

##

## Model 1: lsalary ~ years + gamesyr

## Model 2: lsalary ~ years + gamesyr + bavg + hrunsyr + rbisyr

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 350 198.31

## 2 347 183.19 3 15.125 9.5503 4.474e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value is very small which means that we would reject the null hypothesis.
Therefore performance does count towards salary.

5.6 One sided vs Two sided p-values

When the null hypothesis is of the form H0 : β1 = 0, the alternative hypothesis H1 is
either H1 : β1 6= 0 or H1 : β1 > 0. We use the second option here (H1 : β1 > 0) when
we believe that the effect of the variable x1 on the response cannot be negative. The
p-value given by the anova() function applies to the two sided alternative H1 : β1 6= 0
and not to the one sided alternative H1 : β1 > 0. If we want to test the one-sided
alternative, then we have to divide the p-value given by the anova() function by 2.

5.7 The F -statistic given by R in summary()

In every summary of a linear model in R, there is an F -statistic value together with
degrees of freedom and p-value in the last line. This F -statistic corresponds to the
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problem of testing H0 : β1 = · · · = βp = 0 i.e., that all the explanatory variables can
be thrown out of the regression equation.

For example in the baseball dataset,

M = lm(lsalary ~ years + gamesyr + bavg + hrunsyr +

rbisyr, data = bb)

summary(M)

##

## Call:

## lm(formula = lsalary ~ years + gamesyr + bavg + hrunsyr + rbisyr,

## data = bb)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.02508 -0.45034 -0.04013 0.47014 2.68924

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.119e+01 2.888e-01 38.752 < 2e-16 ***

## years 6.886e-02 1.211e-02 5.684 2.79e-08 ***

## gamesyr 1.255e-02 2.647e-03 4.742 3.09e-06 ***

## bavg 9.786e-04 1.104e-03 0.887 0.376

## hrunsyr 1.443e-02 1.606e-02 0.899 0.369

## rbisyr 1.077e-02 7.175e-03 1.500 0.134

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.7266 on 347 degrees of freedom

## Multiple R-squared: 0.6278,Adjusted R-squared: 0.6224

## F-statistic: 117.1 on 5 and 347 DF, p-value: < 2.2e-16

The F -statistic reported in the last line of the output above is 117.1 with degrees
of freedom 5 and 347 along with the p-value < 2.2 × 10−16. This corresponds to
testing the null hypothesis H0 : β1 = · · · = βp. We can test this hypothesis using
anova function via

m = lm(lsalary ~ 1, data = bb)

summary(m)

##
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## Call:

## lm(formula = lsalary ~ 1, data = bb)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.89308 -1.04867 -0.06971 1.13426 2.16850

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 13.49218 0.06294 214.4 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.182 on 352 degrees of freedom

anova(m, M)

## Analysis of Variance Table

##

## Model 1: lsalary ~ 1

## Model 2: lsalary ~ years + gamesyr + bavg + hrunsyr + rbisyr

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 352 492.18

## 2 347 183.19 5 308.99 117.06 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is quite rare to have a regression where this p-value is not very small.

5.8 Standard Errors, Confidence Intervals and Prediction In-
tervals

Recall that the coefficients b0, b1, . . . , bp in the regression given by R provide estimates
of the unknown parameters β0, . . . , βp. The accuracies of these estimates can be
gauged by their standard errors. These standard errors are reported in a column next
to the estimates in the summary output in R. The smaller the standard error, the
more accurate the estimate. The standard errors reported by R are computed under
the assumptions of the multiple linear regression model (the details can be learned
from more advanced classes).
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body = read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T)

md = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

summary(md)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

Note that the standard errors corresponding to the different variables (and the
intercept) reported above are all different. This means that the accuracies of the
different coefficient estimates are different.

It turns out that, under the assumptions of the multiple linear regression model,

bj − βj
std. error ofbj

∼ tn−p−1. (15)

Here bj is the regression coefficient estimate given by R (the denominator above is
the standard error of bj reported by R) and βj is the unknown regression coefficient.
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Also tn−p−1 is the t-distribution with n− p− 1 degrees of freedom. The fact (15) can
be used to test the hypothesis H0 : βj = 0 (or any hypothesis of the form H1 : βj = c
for some c). This presents an alternative to the F -test. The two tests are always
exactly the same though.

