
Comparing Groups and Hypothesis Testing

We’ve mainly reviewed about informally comparing the distribution of data in
different groups. Now we want to review the tools you know about how use statistics
to make this more formal – specifically to quantify whether the differences we see are
due to natural variability or something deeper.

We will first review the techniques from Data 8 in the setting of comparing two
groups which you’ve already seen. This review is to refresh your memory, but also
has the following goals to look for:

• abstract the ideas of hypothesis testing, in particular what it means to be
“valid”, what makes a good procedure

• dig a little deeper as to what assumptions we are making in using a particular
test

• Introduce parametric ideas of hypothesis testing

The Question Recall the airline data, with different airline carriers. We could
ask the question about whether the distribution of flight delays is different between
carriers. If we wanted to ask whether United was more likely to have delayed flights
than American Airlines, how might we quantify this?

What happens here when I take the mean of all our observations?

flightSubset <- flightSFOSRS[flightSFOSRS$Carrier %in%

c("UA", "AA"), ]

mean(flightSubset$DepDelay)

## [1] NA

We can use a useful function ‘tapply’ that will do calculations by group.
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## AA UA

## NA NA

## AA UA

## 7.728294 12.255649

## AA UA

## 7.728294 12.255649

## AA UA

## 7.728294 12.255649

## AA UA

## -2 -1

## AA UA

## 0.3201220 0.4383791

## AA UA

## 0.1554878 0.2046216

## AA UA

## 0.005081301 0.007032820

These are statistics that we can calculate from the data. A statistic is any
function of the input data sample.

Once we’ve decided on a statistic, we want to ask whether this is a meaningful
difference between our groups. Specifically, with different data samples, the statistic
would change. Inference is the process of using statistical tools to evaluate whether
the statistic observed indicates some kind of actual difference, or whether we could
see such a value due to random chance even if there was no difference.

Therefore, to use the tools of statistics – to say something about the generating
process – we must have be able to define a random process that we posit created the
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data.

1 Hypothesis Testing

Recall the components of hypothesis testing. Hypothesis testing sets up a null
hypothesis which describes a random process that could have created any differences
we see in our the flight delays (as measured by our statistic). The null hypothesis
makes specific the qualitative question “this difference might be just due to chance”.
There are a lot of ways “chance” could have created differences, and a null hypothesis
makes it specific, to the point of defining the specific probability distribution that
describes the distribution of the statistic if the null hypothesis of no effect was true
(the null distribution).

How do we determine whether the statistic is too unlikely under the null distribu-
tion? We calculate the probability (under the null distribution) of getting a statistic
as extreme as we saw or more extreme under the null hyptothesis. This is called a
p-value.

If the observed statistic is too unlikely under the null hypothesis we can say we
reject the null hypothesis or that we have a statistically significant difference.

1.1 Where did the data come from? Valid tests & Assump-
tions

Just because a p-value is reported, doesn’t mean that you can interpret it as a p-
value. You must have a valid test. A valid test simply means that the p-value (or
level) that you report is accurate. This is only true if the null distribution of the test
statistic is correctly identified. To use the tools of statistics, we must assume some
kind of random process created the data. When your data violates the assumptions
of the data generating process, your p-value can be quite wrong. Sometimes we can
know these assumptions are true, but often not; knowing where your data came from
and how it is collected is critical for assessing these questions. So we need to always
think deeply about where the data come from, how they were collected, etc.

Complete Census For example, for the airline data, we have one dataset that gives
complete information about the month of January. We can ask questions about flights
in January, and get the answer by calculating the relevant statistics. For example, if
we want to know whether the average flight is more delayed on United than American,
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we calculate the means of both groups and simply compare them. End of story. We
don’t need the inference tools from above

Types of Samples For most of statistical applications, this is not the case. We
have a sample of the entire population, and want to make statements about the entire
population which we don’t see. Notice that having a sample does not necessarily mean
a random sample. For example, we have all of January which is a sample from the
entire year, and there is no randomness involved in how we selected the data from the
larger population. Some datasets might be a sample of the population with no easy
way to describe the relationship between the sample and the population, for example
data from volunteers or other convenience samples that pick the easiest to get data
rather than randomly sampling from the population. Having such data can make it
quite fraught to try to make any conclusions about the population from the sample.

What problems do you have in trying to use the flight data on January to estimate
something about the entire year?

What would be a better way to get flight data?

We discussed this issue for estimating histograms, where our histogram is a good
estimate of the population when our data is a SRS, and otherwise may be quite off
base. For example, here is the difference in our density estimates for three different
kinds of sampling:
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Recall there, that we said there we could find good estimates for other kind of
random samples, though beyond the reach of this course. The key ingredient that is
needed is to know the probability mechanism that drew the samples. This is the key
difference between a random sample (of any kind) and a sample of convenience.

Assumptions versus reality A prominent statistician, George Box, gave the fol-
lowing famous quote,

All models are wrong but some are useful

All tests have assumptions, and most are often not met in practice. This is
a continual problem in interpreting the results of statistical methods. Therefore
there is a great deal of interest in understanding how badly the tests perform if the
assumptions are violated; this is often called being robust to violations. We will
try to emphasize both what the assumptions are, and how bad violations to the
assumptions are.

For example, in practice, much of data that is available is not a random sample
of the population, and therefore a sample of convenience in some sense (there’s a
reason we call them convenient!). Our goal is not to make say that impossible, but
make clear why this might make you want to be cautious about over-interpreting the
results.

2 Permutation Tests

The first statistical testing procedure you learned in Data 8 was permutation tests.
Suppose we want to compare the median delay time of United and American airlines.

The distribution for the test statistic under the null hypothesis for a permutation
tests is determined by assuming

1. There is no difference between the distribution of the flight delays between the
two airlines,

H0 : FUnited = FAmerican

This is often written as the null hypothesis (H0) – the main point of the null to
be tested

2. The statistic observed is the result of randomly assigning the labels amongst
the observed data This is the additional assumption about the random process
that allows for calculating a precise null distribution of the statistic
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The permutation test uses both of these assumptions to define “by chance” by assum-
ing the data we saw we would have seen anyway even if we changed the labels (i.e.
United or American). Therefore, any difference we might see between the groups is
due to the luck of random permutation of the labels.

2.1 How do we implement it?

This is just words. We need to actually be able to compute probabilities under a
specific distribution. How do you actually determine the null distribution for permu-
tation tests?

