
Data Distributions

We’re going to review some basic ideas about distributions from Data 8. In
addition to review, we introduce some new ideas and emphases to pay attention
to:

• Continuous distributions and density curves

• New tools for visualizing and estimating distributions: boxplots and kernel
density estimators

• Types of samples and how they effect estimation

1 Basic Exporatory analysis

Let’s look at a dataset that you examined briefly in Data 8: flight data from the bureau
of transportion with data about the on-time arrival of airplanes in the US. (http://
www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time)

We’ve streamlined this down to all data concerning departures from SFO in Jan-
uary. Let’s explore this data.

dataDir <- "../finalDataSets"

flightSF <- read.table(file.path(dataDir, "SFO.txt"),

sep = "\t", header = TRUE)

dim(flightSF)

## [1] 13207 64

names(flightSF)

## [1] "Year" "Quarter" "Month"

## [4] "DayofMonth" "DayOfWeek" "FlightDate"
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## [7] "UniqueCarrier" "AirlineID" "Carrier"

## [10] "TailNum" "FlightNum" "OriginAirportID"

## [13] "OriginAirportSeqID" "OriginCityMarketID" "Origin"

## [16] "OriginCityName" "OriginState" "OriginStateFips"

## [19] "OriginStateName" "OriginWac" "DestAirportID"

## [22] "DestAirportSeqID" "DestCityMarketID" "Dest"

## [25] "DestCityName" "DestState" "DestStateFips"

## [28] "DestStateName" "DestWac" "CRSDepTime"

## [31] "DepTime" "DepDelay" "DepDelayMinutes"

## [34] "DepDel15" "DepartureDelayGroups" "DepTimeBlk"

## [37] "TaxiOut" "WheelsOff" "WheelsOn"

## [40] "TaxiIn" "CRSArrTime" "ArrTime"

## [43] "ArrDelay" "ArrDelayMinutes" "ArrDel15"

## [46] "ArrivalDelayGroups" "ArrTimeBlk" "Cancelled"

## [49] "CancellationCode" "Diverted" "CRSElapsedTime"

## [52] "ActualElapsedTime" "AirTime" "Flights"

## [55] "Distance" "DistanceGroup" "CarrierDelay"

## [58] "WeatherDelay" "NASDelay" "SecurityDelay"

## [61] "LateAircraftDelay" "FirstDepTime" "TotalAddGTime"

## [64] "LongestAddGTime"

This dataset contains a lot of information about the flights departing from SFO.
We are interested in understanding how frequently flights are delayed (or canceled).
Let’s look at the column ‘DepDelay’. How might we want to explore this data? What
single number summaries would make sense? What visualizations could you do?

summary(flightSF$DepDelay)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -25.0 -5.0 -1.0 13.8 12.0 861.0 413

Notice the NA’s. Let’s look at just the subset of some variables for those obser-
vations with NA values for departure time (I chosen a few variables so it’s easier to
look at)

naDepDf <- subset(flightSF, is.na(DepDelay))

head(naDepDf[, c("Carrier", "DepDelay", "DepTime",

"ArrTime", "Cancelled")])
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## Carrier DepDelay DepTime ArrTime Cancelled

## 44 AA NA NA NA 1

## 75 AA NA NA NA 1

## 112 AA NA NA NA 1

## 138 AA NA NA NA 1

## 139 AA NA NA NA 1

## 140 AA NA NA NA 1

summary(naDepDf[, c("Carrier", "DepDelay", "DepTime",

"ArrTime", "Cancelled")])

## Carrier DepDelay DepTime ArrTime Cancelled

## OO :176 Min. : NA Min. : NA Min. : NA Min. :1

## UA : 76 1st Qu.: NA 1st Qu.: NA 1st Qu.: NA 1st Qu.:1

## WN : 55 Median : NA Median : NA Median : NA Median :1

## AA : 35 Mean :NaN Mean :NaN Mean :NaN Mean :1

## VX : 33 3rd Qu.: NA 3rd Qu.: NA 3rd Qu.: NA 3rd Qu.:1

## DL : 17 Max. : NA Max. : NA Max. : NA Max. :1

## (Other): 21 NA's :413 NA's :413 NA's :413

So, the NAs correspond to flights that were cancelled (Cancelled=1).

1.1 Histograms

Let’s draw a histogram of the departure delay.

hist(flightSF$DepDelay, main = "Departure Delay", xlab = "Time (in minutes)")
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What do you notice about the histogram? What does it tell you about the data?

How good of a summary is the mean or median here? Why are they so different?

Effect of removing data What happen to the NA’s? They are just silently not
plotted. What does that mean for interpreting the histogram?

We could give the cancelled data a ‘fake’ value so that it plots.

flightSF$DepDelayWithCancel <- flightSF$DepDelay

flightSF$DepDelayWithCancel[is.na(flightSF$DepDelay)] <- 1200

hist(flightSF$DepDelayWithCancel, xlab = "Time (in minutes)",

main = "Departure delay, with cancellations=5000")
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1.1.1 Constructing a Histograms

How do you construct a histogram? Practically, most histograms are created by
taking an evenly spaced set of K breaks that span the range of the data, call them
b1 ≤ b2 ≤ ... ≤ bK and counting the number of observations in each bin.1 Then
the histogram consists of a series of bars, where the x-coordinates of the rectangles
correspond to the range of the bin, and the height corresponds to the number of
observations in that bin.