The t-value reported by R is simply the ratio of bj and its standard error. The
p-value is computed by the probability that a t-distribution with n− p− 1 degrees of
freedom exceeds the observed t-statistic.

A 95% confidence interval for the unknown coefficient βj is computed via:

[bj − (t.cut.off) ∗ std. error of bj, bj + (t.cut.off) ∗ std. error of bj]

where t.cut.off is the cut-off for the t-distribution with n− p− 1 degrees of freedom
which can be computed in R via qt(0.975, n− p− 1). As long as n− p− 1 is not too
small, the t.cut.off will be quite close to 2.

n = nrow(body)

p = 7

t.cut.off = qt(0.975, (n - p - 1))

t.cut.off

## [1] 1.969734

lci = 0.9685 - t.cut.off * (0.08531)

uci = 0.9685 + t.cut.off * (0.08531)

c(lci, uci)

## [1] 0.800462 1.136538

The confidence intervals for all the β-coefficients can be obtained in R by the
command confint():

confint(md)

## 2.5 % 97.5 %

## (Intercept) -66.02663751 -8.92482947

## AGE -0.04577114 0.06980505

## WEIGHT -0.22800670 -0.05039445

## HEIGHT -0.29563565 0.08993870

## CHEST -0.19757912 0.19591678
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## ABDOMEN 0.80042723 1.13649684

## HIP -0.46849414 0.10177426

## THIGH 0.01747363 0.55397187

Now let us come to prediction. Suppose now that we are asked to predict the
bodyfat percentage of an individual who is 30 years of age, 180 pounds in weight, 70
inches tall and whose chest circumference is 95 cm, abdomen circumference is 90 cm,
hip circumference is 100 cm and thigh circumference is 60 cm. We can use our linear
regression to predict this individual’s bodyfat percentage as:

x0 = c(1, 30, 180, 70, 95, 90, 100, 60)

pred.bodyfat = sum(x0 * md$coefficients)

pred.bodyfat

## [1] 16.51927

There are two intervals associated with prediction:

1. Confidence intervals for the average response. This gives a confidence interval
for the average bodyfat percentage for all individuals who are 30 years of
age, 180 pounds in weight, 70 inches tall and whose chest circumference is 95
cm, abdomen circumference is 90 cm, hip circumference is 100 cm and thigh
circumference is 60 cm.

2. Confidence intervals for a particular individual. This gives a confidence interval
for the body fat percentage of a particular individual with those explanatory
variable values. This type of interval is called a prediction interval.

These intervals are obtained in R via the predict function.

x0 = data.frame(AGE = 30, WEIGHT = 180, HEIGHT = 70,

CHEST = 95, ABDOMEN = 90, HIP = 100, THIGH = 60)

predict(md, x0, interval = "confidence")

## fit lwr upr

## 1 16.51927 15.20692 17.83162

predict(md, x0, interval = "prediction")

## fit lwr upr

## 1 16.51927 7.678715 25.35983
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Note that the prediction interval is much wider compared to the confidence interval
for average response.

6 Variable Selection

Consider a regression problem with a response variable y and p explanatory variables
x1, . . . , xp. Should we just go ahead and fit a linear model to y with all the p ex-
planatory variables or should we throw out some unnecessary explanatory variables
and then fit a linear model for y based on the remaining variables? One often does
the latter in practice. The process of selecting important explanatory variables to
include in a regression model is called variable selection. The following are reasons
for performing variable selection:

1. Removing unnecessary variables results in a simpler model. Simpler models are
always preferred to complicated models.

2. Unnecessary explanatory variables will add noise to the estimation of quantities
that we are interested in.

3. Collinearity is a problem with having too many variables trying to do the same
job.

4. We can save time and/or money by not measuring redundant explanatory vari-
ables.

There are two broad ways of performing variable selection in linear models:

1. Stepwise regression based on p-values

2. Criteria based Variable Selection

We shall illustrate variable selection procedures using the following dataset (which
is available in R from the “faraway” package). The material below is mostly taken
from the book on linear models by Julian Faraway.