First we write a function for doing permutation testing

permutation.test <- function(group1, group2, FUN, repetitions) {
stat.obs <- FUN(group1, group2)

makePermutedStats <- function() {
sampled <- sample(1:length(c(group1, group2)),

size = length(group1), replace = FALSE)

return(FUN(c(group1, group2)[sampled], c(group1,

group2)[-sampled]))

}
stat.permute <- replicate(repetitions, makePermutedStats())

p.value <- sum(stat.permute >= stat.obs)/repetitions

return(list(p.value = p.value, observedStat = stat.obs,

permutedStats = stat.permute))

}

Proportion Later than 15 minutes Now we implement it on our the SRS version
of our flight data. Notice that I am going to make the statistic that I compare
the absolute difference between the proportion later than 15 minutes. Recall, our
summary statistics (only now I’m going to ignore cancelled flights)

tapply(flightSFOSRS$DepDelay, flightSFOSRS$Carrier,

function(x) {
x <- na.omit(x)

sum(x > 15)/length(x)

})[c("AA", "UA")]
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## AA UA

## 0.1511747 0.1989882

Why do I take the absolute difference? What difference does it make if you change
the code to be only the difference?

set.seed(201728)

diffProportion <- function(x1, x2) {
x1 <- na.omit(x1)

x2 <- na.omit(x2)

prop1 <- sum(x1 > 15)/length(x1)

prop2 <- sum(x2 > 15)/length(x2)

return(abs(prop1 - prop2))

}
dataset <- flightSFOSRS

output <- permutation.test(group1 = dataset$DepDelay[dataset$Carrier ==

"UA"], group2 = dataset$DepDelay[dataset$Carrier ==

"AA"], FUN = diffProportion, repetitions = 10000)

names(output)

## [1] "p.value" "observedStat" "permutedStats"

xlim <- range(c(output$observedStat, output$permutedStats))

hist(output$permutedStats, main = "Histogram of permuted statistics",

xlab = "Difference in proportion delay > 15 minutes",

xlim = xlim)

abline(v = output$observedStat, col = "blue", lwd = 2)
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cat("pvalue=", output$p.value)

## pvalue= 8e-04

So what conclusions would you draw from this permutation test?

What impact does it have? What conclusions would you be likely to make going
forward?

Median difference What about if I look at the median flight delay? The first
thing we might note is that there is a very small difference (1 minute). So even if we
find something significant, who really cares? That is not going to change any opinions
about which airline I fly. Statistical significance is not everything.

tapply(flightSFOSRS$DepDelay, flightSFOSRS$Carrier,

function(x) {
median(x, na.rm = TRUE)

})[c("AA", "UA")]

## AA UA

## -2 -1

Guntuboyina & Purdom #2, Spring 2017, STAT 28 8



I can just quickly change the function I look at to be the absolute difference in
the median instead of proportion late.

set.seed(2843261)

diffMedian <- function(x1, x2) {
prop1 <- median(x1, na.rm = TRUE)

prop2 <- median(x2, na.rm = TRUE)

return(abs(prop1 - prop2))

}
dataset <- flightSFOSRS

output <- permutation.test(group1 = dataset$DepDelay[dataset$Carrier ==

"UA"], group2 = dataset$DepDelay[dataset$Carrier ==

"AA"], FUN = diffMedian, repetitions = 10000)

xlim <- range(c(output$observedStat, output$permutedStats))

hist(output$permutedStats, main = "Histogram of permuted statistics",

xlab = "Difference in median flight delay", xlim = xlim)

abline(v = output$observedStat, col = "blue", lwd = 2)

cat("pvalue=", output$p.value)

## pvalue= 0.1279

What is going on with our histogram?

What would have happened if we had defined out p-value as the probability of
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being greater rather than greater than or equal to? Where in the code was this done,
and what happens if you change the code?

Choice of test statistic For simplicitly our null hypothesis was stated quite
grandly as whether there was any difference between distributions. We picked two
different statistics: the median and the proportion late. They made different choices
about significance because they were measuring different things about the distribu-
tions. Ultimately its better to think of the permutation tests as effectively testing
whether specific aspects of the distribution are the same.

2.2 Assumptions: permutation tests

Let’s discuss limitations of the permutation test.

What assumption(s) are we making about the random process that generated this
data in determining the null distribution? Does it make sense for our data?

Some datasets have this flavor. For example, if we wanted to decide which of
two email solicitations for a political campaign are most likely to lead to someone to
donate money, we could assign a sample of people on our mailing list to get one of the
two. This would perfectly match the data generation assumed in the null hypothesis.

What if our assumption about random labels is wrong? Clearly random
assignment of labels is not a good description for how any of the datasets regarding
flight delay data were created. Does this mean the permutation test will be invalid?
No, not necessarily. We just need that the null hypothesis have a random process that
created the data that leads to a distribution of the permutation test that is equivalent
to as if we randomly assigned labels.

Explicitly describing this assumption is beyond the level of this class1, but an
important example where they are valid is if each of your data observations can be
considered a random, independent draw from the same distribution (assuming the null
is true and the distributions are the same bewteen groups). This is often abbreviated
i.i.d (independent and identically distributed). This makes sense – the very act of

1Namely, if the data can be assumed to be exchangeable under the null hypothesis then the
permutation test is also a valid test.
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permuting your data implies such an assumption about your data: that you have
similar observations and the only thing different about them is which group they
were assigned to.

Assuming your data is i.i.d is a common assumption that is thrown around, but is
actually rather strong. For example, convenience samples do not have this property,
because there is no randomness. However, permutation tests are a pretty good tool
even in this setting, however, compared to the alternatives. Also to recognize that
actual random assignments of the labels is the strongest such design of how to collect
data.

Inferring beyond the sample population Note that the randomness queried
by our null hypothesis is all about the specific observations we have. Specifically
the randomness is if we imagine that we assigned these same people different email
solicitations – our null hypothesis asks what variation in our statistic would we ex-
pect? However, if we want to extend to the general population, we have to make the
assumption that these people’s reaction are representative of the greater population.

For example, in our political email example we described above, if our sample
of participants was only women, then the permutation test might have answered
the question about any affect seend amongst these women was due to the chance
assignment to these women. But that wouldn’t answer our question very well about
the general population of interest (that presumably includes men). Men might have
very different reactions to the same email. Permutation tests do not get around the
problem of a poor data sample. Random samples from the population are needed to
be able to make the connection back to the general population.

So while permuting your data seems to intuitive and is often thought to make
no assumptions, it does have assumptions about where your data are from. The
assumptions are much less than some alternative tests (like the parametric tests we’ll
describe next), but it’s useful to realize the limitations even for something as intuitive
as non-restrictive as permutation tests.