Breaks of Histograms Here’s two more histogram of the same data that differ
only by the number of breakpoints in making the histograms.

par(mfrow = c(2, 2))

hist(flightSF$DepDelay, main = "Departure Delay, default breaks",

xlab = "Time (in minutes)")

hist(flightSF$DepDelay, main = "Departure Delay, breaks=100",

xlab = "Time (in minutes)", breaks = 100)

hist(flightSF$DepDelay, main = "Departure Delay, breaks=1000",

xlab = "Time (in minutes)", breaks = 1000)

1Recall from data 8 you can make a histogram with uneven break points, but this is rather exotic
thing to do. If you do, then you have to calculate the height of the bar differently based on the width
of the bin because it is the area of the bin that should be proportional to the number of entries in
a bin, not the height of the bin.
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What seems better here? Is there a right number of breaks?

1.2 Boxplots

Another very useful visualization can be a boxplot. A boxplot is like a histogram, in
that it gives you a visualization of how the data are distributed. However, its a greater
simplification of the distribution. It plots only a box for the bulk of the data, where
the limits of the box are the 0.25 and 0.75 quantiles of the data (or 25% and 75%
percentiles); a dark line across the middle is the median of the data. In addition, a
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boxplot gives additional information to evaluate the extremities of the distribution. It
draws ‘whiskers‘ out from the box to indicate how far out is the data beyond the 25%
and 75% percentiles; specifically it calculates the interquartitle range (IQR) [just the
difference between the 75% and 25% percentiles] and draws the whiskers out 1.5IQR
from the boxes – or the smallest/largest data point whichever is closest to the box.
Any data points outside of this range are ploted individually.

boxplot(flightSF$DepDelay, main = "Departure Delay",

ylab = "Time (in minutes)")

These points are often called “outliers” based on some rules of thumb we won’t
get into now. However, we can see a lot of data points fall outside this range for
our data; this is common for data that is skewed, and doesn’t really mean that these
points are “wrong”, or “unusual” or anything else that we might think about for an
outlier.2

You might think, why would I want such a limited display of the distribution?
First of all, the boxplot emphasizes different things about the distribution. It shows
the main parts of the bulk of the data very quickly and simply, and more fine grained
information about the extremes (“tails”) of the distribution.

Furthermore, because of their simplicity, it is far easier to plot many boxplots and
compare them than histograms

2If our data had a nice symmetric distribution around the median, like the normal distribution,
the rule of thumb would be more appropriate, and this wouldn’t happen to the same degree
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boxplot(flightSF$DepDelay ~ flightSF$Carrier, main = "Departure Delay, by airline carrier",

ylab = "Time (in minutes)")

This would be hard to do with histograms.

Notice, I might want to mask all of the “outlier” points as distracting for this
comparison,

boxplot(flightSF$DepDelay ~ flightSF$Carrier, main = "Departure Delay, by airline carrier",

ylab = "Time (in minutes)", outline = FALSE)
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1.3 Descriptive Vocabulary

Here are some useful things to consider in describing distribution of data or comparing
two different distributions.

Symmetric refers to equal amounts of data on either side of the ‘middle’ of the
data, i.e. the distribution of the data on one side is the mirror image of the
distribution on the other side. This means that the median of the data is roughly
equal to the mean.

Skewed refers to when one ‘side’ of the data spreads out to take on larger values
than the other side. More precisely, it refers to where the mean is relative to the
median. If the mean > median, then there must be large values on the right-
hand side of the distribution, compared to the left hand side (right skewed),
and if the mean < median then it is the reverse.

Spread refers to how spread out the data is from the middle (e.g. mean or median).

Heavy/light tails refers to how much of the data is concentrated in values far away
from the middle, versus close to the middle.

As you can see, several of these terms are mainly relevant for comparing two
distributions.3

1.4 Transformations

When we have skewed data, it can be difficult to compare the distributions because
so much of the data is bunched up on one end, but our axes stretch to cover the large
values that are a relatively small proportion of the data. This is also means that our
eye focuses on those values too.

A common way to get around this is to transform our data, which simply means
we pick a function to transform the data by. For example, a log-transformation of
data point y means that we define new data point z so that

z = log(y).

A common example of when we want a transformation is for data that are all
positive, yet take on values close to zero. In this case, there are often many data
points bunched up by zero (because they can’t go lower) with a definite right skewed.

3But they can often be used without an explicit comparison distribution; in this case, the com-
parison distribution is always the normal distribution, which is a standard benchmark in statistics
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Such data is often nicely spread out for visualization purposes by either the log
or square-root transformations.

ylim <- c(-3, 3)

curve(log, from = 0, to = 10, ylim = ylim, ylab = "Transformed",

xlab = "Original")

curve(sqrt, from = 0, to = 10, add = TRUE, col = "red")

legend("bottomright", legend = c("log", "sqrt"), fill = c("black",

"red"))

You can see that a two ‘data‘ values of (6,10) that were originally separated by
4, are now separated by roughly 1/2 unit on the transformed scale, while two ‘data‘
values (2,6) that were once also separated by 4, are now separated by roughly 1 unit
on the transformed scale. This ‘stretches‘ data on the right to be further apart, while
doing the opposite to the left.