library(faraway)

data(seatpos)

names(seatpos)

## [1] "Age" "Weight" "HtShoes" "Ht" "Seated" "Arm"

## [7] "Thigh" "Leg" "hipcenter"
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pairs(seatpos)

g = lm(hipcenter ~ ., seatpos)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ ., data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -73.827 -22.833 -3.678 25.017 62.337

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 436.43213 166.57162 2.620 0.0138 *

## Age 0.77572 0.57033 1.360 0.1843

## Weight 0.02631 0.33097 0.080 0.9372

## HtShoes -2.69241 9.75304 -0.276 0.7845

## Ht 0.60134 10.12987 0.059 0.9531

## Seated 0.53375 3.76189 0.142 0.8882

## Arm -1.32807 3.90020 -0.341 0.7359

## Thigh -1.14312 2.66002 -0.430 0.6706

## Leg -6.43905 4.71386 -1.366 0.1824

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 37.72 on 29 degrees of freedom

## Multiple R-squared: 0.6866,Adjusted R-squared: 0.6001

## F-statistic: 7.94 on 8 and 29 DF, p-value: 1.306e-05

Note that the overall p-value reported for the F -statistic in the summary is almost
zero but none of the p-values for the individual explanatory variables is small.

7 Stepwise Regression Methods based on p-values

The two main stepwise regression methods are backward elimination and forward
selection.

7.1 Backward Elimination

1. Start with all the explanatory variables in the model.

2. Remove the explanatory variable with highest p-value larger than a critical
value.

3. Refit the model and go to the previous step.

4. Stop when all the p-values are less than the critical value.

In the car seat position data, the highest p-value in the full regression equation
corresponded to the variable Ht. So we can remove it first from the full regression.
We will use the update() function for this purpose.

g <- update(g, . ~ . - Ht)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ Age + Weight + HtShoes + Seated + Arm +

## Thigh + Leg, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -74.107 -22.467 -4.207 25.106 62.225

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 436.84207 163.64104 2.670 0.0121 *

## Age 0.76574 0.53590 1.429 0.1634

## Weight 0.02897 0.32244 0.090 0.9290

## HtShoes -2.13409 2.53896 -0.841 0.4073

## Seated 0.54959 3.68958 0.149 0.8826

## Arm -1.30087 3.80833 -0.342 0.7350

## Thigh -1.09039 2.46534 -0.442 0.6615

## Leg -6.40612 4.60272 -1.392 0.1742

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 37.09 on 30 degrees of freedom

## Multiple R-squared: 0.6865,Adjusted R-squared: 0.6134

## F-statistic: 9.385 on 7 and 30 DF, p-value: 4.014e-06

g <- update(g, . ~ . - Weight)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ Age + HtShoes + Seated + Arm + Thigh +

## Leg, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -74.263 -22.571 -4.842 24.647 61.926

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 427.5073 124.3877 3.437 0.0017 **

## Age 0.7757 0.5158 1.504 0.1427

## HtShoes -2.0823 2.4329 -0.856 0.3986

## Seated 0.5858 3.6083 0.162 0.8721

## Arm -1.2826 3.7415 -0.343 0.7341

## Thigh -1.1153 2.4101 -0.463 0.6468

## Leg -6.3572 4.4966 -1.414 0.1674

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Guntuboyina & Purdom #5, Spring 2017, STAT 28 81



## Residual standard error: 36.49 on 31 degrees of freedom

## Multiple R-squared: 0.6864,Adjusted R-squared: 0.6257

## F-statistic: 11.31 on 6 and 31 DF, p-value: 1.122e-06

g <- update(g, . ~ . - Seated)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ Age + HtShoes + Arm + Thigh + Leg, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -73.966 -22.403 -4.725 24.989 60.834

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 436.5463 109.5266 3.986 0.000365 ***

## Age 0.7667 0.5049 1.518 0.138717

## HtShoes -1.7716 1.4786 -1.198 0.239648

## Arm -1.3390 3.6683 -0.365 0.717498

## Thigh -1.1983 2.3193 -0.517 0.608955

## Leg -6.4910 4.3527 -1.491 0.145686

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 35.93 on 32 degrees of freedom