3 Parametric test: the T-test

Parametric tests perform inference on a parameter of the underlying distributions,
such as the median or mean.

Parameters Just as a statistic is any function of our observed data, a parameter
is a function of the true generating distribution F . Parameters are often indicated
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with greek letters, like θ, α, β, σ. For the normal distribution, for example, there are
two parameters that completely define the distribution: the mean µ and the variance
σ2.

Statistics of our data sample are often chosen because they are estimates of our
parameter. In that case they are often called the same greek letters as the parameter,
only with a “hat” on top of them, e.g. θ̂, α̂, β̂, σ̂. Sometimes, however, a statistic
will just be given a upper-case letter, like T or X, particularly when they are not
estimating a parameter of the distribution.

Often (but not always!) a statistic will be the same function of our sample dis-
tribution F̂ that our parameter θ is of F . For example, the mean of our sample
X1, . . . , Xn has a distribution F̂ and the mean is µ̂ = 1

n

∑n
i=1Xi. If X1, . . . , Xn is a

sample from a larger population X1, . . . , XN , the population has mean µ = 1
N

∑N
i=1Xi

distribution. Then µ̂ is an estimate of µ.

Null hypothesis for t-test The t-test is a widely used statistical test for compar-
ing two groups that focuses on whether the means of the two distributions are the
same. Let µUnited, and µAmerican be the true medians of the two groups.

H0 : µAA = µUA

This could also be written as

H0 : µAA − µUA = δ = 0,

so we are testing whether a specific parameter δ = 0.

Let’s assume X1, . . . , Xn1 is the data from United and Y1, . . . , Yn2 is the data from
American. A natural sample statistic to estimate δ from our data would be

δ̂ = X̄ − Ȳ ,

i.e. the difference in the means of the two groups. This is the statistic of focus for
the the t-test

3.1 Distribution of means under Null

To do inference, we need to know the distribution of our statistic of interest

Normality of mean In data 8, you learned that a sample mean of a SRS will
have a sampling distribution that is roughly a normal distribution (the Central Limit
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Theorem) if we have a large enough sample size. Namely, that if X1, . . . , Xn are a
SRS from a distribution with mean µ and variance σ2, then µ̂ = X̄ = 1

n

∑n
i=1Xi will

have a roughly normal distribution

N(µ,
σ2

n
).

If we have two groups,

• X1, . . . , Xn1 a SRS from a distribution with mean µ1 and variance σ2
1, and

• Y1, . . . , Yn2 a SRS from a distribution with mean µ2 and variance σ2
2

Then X̄ − Ȳ will have a roughly normal distribution

N(µ1 − µ2,
σ2
1

n1

+
σ2
2

n2

)

Testing If we want to compare the two groups, under the null µ1 − µ2 = 0, so the
distribution of the difference in means is

X̄ − Ȳ ∼ N(0,
σ2
1

n1

+
σ2
2

n2

)

We can thus use that distribution to determine whether the observed X̄−Ȳ is unusual
(assuming we know σ1 and σ2!).

We can also equivalently say,

Z =
X̄ − Ȳ√
σ2
1

n1
+

σ2
2

n2

∼ N(0, 1)

Then if we observe a value Z = 2, how would we calculate it’s p-value?
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Two-sided Tests Going back to our example, X̄ − Ȳ might correspond to XAA −
YUA. But since we picked the order of the difference X̄ − Ȳ arbitrarily, we also might
ask what if YUA − XAA is large? If we’ve never looked at the data, either of these
questions is equally relevant. Null hypotheses should always be based on what the
question you want to answer is before looking at the data. So a better null hypothesis
is whether either YUA−XAA OR XAA−YUA is large. This is more succinctly written
as whether |X̄ − Ȳ | is unusually large.

So a better statistic is,

Z =
|X̄ − Ȳ |√
σ2
1

n1
+

σ2
2

n2
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With this better Z statistic, what is the p-value if you observe Z = 2? How would
you calculate this using the normal density curve? With R?

This is often called a ‘two-sided’ t-statistic, and is the only one that we will
consider.

3.2 T-Test

The above is not in fact a statistic because we don’t know σ1 and σ2. So we can’t
calculate Z from our data!

Instead you must estimate these unknown parameters with the sample variance

σ̂2
1 =

1

n− 1

∑
(Xi − X̄)2,

and the same for σ̂2
2. (Notice how we put a “hat” over a parameter to indicate that

we’ve estimated it from the data.)

But once you must estimate the variance, you are adding additional variability to
inference. Namely, before, assuming you knew the variances, you had

Z =
|X̄ − Ȳ |√
σ2
1

n1
+

σ2
2

n2

,
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where only the numerator is random. Now we have

T =
|X̄ − Ȳ |√
σ̂2
1

n1
+

σ̂2
2

n2

.

and the denominator is also random. T is called the t-statistic.

This additional uncertainty means seeing a large value of T is more likely than of
Z. Therefore, T has a different distribution, and it’s not N(0, 1).

Unlike the central limit theorem that deals only with the distributions of means,
when you add on estimating the variance terms determining even approximately what
is the distribution of T is more complicated, and in fact depends on the distribution
of the input data Xi and Yi (unlike the central limit theorem). But if the distributions
creating your data are reasonably close to normal distribution, then T follows what
is called a t-distribution.

You can see that the t distribution is like the normal, only it has larger “tails” than
the normal, meaning seeing large values is more likely than in a normal distribution.

What happens as you change the sample size?

Notice that if you have largish datasets (e.g. > 30 − 50 samples in each group)
then you can see that the t-distribution is basically the normal distribution, so that’s
why it’s usually fine to just use the normal distribution to get p-values. Only in small
samples sizes are there large differences.
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3.3 Assumptions of the T-test

Parametric tests usually state their assumptions pretty clearly: they generally assume
some model that generated the data in order to arrive at the mathematical description
of the null distribution. For the t-test, we assume that the data X1, . . . , Xn1 and
Y1, . . . , Yn2 are normal to get the t-distribution.

What happens if this assumption is wrong? When will it still make sense to use
the t-test?

If we didn’t have to estimate the variance, the central limit theorem tells us the
normality assumption will work for any distribution, if we have a large enough sample
size.