I am going to create some fake data with a skew to give an idea of what a trans-
formation does to the data.

y <- rgamma(1000, scale = 1, shape = 4)

par(mfrow = c(1, 2))

hist(y, main = "Original data", xlab = "original scale",

breaks = 30)

hist(log(y), main = "Log of data", xlab = "log-scale",

breaks = 30)
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Does it mess up our data? Notice an important property is that these are
monotone functions, meaning we are preserving the rank of our data – we are not
suddenly inverting the relative order of the data. But it does certainly change the
meaning when you move to the log-scale. A distance on the log-scale of ‘2’ can imply
different distances on the original scale, depending on where the original data was
located.4

Flight Data Our flight delay data is not so obliging, since it also has negative
numbers. But we could, for visualization purposes, shift the data before taking the
log or square-root. Here I compare the boxplots of the original data, as well as that
of the data after the log and the square-root.

addValue <- abs(min(flightSF$DepDelay, na.rm = TRUE)) +

1

par(mfrow = c(3, 1))

boxplot(flightSF$DepDelay + addValue ~ flightSF$Carrier,

main = "Departure Delay, original", ylab = "Time")

boxplot(log(flightSF$DepDelay + addValue) ~ flightSF$Carrier,

main = "Departure Delay, log transformed", ylab = paste("log(Time+",

addValue, ")"))

boxplot(sqrt(flightSF$DepDelay + addValue) ~ flightSF$Carrier,

main = "Departure Delay, sqrt-transformed", ylab = paste("sqrt(Time+",

addValue, ")"))

4Of course the distance of ‘2’ on the log-scale does have a very specific meaning: a distance of ‘2’
on the (base 10) log scale is equivalent to being 100 times greater
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Notice that there are fewer ‘outliers’ and I can see the differences in the bulk of
the data better. Did the data become symmetrically distributed or is it still skewed?

2 Discrete Probability Distributions

Let’s step back and review basic ideas of sampling and probability distributions that
you learned in Data 8.

In the flight data we have all flights in the month of January out of SFO. This a
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census, i.e. a complete enumeration of the entire population of January flights. You
have seen in Data 8 that we can use this data to define the probabilities of events.

Let’s assume we want to ask questions about delay times of flights that were not
cancelled. For convenience, I’m going to create a new data table that excludes the
canceled flights.

flightSF_nc <- subset(flightSF, flightSF$Cancelled !=

1)

We could ask, what is the probability that a flight is delayed?

We really need to be more careful, however, because we haven’t defined any no-
tion of randomness. If I pick flight AA208 on January 1, 2016 and ask what is the
probability it was delayed, this is not a reasonable question, because it either was or
wasn’t delayed.5

So we don’t actually want to ask about a particular flight if we are interested
in probabilities – we need to have some notion of asking about a randomly selected
flight. So let’s assume that a flight is randomly selected with all flights having an
equal probability of being selected. Now we can ask, what is the probability of
such a flight being delayed. Notice that we have exactly defined the randomness
mechanism, and so now can calculate probabilities. How would you calculate the
following probabilities based on this probability mechanism?

1. P (flight delay time = 10 minutes)

2. P (flight delay time > 2 hour)

3. P (flight is on time)

This kind of sampling is called a simple random sample and is what most people
mean when they say “at random.” However, there are many other kinds of sampling
where not every flight is chosen at random.

Notation We call the delay time of value of a randomly selected flight a random
variable. We can simplify our notation for probabilities by letting the variable X be
short hand for the value of that random variable, and make statements like P (X > 2).
We call the complete set of probabilities the probability distribution of X.

5In fact it wasn’t delayed, so you could say the probability was zero that it was delayed.
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2.1 Probabilities and Histograms

The frequency histograms we plotted above give us information about the probabilities
of discrete distributions, since they give the count of the numbers of observations in
an interval. We can divide that count by the total number of observations, and this
gives us the probability of observations lying in each bin.

How would you use the notation above to write this probability, say for the first
bin?

Recall, that this is not the same thing as the density of points in a region that
you learned about in data 8 – the density of points involves the area of a bin. For
this reason, plotting the bin probabilities as the height of each bar is NOT what is
meant by a histogram.

Plotting these probabilities is not done automatically by R, so we have to main-
pulate the histogram command in R to do this (and I don’t normally recommend that
you make this plot – I’m just making it for teaching purposes here). I’ll make a little
function to do that.

2.2 What about those cancelled flights? (Conditioning)

We asked a question of the population of non-cancelled flights, so that X is the
random variable corresponding to delay times of a randomly selected flight from that

Guntuboyina & Purdom #1, Spring 2017, STAT 28 14



population.

Suppose instead I want to also include cancelled flights in my population of flights,
i.e. all flights. To avoid confusion we can call this random variable Y . Y is equal
to the delay time if the flight isn’t cancelled, and otherwise we’ll say its equal to NA
(like in our data encoding). How could I calculate the probability being on time from
a randomly selected flight from this population (P (Y <= 0))?

What about probability of being delayed (P (Y > 0))?

Is the probability distribution of Y the same as the probability distribution of X?