## Multiple R-squared: 0.6862,Adjusted R-squared: 0.6371

## F-statistic: 13.99 on 5 and 32 DF, p-value: 2.823e-07

g <- update(g, . ~ . - Arm)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ Age + HtShoes + Thigh + Leg, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -77.069 -24.643 -3.584 26.092 59.182

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 445.7977 105.1452 4.240 0.00017 ***

## Age 0.6525 0.3910 1.669 0.10462

## HtShoes -1.9171 1.4050 -1.365 0.18164

## Thigh -1.3732 2.2392 -0.613 0.54391

## Leg -6.9502 4.1118 -1.690 0.10040

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 35.46 on 33 degrees of freedom

## Multiple R-squared: 0.6849,Adjusted R-squared: 0.6467

## F-statistic: 17.93 on 4 and 33 DF, p-value: 6.535e-08

g <- update(g, . ~ . - Thigh)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ Age + HtShoes + Leg, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -79.269 -22.770 -4.342 21.853 60.907

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 456.2137 102.8078 4.438 9.09e-05 ***

## Age 0.5998 0.3779 1.587 0.1217

## HtShoes -2.3023 1.2452 -1.849 0.0732 .

## Leg -6.8297 4.0693 -1.678 0.1024

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 35.13 on 34 degrees of freedom

## Multiple R-squared: 0.6813,Adjusted R-squared: 0.6531

## F-statistic: 24.22 on 3 and 34 DF, p-value: 1.437e-08

g <- update(g, . ~ . - Age)

summary(g)

##
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## Call:

## lm(formula = hipcenter ~ HtShoes + Leg, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -89.713 -25.787 2.549 18.445 71.735

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 493.794 102.192 4.832 2.66e-05 ***

## HtShoes -2.496 1.266 -1.971 0.0566 .

## Leg -6.369 4.146 -1.536 0.1335

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 35.88 on 35 degrees of freedom

## Multiple R-squared: 0.6577,Adjusted R-squared: 0.6381

## F-statistic: 33.62 on 2 and 35 DF, p-value: 7.132e-09

g <- update(g, . ~ . - Leg)

summary(g)

##

## Call:

## lm(formula = hipcenter ~ HtShoes, data = seatpos)

##

## Residuals:

## Min 1Q Median 3Q Max

## -99.981 -27.150 2.983 22.637 73.731

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 565.5927 92.5794 6.109 4.97e-07 ***

## HtShoes -4.2621 0.5391 -7.907 2.21e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 36.55 on 36 degrees of freedom

## Multiple R-squared: 0.6346,Adjusted R-squared: 0.6244

## F-statistic: 62.51 on 1 and 36 DF, p-value: 2.207e-09
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The critical value is sometimes called the p-to-remove and does not always have
to be 0.05. If prediction performance is the goal, then a 0.15-0.20 cut-off may work
best, although methods designed more directly for optimal prediction (such as cross-
validation discussed later) should be preferred.

What model will we end up with if we chose the critical value to be 0.15? 0.20?

7.2 Forward Selection

This just reverses the backward method:

1. Start with no variables in the model.

2. For all predictors not in the model, check their p-value if they are added to the
model. Choose the one with lowest p-value less than the critical value.

3. Continue until no new predictors can be added.

This can be easily done in any regression. For example, in the car seat position
data, we can do the following:

for (i in 1:8) {
g1 <- lm(hipcenter ~ ., seatpos[, c(i, 9)])

print((summary(g1))$coef)

}

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -192.964532 24.3015104 -7.940434 1.997902e-09

## Age 0.796289 0.6330851 1.257791 2.165650e-01

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.242164 34.0562959 0.03647384 9.711060e-01

## Weight -1.067438 0.2134036 -5.00196673 1.493391e-05

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 565.592659 92.5794472 6.109268 4.966825e-07

## HtShoes -4.262091 0.5390607 -7.906513 2.206673e-09

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 556.255344 90.6704339 6.134914 4.590529e-07

## Ht -4.264977 0.5351079 -7.970312 1.830624e-09

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 621.823241 122.488378 5.076590 1.188644e-05

## Seated -8.844124 1.374951 -6.432321 1.844619e-07
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## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 168.5938 77.445423 2.176936 0.0361229045