What about the t-distribution? That’s a little tricker. You still need a large sample
size; you also need that the distribution of the Xi and the Yi, while not required to
be exactly normal, not be too far from normal. In particular, you want them to be
symmetric (unlike our flight data).2 Generally, the t-statistic is reasonably robust
to violations of these assumptions, particularly compared to other parametric tests,
if your data is not too skewed and you have a largish sample size (e.g. 30 samples
in a group is good). But the permutation test makes far fewer assumptions, and in
particular is very robust to assumptions about the distribution of the data.

For small sample sizes (e.g. < 10 in each group), you certainly don’t really have
any good justification to use the t-distribution unless you have a reason to trust that
the data is normally distributed (and with small sample sizes it is also very hard to
justify this assumption by looking at the data).

3.4 Flight Data and Transformations

Let’s consider the flight data. Recall, the t-statistic focuses on the difference in means.
Why might this not be a compelling comparison?

tapply(flightSFOSRS$DepDelay, flightSFOSRS$Carrier,

function(x) {
mean(x, na.rm = TRUE)

})[c("AA", "UA")]

2Indeed, the central limit theorem requires large data sizes, and how large a sample you need
for the central limit theorem to give you a good approximation also depends on things about the
distribution of the data, like how symmetric the distribution is.
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## AA UA

## 7.728294 12.255649

However, you still – even with larger sample sizes – need to worry about the
distribution of the data much more than with the permutation test. Very non-normal
input data will not do well with the t-test, particularly if the data is skewed, meaning
not symmetrically distributed around its mean.

Looking at the flight data, what would you conclude?

Note that nothing stops us from running the test, and it’s a simple one-line code:

t.test(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"], flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"AA"])

##

## Welch Two Sample t-test

##

## data: flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "UA"] and flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "AA"]

## t = 2.8325, df = 1703.1, p-value = 0.004673

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 1.392379 7.662332
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## sample estimates:

## mean of x mean of y

## 12.255649 7.728294

This is a common danger of parametric tests. They are implemented everywhere
(there are on-line calculators that will compute this for you; excel will do this calcu-
lation), so people are drawn to doing this, while permutation tests are more difficult
to find pre-packaged.

We can compare this to permutation test of the mean using the exact same t-
statistic:

set.seed(489712)

tstatFun <- function(x1, x2) {
abs(t.test(x1, x2)$statistic)

}
dataset <- flightSFOSRS

output <- permutation.test(group1 = dataset$DepDelay[dataset$Carrier ==

"UA"], group2 = dataset$DepDelay[dataset$Carrier ==

"AA"], FUN = tstatFun, repetitions = 10000)

cat("pvalue=", output$p.value)

## pvalue= 0.0059

In fact, in this case we get similar answers. We can compare the distribution of
the permutation distribution of the t-statistic, and the density of the N(0, 1) that the
parametric model assumes. We can see that they are quite close, even though our
data is very skewed and clearly non-normal. Indeed for larger sample sizes, they will
give similar results.
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Smaller Sample Sizes If we had a smaller dataset we would not get such nice
behavior. We can sample to a smaller sample of the data of size 20 and 30 in each
group, and we can see that we do not get a permutation distribution that matches
the (roughly) N(0,1) we use for the t-test.

cat("pvalue permutation=", outputTPermSmall$p.value,

"\n")

## pvalue permutation= 0.5504
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cat("pvalue t.test=", toutput$p.value, "\n")

## pvalue t.test= 0.6273047

What different conclusions do you get from the two tests with these smaller data-
sizes?

Transformations We saw that skewed data could be problematic in visualization
of the data, e.g. in boxplots, and transformations are helpful. Transformations can
also be helpful for applying the t-test. They can often result in the parametric t-test
to work better for smaller datasets.

We’ve already seen in our flight data, some ‘standard‘ transformations are not
super compelling but do distributed the data to be slightly less skewed. We can see if
we compare the permutation test versus the t-test on log-transformed data even with
the smaller sample sizes, that after transforming the data, we get that the distribution
looks much more like the permutation test, and the results are more similar.

## pvalue permutation= 0.2448

## pvalue t.test= 0.6273047

What does it mean for my null hypothesis to transform to the log-scale? Does
this make sense?
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3.5 Why parametric models?

We do the comparison of the permutation test to the parametric t-test not to encour-
age the use of the the t-test in this setting – the data, even after transformation, is
pretty skewed and there’s no reason to not use the permutation test instead. The
permutation test will give pretty similar answers regardless of the transformation3

and is clearly indicated here.

This exercise was to show the use and limits of using the parametric tests, and
particularly transformations of the data, in an easy setting. Historically, t-tests were
necessary in statistics because there were not computers to run permutation tests.
That’s clearly not compelling now! However, it remains that parametric tests are
often easier to implement (one-line commands in R, versus writing a function); you
will see parametric tests frequently (even when resampling methods like permutation
tests and bootstrap would be more justifiable).

The take-home lessons here regarding parametric tests, are that when there are
large sample sizes, parametric tests can overcome violations of their assumptions4

so don’t automatically assume parametric tests are completely wrong to use. But a
permutation test is the better all-round tool for this question: it is has more minimal
assumptions, and can look at how many different statistics we can use.

There are also some important reasons to learn about t-tests, however, beyond
a history test. They are the easiest example of a parameteric test, where you
make assumptions about your data (i.e. X1, . . . , Xn1 and Y1, . . . , Yn2 are normally
distributed). Parametric tests generally are very important, even with computers.
Parametric models are particularly helpful for researchers in data science for the
development of new methods, particularly in defining good test statistics, like T .

Parametric models are also useful in trying to understand the limitations of a
method, mathematically. We can simulate data under different models to understand
how a statistical method behaves.

There are also applications where the ideas of bootstrap and permutation tests
are difficult to apply. Permutation tests, in particular, are quite specific. Bootstrap
methods, which we’ll review in a moment, are more general, but still are not always
easy to apply in more complicated settings. A goal of this class is to make you
comfortable with parametric models (and their accompanying tests), in addition to
the resampling methods you’ve learned.

3In fact, if we were working with the difference in the means, rather than the t-statistics, which
estimates the variance, the permutation test would give exactly the same answer.

4At least those based on the central limit theorem!
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4 Digging into Hypothesis tests

Let’s break down some important concepts as to what makes a test. Note that all of
these concepts will apply for any hypothesis test.

1. A test statistic

2. A null hypothesis of how the data was generated

3. The distribution of the test statistic under the null hypothesis.

As we’ve seen, different tests can be used to answer the same basic “null” hypoth-
esis – are the two groups “different”? – but the specifics of how that null is defined
can be quite different. For any test, you should be clear as to what the answer is to
each of these points.