There is a relationship between the random variables X and Y . If you continually
generated Y and only keep those realizations of Y that aren’t a cancelled flight, then
you would get data that has the same probability distribution as X. The random
data that we get out by only keeping some data is a random variable, sometimes
written as Y |Y 6= NA. Then the probability distribution of Y |Y 6= NA takes on a is
called a conditional probability distribution. We can write

P (Y = 10|Y 6= NA)

which of course, is the same as P (X = 10). This is true for all possible probability
statements about Y |Y 6= NA, meaning that Y |Y 6= NA = X – they define the same
random variable/probability distribution as we said before. So basically, instead of
defining a separate random variable for each possible conditioning, we can use the
conditioning notation. This has the benefit of making sure that we always remember
that we are ignoring those cancelled flights.

3 Histograms of samples of data

Generally the data we work with is a sample, not the complete population.

Consider what happens if you take a simple random sample of 100 flights from
our complete set of flights and calculate a histogram. For simplicity we will sample
from the population of flights in January without a cancellation.
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flightSRS <- sample(x = flightSF_nc$DepDelay, size = 100,

replace = TRUE)

Let’s draw a plot giving the proportions of the total sample in each bin (i.e. not a
histogram). I’m going to also draw the true population probabilities of being in each
bin as well, and put it on the same histogram as the sample proportions. To make sure
they are using the same breakpoints, I’m going to define the break points manually.
(Otherwise the specific breakpoints will depend on the range of each dataset and so
be different)

ylim <- c(0, 1)

breaks <- seq(min(flightSF_nc$DepDelay), max(flightSF_nc$DepDelay),

length = 10)

histBinProb(flightSRS, main = "Departure Delay", xlab = "Time (in minutes)",

border = NA, breaks = breaks, ylim = ylim, col = "red",

add = FALSE)

histBinProb(flightSF_nc$DepDelay, main = "Departure Delay",

xlab = "Time (in minutes)", col = NULL, border = "black",

breaks = breaks, ylim = ylim, lwd = 2, add = TRUE)

legend("topright", c("SRS", "Truth"), fill = c("red",

"white"))

Pretty good. Suppose I had smaller width breakpoints (next figure), what con-
clusions would you make?
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ylim <- c(0, 0.6)

breaks <- seq(min(flightSF_nc$DepDelay), max(flightSF_nc$DepDelay),

length = 100)

histBinProb(flightSRS, main = "Departure Delay", xlab = "Time (in minutes)",

border = NA, breaks = breaks, ylim = ylim, col = "red",

add = FALSE)

histBinProb(flightSF_nc$DepDelay, main = "Departure Delay",

xlab = "Time (in minutes)", col = NULL, border = "black",

breaks = breaks, ylim = ylim, lwd = 2, add = TRUE,

lwd = 3)

legend("topright", c("SRS", "Truth"), fill = c("red",

"white"))

Histograms as Estimates So when we are working with a sample of data, we
should always think of probabilities obtained from a sample as an estimate of the
probabilities of the full population distribution. This means histograms, boxplots,
quantiles, and any estimate of the probability have variability, like any other estimate.

This means we need to be careful about the dual use of histograms as both visu-
alization tools and estimates. As visualization tools, they are always appropriate for
understanding the data you have: whether it is skewed, whether there are outlying
or strange points, etc.

To draw broader conclusions from histograms or boxplots performed on a sample,
however, is to view them as estimates of the entire population. Then you need to
think carefully about how the data was collected.
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Different Types of Samples For example, let’s consider that I want to understand
if the distribution of delay times for United flights is similar to that of American in
2015/2016 academic year. Consider the following samples of data

• All flights in January

• A simple random sample drawn from all flights in the 2015/2016 academic year.

• 12 separate simple random samples drawn from every month in the 2015/2016
academic year, combined together into a single dataset

Why do I now consider all flights in January as a sample, when before I said it
was a census?

All three of these are samples from the population of interest and we can assume
that we choose to make them have the same sample size.

One is not a random sample (which one? ). Only one is a simple random sample.
The last sampling scheme, created by doing a SRS of each month and combining the
results, is also a random sampling scheme, but not a SRS (it is called a Stratified
random sample). We know it’s random because if we did it again, we wouldn’t get
exactly the same set of data (unlike our January data).

If we draw histograms of these different samples, they will all describe the dis-
tribution of the sample, but they will not all be good estimates of the underlying
population distribution. We have access to all of the flight data from the months, so
we can actually make both of these datasets.

flightSFOSRS <- read.table(file.path(dataDir, "SFO_SRS.txt"),

sep = "\t", header = TRUE, stringsAsFactors = FALSE)

flightSFOStratified <- read.table(file.path(dataDir,

"SFO_Stratified.txt"), sep = "\t", header = TRUE,

stringsAsFactors = FALSE)

par(mfrow = c(2, 2))

xlim <- c(-20, 400)

hist(flightSF$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)

hist(flightSFOSRS$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)

hist(flightSFOStratified$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)

Guntuboyina & Purdom #1, Spring 2017, STAT 28 18



How do these histograms compare?

In particular, drawing histograms or estimating probabilities as you have learned
in Data 8 only give good estimates of the population distribution if the data is a SRS.
Otherwise they can vary quite dramatically from the actual population.

So are only SRS good random samples? NO! The stratified random sample
described above can actually be a much better way to get a random sample and
give you better estimates – but you must correctly create your estimates. For the
case of the histogram, you have to estimate the histogram in such a way that it
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correctly estimates the distribution of population, rather than the distribution of the
sample. How? The key thing is that because it is a random sample, drawn according
to a known probability mechanism, it is possible to make a correct estimate of the
population.