## Arm -10.3514 2.391242 -4.328881 0.0001142407

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 186.890582 80.373022 2.325290 2.580801e-02

## Thigh -9.100325 2.069128 -4.398145 9.290168e-05

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 335.35118 65.601153 5.111971 1.066600e-05

## Leg -13.79461 1.801321 -7.658051 4.587375e-09

for (i in c(1:3, 5:8)) {
g2 <- lm(hipcenter ~ ., seatpos[, c(i, 4, 9)])

print((summary(g2))$coef)

}

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 526.9588909 92.2478769 5.712423 1.848352e-06

## Age 0.5210614 0.3862472 1.349036 1.859889e-01

## Ht -4.2003806 0.5312787 -7.906172 2.691691e-09

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 589.9005691 127.4824497 4.6273081 4.918677e-05

## Weight 0.1148334 0.3020236 0.3802135 7.060846e-01

## Ht -4.5696588 0.9671936 -4.7246577 3.675055e-05

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 552.568840 95.754525 5.7706812 1.548571e-06

## HtShoes 1.230074 8.937649 0.1376284 8.913228e-01

## Ht -5.490019 8.917605 -0.6156382 5.421163e-01

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 538.486199 112.509336 4.7861468 3.055654e-05

## Seated 0.903040 3.301534 0.2735214 7.860601e-01

## Ht -4.634962 1.457264 -3.1805911 3.074214e-03

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 560.2221531 93.4055743 5.9977379 7.774137e-07

## Arm 0.6441307 2.7270290 0.2362024 8.146525e-01

## Ht -4.4111641 0.8228605 -5.3607676 5.378845e-06

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 555.6572893 92.5218032 6.00569023 7.588931e-07

## Thigh -0.1346205 2.3075402 -0.05833939 9.538101e-01

## Ht -4.2306633 0.8002714 -5.28653594 6.737776e-06

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 491.243757 99.543358 4.934973 1.952182e-05

## Leg -6.135518 4.164051 -1.473449 1.495675e-01

## Ht -2.564612 1.268480 -2.021799 5.089444e-02
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7.3 Other Stepwise Regression Methods

There are several other stepwise regression methods. These are all combinations of
backward elimination and forward selection. These might be better than backward
elimination or forward selection by addressing the situation where variables are added
or removed early in the process and we want to change our mind about them later.
At each stage a variable may be added or removed and there are several variations
on exactly how this is done.

7.4 Drawbacks of Stepwise Regression based on p-values

Stepwise procedures based on p-values are relatively cheap computationally but they
do have the following drawbacks:

1. Because of the one-at-a-time nature of adding/dropping variables, it is possible
to miss the optimal model.

2. It is difficult to justify the reliance on p-values for variable selection.

3. The procedures are not directly linked to final objectives of prediction or expla-
nation and so may not really help solve the problem of interest.

7.5 Criteria based variable selection

With p explanatory variables, there are 2p possible linear regression models that one
can fit to the data. A natural idea is to select a performance criterion and compare
all the 2p models according to this criterion and choose the model with optimizes the
criterion. What is a natural criterion to use?

A first choice for the criterion is the RSS (Residual Sum of Squares). The RSS is
indeed a commonly used measure of the performance of a regression model. However
it is not a good criterion for variable selection because it will always choose the full
model. This is because RSS decreases as one increases the number of explanatory
variables. However, RSS is a natural criterion to use when comparing models having
the same number of explanatory variables.

A function in R that is useful for variable selection is regsubsets in the R package
leaps. For each value of k = 1, . . . , p, this function gives the best model with k
variables according to the residual sum of squares.
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library(leaps)

b = regsubsets(hipcenter ~ ., seatpos)

rs = summary(b)

rs$which

## (Intercept) Age Weight HtShoes Ht Seated Arm Thigh Leg

## 1 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

## 2 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

## 3 TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

## 4 TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE

## 5 TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE

## 6 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE

## 7 TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

## 8 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

This output should be interpreted in the following way. The best model with one
explanatory variable (let us denote this by M1) is the model with Ht. The best model
with two explanatory variables (denoted by M2) is the one involving Ht and Leg. The
model with three explanatory variables (M3) involves Age, Ht and Leg. And so on.
Here best is in terms of RSS. This gives us 8 regression models: M1,M2, . . . ,M8. The
model M8 is the full regression model involving all the explanatory variables.