4.1 Significance & Type I Error

The significance refers to measuring how unlikely the null is. There are two termi-
nologies that go along with assessing significance.

p-value One is to report a p-value to demonstrate how unlikely the data is under
the null.

Q: Does the p-value give you the probability that the null is true?

Reject/Not reject We can just report the p-value, but it is common to also make
an assessment of the p-value and give a final decision as to whether the null hypothesis
was too unlikely to have reasonably created the data we’ve seen. This is a decision
approach – either reject the null hypothesis or not. In this case we pick a cutoff, e.g.
p-value of 0.05, and report that we reject the null.

You might see sentences like “We reject the null at level 0.05.” The level chosen
for a test is an important concept in hypothesis testing and is the cutoff value for a
test to be significant. In principle, the idea of setting a level is that it is a standard
you can require before declaring significance; in this way it can keep researchers from
creeping toward declaring significance once they see the data and see they have a
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p-value of 0.07, rather than 0.05. However, in practice it can have the negative result
of encouraging researchers to fish in their data until they find something that has a
p-value less than 0.05.

Commonly accepted cutoffs for unlikely events are 0.05 or 0.01, but these values
are too often considered as magical and set in stone. Reporting the actual p-value is
more informative than just saying yes/no whether you reject (rejecting with a p-value
of 0.04 versus 0.0001 tells you something about your data).

The useful idea about the level of the test is that it defines a repeatable procedure
(“reject if p-value is < level”). Then the level actually measures the uncertainity in
this procedure. Specifically, with any test, you can make two kinds of mistakes:

• Reject the null when the null is true (Type I error)

• Not reject the null when the null is in fact not true (Type II error)

Then the level is the probability of this procedure making a type I error: if you always
reject at 0.05, then 5% of just tests will wrongly reject the null hypothesis when in
fact it is true.

Note that this is no different in concept that our previous statement saying that
a p-value is the likelihood under the null of an event as extreme as what we observed.
However, it does a clear decision about how willing you are to making Type I Error.

4.2 Type I Error & All Pairwise Tests

Let’s make the importance of accounting and measuring Type I error more concrete.
We have been considering only comparing the carriers United and American. But in
fact there are 10 airlines. What if we want to compare all of them? What might we
do?

## number of pairs: 45

For speed purposes in class, I’ll use the t-test to illustrate this idea and calculate
the t-statistic and its p-value for every pair of airline carriers (with our transformed
data):
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## Number found with p-value < 0.05: 26

What does this actually mean? Is this a lot to find significant?

Roughly, if each of these tests has level 0.05, then even if none of the pairs are
truly different from each other I might expect on average around 2 to be rejected at
level 0.05 just because of variation in sampling.5 This is the danger in asking many
questions from your data – something is likely to come up just by chance. 6

We can consider this by imagining what if I scramble up the carrier labels –
randomly assign a carrier to a flight. Then I know there shouldn’t be any true
difference amongst the carriers. I can do all the pairwise tests and see how many are
significant.

## Number permuted found with p-value < 0.05: 6

5In fact, this is not an accurate statement because these tests are reusing the same data, so the
data in each test are not independent, and the probabilities don’t work out like that. But it is
reasonable for understanding the concepts here.

6Indeed this true of all of science, which relies on hypothesis testing, so one always has to
remember the importance of the iterative process of science to re-examine past experiments.
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What does this suggest to you about the actual data?

Multiple Testing Intuitively, we consider that if we are going to do all of these
tests, we should have a stricter level so that we do not routinely find pairwise differ-
ences when there are none. Does this mean the level should be higher or lower to get
a ‘stricter’ test? What about the p-value?

Making such a change to account for the number of tests run falls under the
category of multiple testing adjustments, and there are many different flavors
beyond the scope of the class. Let’s consider the most widely known correction: the
Bonferroni correction.

Specifically, say we’d like to be able to say “of all the tests I ran, there’s only a
5% chance of a type I error”. We can do a simple correction where we adjust the
level we require for each test. Namely, if we run K tests and we want the overall
probability of a single type I error to be 0.05, we can simply run each individual test
at level 0.05/N – i.e. reduce the level of each test to be more stringent.

In the example of comparing the different airline carriers, the number of tests is
45. So our new level is now 0.0011. Taking our p-values from above, how would this
change our conclusions?
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cat("Number found significant after Bonferonni: ",

sum(t.testPairs["p.value", ] < 0.05/npairs))

## Number found significant after Bonferonni: 16

cat("Number of shuffled differences found significant after Bonferonni: ",

sum(t.testPairsScramble["p.value", ] < 0.05/npairs))

## Number of shuffled differences found significant after Bonferonni: 0

We can also, equivalently, adjust our p-values by multiplying the pvalues by N ;
these adjusted p-values can be compared to the overall level you want (0.05), just
like regular p-values, in order to determine significance.

t.testPairs <- rbind(t.testPairs, p.value.adj = t.testPairs["p.value",

] * npairs)

t.testPairsScramble <- rbind(t.testPairsScramble, p.value.adj = t.testPairsScramble["p.value",

] * npairs)

t.testPairs[, 1:5]

## AA-AS AA-B6 AA-DL AA-F9 AA-HA

## statistic.t 1.1514752 -3.7413417707 -2.648054950 -0.3894014 3.101645905

## p.value 0.2501338 0.0002038769 0.008170586 0.6974224 0.003824936

## p.value.adj 11.2560196 0.0091744583 0.367676386 31.3840059 0.172122129

Notice some of these p-values are greater than 1! So in fact, we want to multiply
by N , unless the value is greater than 1, in which case we set the p-value to be 1.

t.testPairs <- rbind(t.testPairs[1:2, ], p.value.adj = pmin(t.testPairs["p.value",

] * npairs, 1))

t.testPairsScramble <- rbind(t.testPairsScramble[1:2,

], p.value.adj = pmin(t.testPairsScramble["p.value",

] * npairs, 1))

t.testPairs[, 1:5]