How to make these kind of estimates for random samples that are not SRS is
beyond the scope of this class, but there are standard ways to do so for stratified
samples and many other sampling designs. Indeed most national surveys, particularly
the high-quality ones produced by the national government, are not SRS but much
more complicated sampling schemes that can give equally accurate estimates, but
often with less cost.

4 Continuous Distributions

Data 8 primarily relied on discrete distributions, meaning that the possible values
that can be observed is a finite set of values. For example, if we draw a random
sample from our flight data we know that only the 289 unique values of the flights
in January can be observed – not all numeric values are possible (no decimals are
possible, for example). Not even all possible integers in a range are seen (you could
get a delay time of 250 minutes, but not 251 minutes).

When you do hypothesis testing with permutation tests and bootstrap methods,
you are also (re)sampling from a discrete distribution – the set of data points observed.

However, it can be useful to think about probability distributions that allow for
all numeric values (i.e. continuous values), even when we know the actual population
is finite. These are continuous distributions.

For example, suppose we wanted to use this set of flights in January to decide
which airlines we should use in the future. It’s more reasonable to think that there
is an (unknown) probability distribution that defines what we expect to see for that
data that is defined on a continuous range of values.

Of course some features of the data are “naturally” discrete, like the set of airline
carriers, and there no rational way to think of them being continuous.

4.1 Probability with Continuous distributions

Some probability ideas become more complicated/nuanced for continuous distribu-
tions. In particular, for a discrete distribution, it makes sense to say P (X = 10)
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(the probability of a 10 minute flight delay). For continuous distributions, such an
innocent statement is actually fraught with problems.

To see why, remember what you know about discrete probability distributions. In
particular,

0 ≤ P (X = 10) ≤ 1

Furthermore, any probability statment has to have this property, not just ones in-
volving ‘=’: e.g. P (X ≤ 10) or P (X ≥ 0). This is a fundamental rule of probability,
and also holds true for continuous distributions.

Okay so far. Now another thing you learned is if I give all possible values that
my random variable X can take (the sample space) and call them v1, . . . , vK , then if
I sum up all these probabilities they must sum exactly to 1,

K∑
i=1

P (X = vi) = 1

Furthermore, P (X ∈ {v1, . . . , vK}) = 1, i.e. the probability X is in the sample space
must of course be 1.

Well this becomes more complicated for continuous values – this leads us to an
infinite sum since we have an infinite number of possible values. Moreover, if we have
any positive probability (i.e. 6= 0) for each point in the sample space, then we won’t
‘sum’ to one 6 These kinds of concepts from discrete probability just don’t translate
over exactly to continuous.

To deal with this, continuous distributions do not allow any positive probability
for a single value: if X has a continuous distribution, then P (X = x) = 0 for any
value of x. Instead, continuous distributions only allow for positive probability of an
interval: P (x1 ≤ X ≤ x2) can be greater than 0.

This isn’t so strange if you think about it. What is your intuitive sense of the
probability of a flight delay of exactly 10 minutes – and not 10 minutes 10 sec or 9
minutes 45 sec? You see that once you allow for this kind of precision, it is actually
reasonable to say that exactly 10 minutes has no real probability that you need worry
about.

What if you want the chance of getting a 10 minute flight delay? Well, you really
mean a small interval around 10 minutes, since there’s a limit to our measurement
ability anyway. This is what we also do with continuous distributions: we discuss the

6For those with more math: convergent infinite series can of course sum to 1. But we are working
with the continuous real line (or an interval of the real line), and there is not bijection between the
integers and the continuous line.
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probability in terms of increasingly small intervals around 10 minutes. The math-
emtatics of calculus give us the tools to do this7, but we are not going to actually
use those calculus tools in this class. For any continuous distributions you can think
of, the computer will give us these results. Instead we are going to focus on the big
ideas, which is all that is needed.

4.2 Probability Density Functions (pdfs)

For discrete distributions, we can completely describe the distribution of a random
variable by describing the probability of each of the discrete values it takes on. Know-
ing P (X = vi) for all possible values of vi in the sample space completely defines the
probability distribution.

If we can’t talk about P (X = x), then how do we define a continous distribution?
Instead we talk about a probability density function (pdf). A probability density
function is a function p(x), so that if you draw this function and measure the area
under its curve for an interval, it gives you probability of that interval. So let’s break
that down.

Let’s take the following pdf, which is perhaps vaguely similar to our flight data,
though on a different scale

p(x) =
1

4
xe−x/2

curve(x * exp(-x/2)/4, xlim = c(0, 30), ylab = "p(x)",

xlab = "x")

7If you’ve taken calculus, you probably recall the idea of integration giving the area under a
curve, or derivatives as being the rate of change in f(x) for an infintesimally small amount of change
in x
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Suppose that X is a random variable from a distribution with this pdf. Then to
find P (5 ≤ X ≤ 10), I find “the area under the curve” of p(x) between 5 and 10.

plotUnderCurve <- function(x1, x2, p, ...) {
x = seq(x1, x2, len = 100)

y = p(x)

polygon(c(x, tail(x, 1), x[1]), c(y, 0, 0), ...)