The key question now is: how does not compare the eight models M1, . . . ,M8?
Note that we can no longer use RSS because that would simply give M8. Cross-
validation is a natural tool here.

The idea behind cross validation is the following. It is sensible to pick, among
the models M1, . . . ,M8, the model which has the best predictive performance. If
we had access to future data, we can evaluate our models based on their predictiver
performance on that future data. How can we do this based on existing data alone?

Let m denote one of the eight models (or any other regression model m). For
example, suppose m is the regression model involving all the explanatory variables or
only the variables Age, Ht and Leg. How do we measure the predictive performance
of m? Here is a simple idea: For each i = 1, . . . , n, fit the model m to the (n − 1)
observations obtained by excluding the ith observation. Predict the response for the
ith observation using this model m and the values of the explanatory variables for
the ith observation. Record the prediction error. Do this for each i = 1, . . . , n and
then add the squares of the prediction errors. This gives the Leave One Out Cross
Validation Score for the model m. Pick the model m for which this score is the
smallest.

For the car seat position dataset, the Leave One Out Cross Validation Score for
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the model using all the variables is:

n <- nrow(seatpos)

pred.y <- rep(NA, n)

for (i in 1:nrow(seatpos)) {
g <- lm(hipcenter ~ ., seatpos, subset = (1:n)[-i])

pred.y[i] <- predict(g, seatpos[i, -9])

}
cv.err.full <- sum((seatpos[, 9] - pred.y)^2)

cv.err.full

## [1] 75065.76

On the other hand, the Leave One Out Cross Validation Score for the model M3

which uses only the variables Age, Ht and Leg is

for (i in 1:nrow(seatpos)) {
g <- lm(hipcenter ~ Age + Ht + Leg, seatpos, subset = (1:n)[-i])

pred.y[i] <- predict(g, seatpos[i, c("Age", "Ht",

"Leg")])

}
cv.err.Age.Ht.Leg <- sum((seatpos[, 9] - pred.y)^2)

cv.err.Age.Ht.Leg

## [1] 53794.79

Clearly the cross validation score of the second model is much smaller. We can
therefore compute the cross validation score of all the eight models M1, . . . ,M8 and
then pick the model which has the smallest cross-validation score.

8 Regression Diagnostics

Our final topic in multiple regression is regression diagnostics. The inference pro-
cedures that we talked about work under the assumptions of the linear regression
model. If these assumptions are violated, then our hypothesis tests, standard errors
and confidence intervals will not be violated. Regression diagnostics enable us to
diagnose if the model assumptions are violated or not.

The assumptions in the regression model are:
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1. Linearity: the response is linearly related to the explanatory variables.

2. Homoscedasticity: the errors have the same variance.

3. Normality: the errors have the normal distribution.

4. All the observations obey the same model (i.e., there are no outliers or excep-
tional observations).

These assumptions can be checked by essentially looking at the residuals:

1. Linearity: The residuals represent what is left in the response variable after the
linear effects of the explanatory variables are taken out. So if there is a non-
linear relationship between the response and one or more of the explanatory
variables, the residuals will be related non-linearly to the explanatory variables.
This can be detected by plotting the residuals against the explanatory variables.
It is also common to plot the residuals against the fitted values. Note that one
can also detect non-linearity by simply plotting the response against each of the
explanatory variables.

2. Homoscedasticity: Heteroscedasticity can be checked again by plotting the
residuals against the explanatory variables and the fitted values. It is common
here to plot the absolute values of the residuals or the square root of the absolute
values of the residuals.

3. Normality: Detected by the normal Q-Q plot of the residuals.

4. Outliers: Detected by large (in absolute value) residuals. There is a notion
called Cook’s distance which detects by how much the regression coefficients
change if a particular observation is removed. Outliers typically will have either
large (in absolute value) residuals and/or large Cook’s distance.