## AA-AS AA-B6 AA-DL AA-F9 AA-HA

## statistic.t 1.1514752 -3.7413417707 -2.648054950 -0.3894014 3.101645905

## p.value 0.2501338 0.0002038769 0.008170586 0.6974224 0.003824936

## p.value.adj 1.0000000 0.0091744583 0.367676386 1.0000000 0.172122129
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Now we plot these adjusted values

whLostSig <- which(t.testPairs["p.value.adj", ] > 0.05 &

t.testPairs["p.value", ] <= 0.05)

whLostSigScramble <- which(t.testPairsScramble["p.value.adj",

] > 0.05 & t.testPairsScramble["p.value", ] <=

0.05)

par(mfrow = c(1, 2))

plot(log(t.testPairs["p.value.adj", ]), ylab = "log(adjusted P-value)",

main = "Adjusted P-values from all pairwise tests, scrambled carriers",

xaxt = "n", xlab = "")

abline(h = log(0.05), lty = 2)

n <- ncol(t.testPairs)

points((1:n)[whLostSig], log(t.testPairs["p.value.adj",

whLostSig]), col = "red", pch = 19)

legend("bottomright", legend = "P-value = -0.05", lty = 2)

axis(1, at = 1:ncol(t.testPairs), labels = colnames(t.testPairs),

las = 2)

plot(log(t.testPairsScramble["p.value.adj", ]), ylab = "log(P-value)",

main = "Adjusted P-values from all pairwise tests, scrambled carriers",

xaxt = "n", xlab = "")

points((1:n)[whLostSigScramble], log(t.testPairsScramble["p.value.adj",

whLostSigScramble]), col = "red", pch = 19)

abline(h = log(0.05), lty = 2)

axis(1, at = 1:ncol(t.testPairs), labels = colnames(t.testPairs),

las = 2)

Guntuboyina & Purdom #2, Spring 2017, STAT 28 28



5 Confidence Intervals

Another approach to inference is with confidence intervals. Confidence intervals focus
on parameters of a distribution, though they do not have to require parametric models
to do so.

Form of a confidence interval Confidence intervals also do not rely on a specific
null hypothesis; instead they give a range of values (based on the data) that are most
likely to overlap the true parameter. Confidence intervals take the form of an interval,
and are paired with a confidence, like 95% confidence intervals, or 99% confidence
intervals.

Which should be wider intervals, a 95% or 99% interval?

5.1 Parametric Confidence Intervals

Confidence Interval for Mean of single group In data 8, you learned that a
sample mean of a SRS will have a sampling distribution that is roughly a normal
distribution (the Central Limit Theorem). Namely, that if X1, . . . , Xn are a SRS
from a distribution with mean µ and variance σ2, then µ̂ = X̄ = 1

n

∑n
i=1Xi will have

a roughly normal distribution

N(µ,
σ2

n
).

Recall from data 9, how would we use the central limit theorem to create a 95%
confidence interval for µ based on X̄ (if we knew σ2). We know that for a normal
distribution, the probability of being within about 2 standard deviations of the mean
is 0.95 – specifically 1.96 standard deviations. This is because these points define the
quantiles of the normal distribution. Quantiles tell you at what point you will have
a particular probability of being less than that value.

So if z is a 0.25 quantile of a normal distribution, it means that

P (Normal ≤ z) = 0.25.

z is a 0.90 quantile of a normal if P (Normal ≤ z) = 0.90.

These numbers can be looked up easily in R for a normal distribution,
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qnorm(0.2, mean = 0, sd = 1)

## [1] -0.8416212

qnorm(0.9, mean = 0, sd = 1)

## [1] 1.281552

qnorm(0.0275, mean = 0, sd = 1)

## [1] -1.918876

What is the probability of being between -0.84 and 1.2815516 in a N(0, 1)?

Then what would a 95% confidence interval for the mean µ look like?

For the flight data, we can get a confidence interval for the mean of the United
flights using t.test again. We will work on the log-scale, since we’ve already seen
that makes more sense for parametric tests because our data is skewed:

t.test(log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"] + addValue))

##

## One Sample t-test

##

## data: log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "UA"] + addValue)

## t = 289.15, df = 2964, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 3.236722 3.280920

## sample estimates:

## mean of x

## 3.258821
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Notice the result is on the (shifted) log scale! Because this is a monotonic function,
We can invert this to see what this implies on the original scale:

logT <- t.test(log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"] + addValue))

exp(logT$conf.int) - addValue

## [1] 3.450158 4.600224

## attr(,"conf.level")

## [1] 0.95

Confidence Interval for Difference in the Means of Two Groups Now lets
consider whether the average delay time between the two groups is the same and
define the parameter of interest as

δ = µUnited − µAmerican.

Using the central limit theorem again,

X̄ − Ȳ ∼ N(0,
σ2
1

n1

+
σ2
2

n2

)

How would we use the central limit theorem to create a 95% confidence interval
for µ1 − µ2 if we knew σ2

1 and σ2
2?

Of course, we don’t know σ2
1 and σ2

2, so we will estimate them, as with the t-
statistic. This effects our distribution assumptions, but we’ve already seen that for
only moderate sample sizes, the difference between the normal and the t-distribution
is not that great, so it is reasonable to use these same confidence intervals only with
σ̂2
1 and σ̂2

2.

We can get the confidence interval for the difference in our groups using t.test

as well.

t.test(log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"] + addValue), log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"AA"] + addValue))

##
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## Welch Two Sample t-test

##

## data: log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "UA"] + addValue) and log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "AA"] + addValue)

## t = 5.7011, df = 1800.7, p-value = 1.389e-08

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.07952358 0.16293414

## sample estimates:

## mean of x mean of y

## 3.258821 3.137592

What is the problem from this confidence interval on the log-scale that we didn’t
have before when we were looking at a single group?

5.2 More on deriving confidence intervals

Let’s go back to the confidence interval for a single sample. For a N(µ, σ2) distribu-
tion, µ−1.96

√
sigma2 is the 0.025 quantile of the distribution, and µ+1.96

√
sigma2

is the 0.975 quantile of the distribution, so the probability of being between these two

is 0.95. Therefore, if X̄ has a distribution N(µ,
√

σ2

n
), then the standard deviation is√

σ2

n
. Then for X̄

0.95 = P (µ− 1.96

√
σ2

n
≤ X̄ ≤ µ+ 1.96

√
σ2

n
)

= P (1.96

√
σ2

n
≤ X̄ − µ ≤ 1.96

√
σ2

n
)

= P (1.96

√
σ2

n
− X̄ ≤ −µ ≤ 1.96

σ2

n
− X̄)

= P (X̄ − 1.96

√
σ2

n
≤ µ ≤ X̄ − 1.96

√
σ2

n
)

You can do the same thing for two groups,

P ((X̄ − Ȳ )− 1.96

√
σ2
1

n1

+
σ2
2

n2

≤ µ1 − µ2 ≤ (X̄ − Ȳ ) + 1.96

√
σ2
1

n1

+
σ2
2

n2

) = 0.95
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The effect of estimating the variance We know from our t-test that ifX1, . . . , Xn1

and Y1, . . . , Yn2 are normally distributed, then our t-statistic,

T =
|X̄ − Ȳ |√
σ̂1

2

n1
+ σ̂2

2

n2

.

has actually a t-distribution.