}
p <- function(x) {

x * exp(-x/2)/4

}
curve(p, xlim = c(0, 30), ylab = "p(x)", xlab = "x")

plotUnderCurve(5, 10, p, col = "red")
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Our same rule from discrete distribution applies, namely that the probability of
X being in the entire sample space must be 1. What does this mean in terms of the
cumulative area under the curve of p(x)?

Key properties of continuous distributions (for this class at least!)

1. Probabilities are always between 0 and 1, inclusive.

2. Probabilities are only calculated for intervals, not individual points

3. A probability density function (pdf) defines a continuous distribution and gives
the probability of any interval by taking the area under the curve

4.2.1 Normal Distribution and Central Limit Theorem

You’ve seen a continuous distribution when you learned about the central limit the-
orem in Data 8.

Recall, if I take a SRS of a population and calculate it’s mean, say X̄, this is a
random variable that has a distribution. It’s randomness is due to the randomness
in the SRS. If I do this many times I can look at the distribution of X̄
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sampleSize <- 1000

sampleMean <- replicate(n = 10000, expr = mean(sample(flightSF_nc$DepDelay,

size = sampleSize, replace = TRUE)))

hist(sampleMean, xlab = "Mean Departure Delay", main = paste("Mean of SRS of size",

sampleSize))

If the size of the sample is large enough, the distribution (i.e. histogram) of X̄ will
look like a bell shaped curve. The central limit theorem tells that for large sample
sizes, this always happens, regardless of the original distribution of the data. This
curve is called the normal distribution.

A normal distribution has two parameters that define the distribution, its mean
µ and variance σ2. It’s pdf is

p(x) =
1√

2πσ2
e−

(x−µ)2

σ2

It’s a mouthful, but easy for a computer to evaluate.

Then the central limit theorem says that if the original distribution has mean
µtrue and variance τ 2true, then the distribution of X̄ for a sample of size n will be
approximately

N(µtrue,
τ 2true
n

)

Back to Flight data We can overlay the normal distribution on our histogram,
if we draw a density histogram (i.e. scale the frequencies so that the area under the
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curve sums to 1). Notice we also have to pick the right mean and standard deviation
for our normal distribution for these to align. For most actual datasets, of course,
we don’t know the true mean of the population, but since we sampled from a known
population we do.

Probabilities of a normal distribution Recall that for a normal distribution,
the probability of being with in 1 standard deviation of µ is roughly 0.68 and the
probability of being within 2 standard deviations of µ is roughly 0.95.

What is the probability that a observed random variable from a N(µ, σ2) distri-
bution is less than µ by more than 2σ?

For X̄, which is approximately normal, if the original population had mean µ and
variance τ , the standard deviation of that normal is τ/

√
n. What does this mean for

the chance of a single mean calculated from your data being far from the true mean
(relate your answer to the above information about probabilities in a normal)?

It also means that trying to improve your estimate by getting 100 observations,
will result in different improvements in your estimate depending on your sample size.
For example, if you had n = 1000 and you go to n = 1100, that will make your mean
likely to be within τ/16.5 instead of τ/15. In comparison, if you only have n = 20
observations, getting 100 additional observations will change from being likely within
τ/2.2 of the true mean to being within τ/5.5, which is a much bigger deduction in
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the range of likely values for your mean.

4.2.2 More on density curves

“Not much good to me” you might think – you can’t evaluate p(x) and get any
probabilities out. It just requires the new task of finding an area. However, finding
areas under curves is routine with calculus tools (it’s called integration), and even if
there is not a analytical solution, the computer can calculate the area. So pdfs are
actually quite useful.

Moreover, p(x) is interpretable, just not as a direct tool for probability calcula-
tions. For smaller and smaller intervals you are getting close to the idea of the “prob-
ability” of X = 10. For this reason, where discrete distributions use P (X = 10), the
closest corresponding idea for continuous distributions is p(10): though p(10) is not a
probability like P (X = 10) the value of p(x) gives you an idea of more likely regions
of data.

More intuitively, the curve p(x) corresponds to the idea of of a histogram of data.
It’s shape tells you about where the data are likely to be found, just like the bins of
the histogram. We see for our example of X̄ that the histogram of X̄ (when properly
plotted on a density scale) approaches the smooth curve of a normal distribution. So
the same intuition we have from the discrete histograms carry over to pdfs.

Properties of pdfs

1. The total area under the curve p(x) must be exactly equal to 1

2. Unlike probabilities, the value of p(x) can be ≥ 1 (!).

This last one is surprising to people, but p(x) is not a probability – only the area
under it’s curve.

To understand this, consider this very simple density function:

p(x) =

{
1 x ∈ [0, 1]

0 x > 1, x < 0
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This is a density function that corresponds to being equally likely for any value
between 0 and 1; why?

What is the area under this curve? Well it’s just a rectangle, so...

it’s called a uniform distribution on [0,1], some times abbreviated U(0, 1).

Suppose instead, I want density function that corresponds to being equally likely
for any value between 1/4 and 1/2 (i.e. U(1/4, 1/2)).
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Then again, we can easily calculate this area . If p(x) was required to be less than
one, you couldn’t get the total area to be 1.

So you see that the scale of values that X takes on matters to the value of p(x).
If X is concentrated on a small interval, then the density function will be quite large,
while if it is diffuse over a large area the value of the density function will be small.

Example: Changing the scale of measurements : Suppose my random vari-
ableX are measurements in centimeters, with a normal distribution, N(µ = 100cm, σ2 =
100cm2). What is the standard deviation?