Consider the bodyfat dataset.

body = read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T)

md = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)

summary(md)

##

## Call:

## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

## HIP + THIGH, data = body)
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##

## Residuals:

## Min 1Q Median 3Q Max

## -11.0729 -3.2387 -0.0782 3.0623 10.3611

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *

## AGE 1.202e-02 2.934e-02 0.410 0.68246

## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **

## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438

## CHEST -8.312e-04 9.989e-02 -0.008 0.99337

## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***

## HIP -1.834e-01 1.448e-01 -1.267 0.20648

## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.438 on 244 degrees of freedom

## Multiple R-squared: 0.7266,Adjusted R-squared: 0.7187

## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

A simple way for doing regression diagnostics is to use the plot(md) comment in
R:

par(mfrow = c(2, 2))

plot(md)
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par(mfrow = c(1, 1))

The first plot is the residuals plotted against the fitted values. The points should
look like a random scatter with no discernible pattern. Non-linearity (if exists) will
be visible in this plot.

The second plot is the normal Q-Q plot. If the normal assumption holds, then
the points should be along the line here.

The third plot is called the Scale-Location plot. It plots the square root of the
absolute value of the residuals (actually standardized residuals but these are similar
to the residuals) against the fitted values. Any increasing or decreasing pattern in
this plot indicates heteroscedasticity.

The final plot is used for detecting outliers and other exceptional observations.
The x-axis is called leverage (we will not discuss this here); the y-axis is standardized
residuals. This flags observations that are potential outliers. Three points flagged
here are observations 39, 42 and 36. Let us look at these observations separately:

body[c(39, 42, 36), ]

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH

## 39 35.2 46 363.15 72.25 136.2 148.1 147.7 87.3

## 42 32.9 44 205.00 29.50 106.0 104.3 115.5 70.6

## 36 40.1 49 191.75 65.00 118.5 113.1 113.8 61.9

apply(body, 2, mean)

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP

## 19.15079 44.88492 178.92440 70.14881 100.82421 92.55595 99.90476

## THIGH

## 59.40595

The observation 39 is certainly an outlier. Observation 42 seems to have an er-
roneous height recording. Observation 36 has high values for chest, abdomen and
hip circumference values and also a high value for the response. When outliers are
detected, one should perform the regression analysis after dropping the outlying ob-
servations. After this, one needs to decide whether to report the analysis with the
outliers or without them.

Guntuboyina & Purdom #5, Spring 2017, STAT 28 92



Let us now look at some simulation examples. In the next example, the response
is related non-linearly to x.

n = 200

xx = 3 + 4 * abs(rnorm(n))

yy = -2 + 0.5 * xx^(1.85) + rnorm(n)

m1 = lm(yy ~ xx)

par(mfrow = c(2, 2))

plot(m1)

par(mfrow = c(1, 1))

plot(yy ~ xx)
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Non-linearity is fixed by adding non-linear functions of explanatory variables as
additional explanatory variables. In this example, for instance, we can add x2 as an
additional explanatory variable.

m2 = lm(yy ~ xx + I(xx^2))

summary(m2)

##

## Call:

## lm(formula = yy ~ xx + I(xx^2))

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.00815 -0.57585 -0.05844 0.60106 2.65706

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.840658 0.410884 -6.914 6.42e-11 ***

## xx 0.690140 0.115226 5.989 9.83e-09 ***

## I(xx^2) 0.289921 0.007278 39.835 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.9643 on 197 degrees of freedom

## Multiple R-squared: 0.9951,Adjusted R-squared: 0.9951

## F-statistic: 2.004e+04 on 2 and 197 DF, p-value: < 2.2e-16

par(mfrow = c(2, 2))

plot(m2)
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par(mfrow = c(1, 1))

Next let us consider an example involving heterscedasticity.

n = 200

xx = 3 + 4 * abs(rnorm(n))

yy = -2 + 5 * xx + (xx^(1.5)) * rnorm(n)

m1 = lm(yy ~ xx)

par(mfrow = c(2, 2))

plot(m1)
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par(mfrow = c(1, 1))

plot(yy ~ xx)

Heteroscedasticity is a little tricky to handle in general. If all the response values
are positive, heteroscedasiticity is often fixed by fitting a regression equation to the
logarithm or square root of the response variable.

Guntuboyina & Purdom #5, Spring 2017, STAT 28 96