How does this get a confidence interval? We can use the same logic of inverting
the equations, only with the quantiles of the t-distribution to get a confidence interval
for the difference.

Let t0.025 and t0.975 be the quantiles of the t distribution. Then,

P ((X̄ − Ȳ )− t0.975

√
σ2
1

n1

+
σ2
2

n2

≤ µ1 − µ2 ≤ (X̄ − Ȳ )− t0.025

√
σ2
1

n1

+
σ2
2

n2

) = 0.95

Of course, since the t distribution is symmetric, −t0.025 = t0.975. Why?

5.3 Bootstrap Confidence Intervals

Suppose we are interested instead in whether the median of the two groups is the
same. Why might that be a better idea than the mean?

Let θUnited, and θAmerican be the true medians of the two groups, and now

δ = θUnited − θAmerican.

The sample statistic estimating δ would be what?

What we would like to be able to do is collect multiple data samples for any
particular δ.
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Since we only see one δ̂, this isn’t an option. With normal-based confidence
intervals (for the mean!), we used the central limit theorem that tells us the mean
is approximately normal. For other statistics, like the difference in the median, we
could also make assumptions about the distribution of the data to mathematically
determine the distribution of δ̂. This can be very difficult to do mathematically
for complicated statistics. More importantly, when you go with statistics that are
beyond the mean, the mathematics often require more assumptions about the data-
generating distribution – the central limit theorem works for most any distribution
you can imagine, but that’s a special property of the mean.

Rather than try to analyze this process mathematically, the bootstrap tries to
estimate this process. Namely, we can’t recreate samples from F (δ), but we can

recreate samples from F̂ ((̂δ)),
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The idea is that if F̂ is close to F , then taking the quantiles of δ̂∗ − δ̂ should give
us good estimates of the quantiles of δ̂ − δ.

Implementing the bootstrap confidence intervals What does it actually mean
to resample from F̂? It means to take a sample from F̂ just like the kind of sample
we took from the actual data generating process, F .

Specifically in our two group setting, say we have a SRS X1, . . . , Xn1 , Y1, . . . , Yn2

from an unknown distributions F,G. Then if we resample with replacement from
the data sample X1, . . . , Xn1 and Y1, . . . , Yn2 , we will get a new set of samples from
each distribution, X∗

1 , . . . , X
∗
n1

and Y ∗
1 , . . . , Y

∗
n2

. These are samples from F̂ , Ĝ (the

observed distribution of this new sample is what is called F̂ ∗ and Ĝ∗ in above picture).
From this sample, we can recalculate the difference of the medians on this sample to
get δ̂∗.

We do this repeatedly, and get a distribution of δ̂∗. Using the resulting distribution
of δ̂∗, we use the 0.025 and 0.975 quantiles as the limits of the 95% confidence interval.

Again, we first write a function to do the bootstrap

bootstrap.test <- function(group1, group2, FUN, repetitions,

confidence.level = 0.95) {
stat.obs <- FUN(group1, group2)

bootFun <- function() {
sampled1 = sample(group1, size = length(group1),

replace = TRUE)

sampled2 = sample(group2, size = length(group2),
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replace = TRUE)

FUN(sampled1, sampled2)

}
stat.boot <- replicate(repetitions, bootFun())

level <- 1 - confidence.level

confidence.interval <- quantile(stat.boot, probs = c(level/2,

1 - level/2))

return(list(confidence.interval = c(lower = confidence.interval[1],

estimate = stat.obs, upper = confidence.interval[2]),

bootStats = stat.boot))

}

Now we apply it to our flight data sets to get a confidence interval for the difference
in proportion of late flights. Note how we can reuse our function from before.

set.seed(201728)

par(mfrow = c(1, 2))

dataset <- flightSFOSRS

output <- bootstrap.test(group1 = dataset$DepDelay[dataset$Carrier ==

"UA"], group2 = dataset$DepDelay[dataset$Carrier ==

"AA"], FUN = diffProportion, repetitions = 10000)

xlim <- range(c(output$confidence.interval["estimate"],

output$bootStats))

hist(output$bootStats, main = "Histogram of bootstrapped statistics",

xlim = c(xlim), xlab = "Difference in proportions")

abline(v = output$confidence.interval["estimate"],

col = "blue", lwd = 2)

require(gplots)

plotCI(x = output$confidence.interval["estimate"],

ui = output$confidence.interval["upper.97.5%"],

li = output$confidence.interval["lower.2.5%"],

ylab = "Difference in Proportions", pch = 19)
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How do you interpret this confidence interval?

Assumptions: Bootstrap The big assumption of the bootstrap is that our sample
distribution F̂ is a good estimate of F . We’ve already seen that will not necessarily
the case. Here are some examples of why that might fail:

• Sample size n is too small

• The data is not a SRS

We also need that the parameter θ and the statistic θ̂ to be well behaved in certain
ways.

Optional: another bootstrap confidence interval We can actually use the
bootstrap to calculate a confidence interval similarly to that of the normal distribution
based on estimating the distribution of δ̂ − δ.

Notice with the previous calculation for X̄, if I know

0.95 = P (1.96

√
σ2

n
≤ X̄ − µ ≤ 1.96

√
σ2

n
)

Then I can invert to get

0.95 = P (X̄ − 1.96

√
σ2

n
≤ µ ≤ X̄ − 1.96

√
σ2

n
)

Guntuboyina & Purdom #2, Spring 2017, STAT 28 37



So more generally, suppose we have points z0.025 and z0.975 so that

0.95 = P (z0.025 ≤ δ̂ − δ ≤ z0.975)

e.g. the 0.025 and 0.975 quantiles of δ̂ − δ. Then I can invert to get

0.95 = P (δ̂ − z0.975 ≤ δ ≤ δ̂ − z0.025)

So if I can get the quantiles of δ̂ − δ, I can make a confidence interval.

So we could use the bootstrap to get estimates of the distribution of δ̂−δ instead of
the distribution of δ̂ and use the quantiles of δ̂− δ to get confidence intervals that are
(δ̂ − z0.975, δ̂ − z0.025). This actually gives a different confidence interval, particularly
if the distribution of δ̂ is not symmetric. The first method is called (the one you
learned in data 8) is called the percentile method, and is most commonly used, partly
because it’s easier to generalize.7

5.4 Thinking about confidence intervals

Suppose you have a 95% confidence interval for δ given by (5, 15) . What is wrong
with the following statements regarding this confidence interval?