Then I decide to convert all the measurements to meters (FYI: 100 centimeters=1
meter). What is now the mean? And standard deviation?

Density Histograms We’ve been showing histograms with the frequency of counts
in each bin on the y-axis. But , histograms are meant to represent the distribution
of continuous measurements, so they are defined to approximate density functions.
Specifically, histograms are properly drawn on the density scale, meaning that you
want the total area in all of the rectangles of the histogram to have area one. Notice
how when I overlay the normal curve for discussing the central limit theorem, I had
to set my hist function to freq=FALSE to get proper density histograms. Otherwise
the histogram is on the wrong scale.
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hist(sampleMean, xlab = "Mean Departure Delay", main = paste("Mean of SRS of size",

sampleSize), freq = FALSE)

m <- mean(flightSF_nc$DepDelay)

s <- sqrt(var(flightSF_nc$DepDelay)/sampleSize)

p <- function(x) {
dnorm(x, mean = m, sd = s)

}
curve(p, add = TRUE, col = "red", lwd = 3)

Therefore, just like density curves, if you plot histograms on the density scale, you
can get values greater than 1.
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Notice how density values vary (like counts) as you change the breaks. Why?

So you can see how the breaks in a histogram can affect their ability to be a
good estimate of the density. Consider our sample of X̄ values, which we know
approximates a normal,

m <- mean(flightSF_nc$DepDelay)

s <- sqrt(var(flightSF_nc$DepDelay)/sampleSize)

p <- function(x) {
dnorm(x, mean = m, sd = s)

}
par(mfrow = c(2, 2))

hist(sampleMean, xlab = "Mean Departure Delay", main = expression(paste(bar(X),

", default breaks")), freq = FALSE)

curve(p, add = TRUE, col = "red", lwd = 3)

hist(sampleMean, xlab = "Mean Departure Delay", main = expression(paste(bar(X),

", 10 breaks")), breaks = 10, freq = FALSE)

curve(p, add = TRUE, col = "red", lwd = 3)

hist(sampleMean, xlab = "Mean Departure Delay", main = expression(paste(bar(X),

", 1000 breaks")), freq = FALSE, breaks = 1000)

curve(p, add = TRUE, col = "red", lwd = 3)

hist(sampleMean, xlab = "Mean Departure Delay", main = expression(paste(bar(X),

", 10000 breaks")), freq = FALSE, breaks = 10000)

curve(p, add = TRUE, col = "red", lwd = 3)
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4.2.3 Other distributions

Here are some examples of some pdfs from some two common continuous distributions
other than the normal:

par(mfrow = c(2, 2))

f <- function(x) {
dgamma(x, shape = 5, scale = 1)

}
curve(f, from = 0, to = 20, ylab = "p(x)", main = "Gamma(5,1) distribution")

f <- function(x) {
dgamma(x, shape = 1, scale = 5)

}
curve(f, from = 0, to = 20, ylab = "p(x)", main = "Gamma(1,5) distribution")

f <- function(x) {
dbeta(x, 0.5, 0.5)

}
curve(f, from = 0, to = 1, ylab = "p(x)", main = "Beta(.5,.5) distribution")

f <- function(x) {
dbeta(x, 2, 5)

}
curve(f, from = 0, to = 1, ylab = "p(x)", main = "Beta(2,5) distribution")
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Notice a few things illustrated by these examples:

• that ‘a’ distribution actually can be multiple distributions that differ by chang-
ing the parameters (e.g. Normal has a mean and a standard deviation that
defines it)

• Unlike the normal, many distributions have very different shapes for different
parameters

• Continuous distributions can be concentrated to an interval or region (i.e. not
take on all values of the real line). They are still considered continuous distribu-
tions because they range of points with positive probability is still a continuous
range.
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The following cannot be pdfs, why?

But be careful. Just because a function p(x) goes to infinity, doesn’t mean that
it can’t be a probability density!

Guntuboyina & Purdom #1, Spring 2017, STAT 28 34



4.3 Density Curve Estimation

We’ve seen that histograms can approximate density curves (by making the area in
the histogram sum to 1). If we have data from a continuous distribution, we are
estimating a pdf, so we would want an estimate that is written as a function, say
p̂(x).

Histogram as estimate of pdf For a continuous distribution we can only calculate
probabilities in small interval around x. If the pdf is pretty smooth, then in a small
window around x, p(x) is going to be roughly the same value, so that if width of the
interval is small, the probability in a small interval around x is roughly proportional
to p(x).8 So if we want to estimate p(x), we could estimate the probability of a small
interval if width w around x, how?

Then the true probability of that interval is roughly wp(x) (because we are as-
suming pdf is smooth, so not changing much). So we could say

p̂(x) =
P̂ (data in interval)

w

With this idea, we can view our histogram as a estimate of the pdf. For example,
suppose we consider a histogram of our SRS of flights from January,

8Don’t forget you have to take into account the width of the interval, so its not actually p(x),
but p(x) times a very small amount!
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Then the frequency counts in the frequency version of a histogram can be convert
to density scale by dividing by the width of the interval of the bins (this is what is
meant by the density values in a histogram). Then by our argument above, this is an
estimate of p(x), specifically an estimate p̂(x) that is what is called a step function:

Basically, interpreting a histogram as an estimate of the pdf means, in the interval
of the bin, we assume p(x) is roughly the same and estimated by

p̂hist(x ∈ bin) =
P̂ (data in bin)

w

So if x is in the bin with interval [5, 7), then if w is the width of the bin, how do
you calculate p̂hist(4)?

4.3.1 Kernel density estimation

The histogram estimate is reasonable estimate if x is right in the middle of the bin,
but if x is on the boundary of the bin, what happens?

It makes not only the size of the bins, but also the specific centers of the bins
important. And clearly this doesn’t make for a continuous function!
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Moving Windows We could imagine making different intervals for each value of
x, so that for the interval used to estimate p(x) is centered at x.

For example, say we pick a bin width of 2, and want to estimate the density
around 5. Then for x = 5, we could make a interval [4, 6), and calculate

# x ∈ [4, 6)

2× 100

We can do this for x = 6, with an interval of [5, 7) and so forth for each x. This
would create a curve that looks like this.

Moving Windows as a Weighted Kernel Function Our estimate of p(x), more
generally, is

p̂(x) =
#xi ∈ [x− w

2
, x+ w

2
)

w × n
So to estimate the density around x, we are using the individual data observations if
and only if they are close to x. Here is a visualization of how we determine whether
a point xi should contribute to estimating p(x)
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Once we think about it like that, we can think about not having such a sharp
distinction for the interval around x. How much you contribute to the estimate of
p(x) could be based on your distance from x, but in a smooth way. For example,
consider this more ‘gentle’ visualization of the contribution of xi:

We call both of these functions a kernel function and are ways to choose how
to let nearby points contribute to the estimate of x.

The second one is normal (or gaussian) kernel and is very common for density
estimation. It is a normal curve centered at x9; as you move away from x you start

9You have to properly scale the height of the kernel function curve so that you get area under
the final estimate p̂(x) curve equal to 1
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to decrease in your contribution to the estimate of p(x) but more gradually than the
rectangle kernel we started with.

Writing this as an equation We can re-write counting as a sum of a series of 0-1
decisions about each point xi, often written as an indicator function, I(·), meaning
the value of I(·) = 1 if the expression (·) inside is true, and zero otherwise.

#xi ∈ [x− w

2
, x+

w

2
) =

n∑
i=1

I(x− w

2
≤ xi ≤ x+

w

2
)

Then our estimate of p(x) can be written as

p̂(x) =
1

n

n∑
i=1

1

w
I(|xi − x| ≤

w

2
)

(note I’ve changed x− w
2
≤ xi ≤ x+ w

2
into a more succinct |xi − x| ≤ w

2
)

So to estimate the density around x, we are using the individual data observations
if and only if they are close to x, and Ix(·) is the function that controls that.

So to use the gaussian kernel above instead, we want to substitute Rx(xi) =
1
w
I(|xi − x| ≤ w

2
) with a (properly) scaled function fx(xi) that is the normal pdf.

Example of Flight data Here is the estimate of the density based on the rectan-
gular kernel and the normal kernel, along with our estimate from the histogram:

plot(density(flightSRS, kernel = "gaussian"), main = "Density estimate, both kernels")

lines(density(flightSRS, kernel = "rectangular"), col = "red")

lines(p, do.points = FALSE, xlab = "Departure Delay (in Minutes)",

verticals = FALSE, ylim = ylim, xlim = xlim, col = "blue")

legend("topright", c("Normal", "Rectangle", "Histogram"),

fill = c("black", "red", "blue"))
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What do you notice when comparing the estimates of the density from these two
kernels?

Bandwidth Notice that I still have a problem of picking a width for the rectangular
kernel, or the spread/standard deviation for the gaussian kernel. This w is called
generically a bandwidth parameter. In the above plot I let the density function
pick it in an automatic way.

Here are different choices of the bandwidth:
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4.3.2 Comparing multiple groups with density curves

In addition to being a more satisfying estimation of a pdf, density curves are much
easier to compare between groups than histograms because you can easily overlay
them.

perGroupDensity <- tapply(X = flightSF_nc$DepDelay,

INDEX = flightSF_nc$Carrier, FUN = density)

ylim <- range(sapply(perGroupDensity, function(x) {
range(x$y)

}))
cols <- rainbow(length(perGroupDensity))
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par(mfrow = c(1, 1))

plot(density(flightSF_nc$DepDelay), main = "All non-cancelled flight, by carrier",

sub = paste("Bandwith multiplied by", adjust),

lwd = 2, lty = 2, xlim = c(-20, 50), ylim = ylim)

nullOut <- mapply(perGroupDensity, cols, FUN = function(x,

col) {
lines(x, col = col)

})

4.3.3 Violin Plots

We can combine the idea of density plots and boxplots to get something called a
‘violin plot’.

library(vioplot)

vioplot(flightSF_nc$DepDelay)
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This is basically just turning the density estimate on its side and putting it next to
the boxplot so that you can get finer-grain information about the distribution. Like
boxplots, this allows you to compare many groups (but unlike the standard boxplot

command, the vioplot function is a bit akward for plotting multiple groups, so I’ve
made my own little function ‘vioplot2’ available online which I will import here)

source("http://www.stat.berkeley.edu/~epurdom/RcodeForClasses/myvioplot.R")

vioplot2(flightSF_nc$DepDelay, flightSF_nc$Carrier,

col = palette())
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