1. δ has a 0.95 probability of being between (5, 15)

2. If you repeatedly resampled the data, the difference D would be within (5, 15)
95% of the time.

Confidence Intervals or Hypothesis Testing? Bootstrap inference via confi-
dence intervals is more widely applicable than permutation tests we described above.
These hypothesis tests relied on being able to simulate from the null hypothesis, by
using the fact that if you detach the data from their labels you can use resampling
techniques (either without replacement, i.e permuting, or with replacement from the
data) to generate a null distribution. In settings that are more complicated than
comparing groups, it can be difficult to find this kind of trick.

7If it looks like this method is backward compared to the percentile method, it pretty much is!
But both methods are legitimate methods for creating bootstrap intervals. )
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More generally, confidence intervals and hypothesis testing are actually closely
intertwined. For example, for the parametric test and the parametric confidence
interval, they both relied on the distribution of the same statistics, the t-statistic.
If you create a 95% confidence interval, and then decide to reject a specific null
hypothesis (e.g. H0 : δ = 0) only when it does not fall within the confidence interval,
then this will exactly correspond to a test with level 0.05. So the same notions of
level, and type I error, also apply to confidence intervals

Confidence intervals, on the other hand, give much greater interpretation and
understanding about the parameter.

5.5 Revisiting pairwise comparisons

Just as with hypothesis testing, you can have multiple comparison problems with
confidence intervals. Consider our pairwise comparisons of the different carriers. We
can also create confidence intervals for them all. Again, we will use the t-test on the
log-differences to make this go quickly.

ttestCI <- function(x, variableName) {
tout <- t.test(flightSFOSRS$logDepDelay[flightSFOSRS[,

variableName] == x[2]], flightSFOSRS$logDepDelay[flightSFOSRS[,

variableName] == x[1]])

unlist(tout[c("estimate", "conf.int")])

}
t.CIPairs <- apply(X = pairsOfCarriers, MARGIN = 2,

FUN = ttestCI, variableName = "Carrier")

colnames(t.CIPairs) <- paste(pairsOfCarriers[2, ],

pairsOfCarriers[1, ], sep = "-")

t.CIPairs <- rbind(t.CIPairs, diff = t.CIPairs["estimate.mean of x",

] - t.CIPairs["estimate.mean of y", ])

require(gplots)

plotCI(x = t.CIPairs["diff", ], li = t.CIPairs["conf.int1",

], ui = t.CIPairs["conf.int2", ], ylab = "Difference in log-Proportions",

pch = 19, xaxt = "n")

axis(1, at = 1:ncol(t.CIPairs), labels = colnames(t.CIPairs),

las = 2)

abline(h = 0, lty = 2)
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These confidence intervals suffer from the same problem as the p-values: even if
the null value (0) is true in every test, roughly 5% of them will happen to not cover
0 just by chance.

So we can do bonferonni corrections to the confidence intervals. Since a 95%
confidence interval corresponds to a level 0.05 test, if we go to a 0.05/K level, which
is the bonferonni correction, that corresponds to a 100 ∗ (1 − 0.05/K)% confidence
interval.

ttestCIAdj <- function(x, variableName) {
tout <- t.test(flightSFOSRS$logDepDelay[flightSFOSRS[,

variableName] == x[2]], flightSFOSRS$logDepDelay[flightSFOSRS[,

variableName] == x[1]], conf.level = 1 - 0.05/npairs)

unlist(tout[c("estimate", "conf.int")])

}
t.CIPairsAdj <- apply(X = pairsOfCarriers, MARGIN = 2,

FUN = ttestCIAdj, variableName = "Carrier")

colnames(t.CIPairsAdj) <- paste(pairsOfCarriers[2,

], pairsOfCarriers[1, ], sep = "-")

t.CIPairsAdj <- rbind(t.CIPairsAdj, diff = t.CIPairsAdj["estimate.mean of x",

] - t.CIPairsAdj["estimate.mean of y", ])

par(mfrow = c(1, 2))

plotCI(x = t.CIPairs["diff", ], li = t.CIPairs["conf.int1",

], ui = t.CIPairs["conf.int2", ], ylab = "Difference in log-Proportions",

sub = "Raw CI", pch = 19, xaxt = "n")

abline(h = 0, lty = 2)

plotCI(x = t.CIPairsAdj["diff", ], li = t.CIPairsAdj["conf.int1",

], ui = t.CIPairsAdj["conf.int2", ], ylab = "Difference in log-Proportions",
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sub = "Bonferonni Adjusted CI", pch = 19, xaxt = "n")

abline(h = 0, lty = 2)

TukeyHSD In fact, as mentioned, there are many ways to do multiple testing
corrections, and Bonferonni is the simplest, yet often most crude correction. There is
a multiple testing correction just for pairwise comparisons that use the t-test, called
the Tukey HSD test.

tukeyCI <- TukeyHSD(aov(logDepDelay ~ Carrier, data = flightSFOSRS))

plot(tukeyCI, las = 2)
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Let’s compare them side-by-side.

combMat <- cbind(diff = c(t.CIPairsAdj["diff", ], tukeyCI$Carrier[,

"diff"]), lwr = c(t.CIPairsAdj["conf.int1", ],

tukeyCI$Carrier[, "lwr"]), upr = c(t.CIPairsAdj["conf.int2",

], tukeyCI$Carrier[, "upr"]))

reorderSeq <- rep(1:ncol(t.CIPairsAdj), each = 2) +

rep(c(0, ncol(t.CIPairsAdj)), times = ncol(t.CIPairsAdj))

plotCI(x = combMat[reorderSeq, "diff"], li = combMat[reorderSeq,

"lwr"], ui = combMat[reorderSeq, "upr"], pch = 19,

xaxt = "n", col = c("black", "red"))

axis(1, at = seq(1.5, 2 * ncol(t.CIPairsAdj), by = 2),

labels = colnames(t.CIPairsAdj), las = 2)

abline(h = 0, lty = 2)

legend("topleft", c("Bonferroni", "TukeyHSD"), fill = c("black",

"red"))

What differences do you see?

Which to use? The TukeyHSD is a very specific correction – it is only valid for
doing pairwise comparisons with the t-test. Bonferonni, on the other hand, can be
used with any set of p-values from any test, e.g. permutation, and even if not all of
the tests are pairwise comparisons.
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