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Chapter 1

Introduction

This book consists of materials to accompany the course “Statistical Methods
for Data Science” (STAT 131A) taught at UC Berkeley. STAT 131A is an upper-
division course that is a follow-up course to an introductory statistics, such as
DATA 8 or STAT 20 taught at UC Berkeley.

The textbook will teach a broad range of statistical methods that are used to
solve data problems. Topics include group comparisons and ANOVA, standard
parametric statistical models, multivariate data visualization, multiple linear
regression and logistic regression, classification and regression trees and random
forests.

These topics are covered at a very intuitive level, with only a semester of calculus
expected to be able to follow the material. The goal of the book is to explain
these more advanced topics at a level that is widely accessible.

In addition to an introductory statistics course, students in this course are
expected to have had some introduction to programming, and the textbook
does not explain programming concepts nor does it generally explain the R
Code shown in the book. The focus of the book is understanding the con-
cepts and the output. To have more understanding of the R Code, please see
the accompanying .Rmd that steps through the code in each chapter (and the
accompanying .html that gives a compiled version). These can be found at
epurdom.github.io/Stat131A/Rsupport/index.html.

The datasets used in this manuscript should be made available to students in
the class on bcourses by their instructor.

The contents of this book are licensed for free consumption under the follow-
ing license: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0)
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6 CHAPTER 1. INTRODUCTION

1.1 Acknowledgements

This manuscript is based on lecture notes originally developed by Aditya Gun-
tuboyina (Chapters 6-8) and Elizabeth Purdom (Chapters 2-5) in the Spring of
2017, the first time the course was taught at UC Berkeley. Shobhana Stoyanov
provided materials that aided in the writing of Chapter 2, section 2.2 and useful
feedback.

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11



Chapter 2

Data Distributions

We’re going to review some basic ideas about distributions you should have
learned in Data 8 or STAT 20. In addition to review, we introduce some new
ideas and emphases to pay attention to:

• Continuous distributions and density curves
• Tools for visualizing and estimating distributions: boxplots and kernel

density estimators
• Types of samples and how they effect estimation

2.1 Basic Exporatory analysis

Let’s look at a dataset that contains the salaries of San Francisco employees.1
We’ve streamlined this to the year 2014 (and removed some strange entries with
negative pay). Let’s explore this data.
dataDir <- "../finalDataSets"
nameOfFile <- file.path(dataDir, "SFSalaries2014.csv")
salaries2014 <- read.csv(nameOfFile, na.strings = "Not Provided")
dim(salaries2014)

## [1] 38117 10
names(salaries2014)

## [1] "X" "Id" "JobTitle" "BasePay"
## [5] "OvertimePay" "OtherPay" "Benefits" "TotalPay"
## [9] "TotalPayBenefits" "Status"

1https://www.kaggle.com/kaggle/sf-salaries/
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8 CHAPTER 2. DATA DISTRIBUTIONS

salaries2014[1:10, c("JobTitle", "Benefits", "TotalPay",
"Status")]

## JobTitle Benefits TotalPay Status
## 1 Deputy Chief 3 38780.04 471952.6 PT
## 2 Asst Med Examiner 89540.23 390112.0 FT
## 3 Chief Investment Officer 96570.66 339653.7 PT
## 4 Chief of Police 91302.46 326716.8 FT
## 5 Chief, Fire Department 91201.66 326233.4 FT
## 6 Asst Med Examiner 71580.48 344187.5 FT
## 7 Dept Head V 89772.32 311298.5 FT
## 8 Executive Contract Employee 88823.51 310161.0 FT
## 9 Battalion Chief, Fire Suppress 59876.90 335485.0 FT
## 10 Asst Chf of Dept (Fire Dept) 64599.59 329390.5 FT

Let’s look at the column ‘TotalPay’ which gives the total pay, not including
benefits.

Question: How might we want to explore this data? What single number
summaries would make sense? What visualizations could we do?

summary(salaries2014$TotalPay)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 33482 72368 75476 107980 471953

Notice we have entries with zero pay! Let’s investigate why we have zero pay
by subsetting to just those entries.
zeroPay <- subset(salaries2014, TotalPay == 0)
nrow(zeroPay)

## [1] 48
head(zeroPay)

## X Id JobTitle BasePay OvertimePay OtherPay
## 34997 145529 145529 Special Assistant 15 0 0 0
## 35403 145935 145935 Community Police Services Aide 0 0 0
## 35404 145936 145936 BdComm Mbr, Grp3,M=$50/Mtg 0 0 0
## 35405 145937 145937 BdComm Mbr, Grp3,M=$50/Mtg 0 0 0
## 35406 145938 145938 Gardener 0 0 0
## 35407 145939 145939 Engineer 0 0 0
## Benefits TotalPay TotalPayBenefits Status
## 34997 5650.86 0 5650.86 PT
## 35403 4659.36 0 4659.36 PT
## 35404 4659.36 0 4659.36 PT
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## 35405 4659.36 0 4659.36 PT
## 35406 4659.36 0 4659.36 PT
## 35407 4659.36 0 4659.36 PT
summary(zeroPay)

## X Id JobTitle BasePay OvertimePay
## Min. :145529 Min. :145529 Length:48 Min. :0 Min. :0
## 1st Qu.:145948 1st Qu.:145948 Class :character 1st Qu.:0 1st Qu.:0
## Median :145960 Median :145960 Mode :character Median :0 Median :0
## Mean :147228 Mean :147228 Mean :0 Mean :0
## 3rd Qu.:148637 3rd Qu.:148637 3rd Qu.:0 3rd Qu.:0
## Max. :148650 Max. :148650 Max. :0 Max. :0
## OtherPay Benefits TotalPay TotalPayBenefits Status
## Min. :0 Min. : 0 Min. :0 Min. : 0 Length:48
## 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 Class :character
## Median :0 Median :4646 Median :0 Median :4646 Mode :character
## Mean :0 Mean :2444 Mean :0 Mean :2444
## 3rd Qu.:0 3rd Qu.:4649 3rd Qu.:0 3rd Qu.:4649
## Max. :0 Max. :5651 Max. :0 Max. :5651

It’s not clear why these people received zero pay. We might want to remove
them, thinking that zero pay are some kind of weird problem with the data we
aren’t interested in. But let’s do a quick summary of what the data would look
like if we did remove them:
summary(subset(salaries2014, TotalPay > 0))

## X Id JobTitle BasePay
## Min. :110532 Min. :110532 Length:38069 Min. : 0
## 1st Qu.:120049 1st Qu.:120049 Class :character 1st Qu.: 30439
## Median :129566 Median :129566 Mode :character Median : 65055
## Mean :129568 Mean :129568 Mean : 66652
## 3rd Qu.:139083 3rd Qu.:139083 3rd Qu.: 94865
## Max. :148626 Max. :148626 Max. :318836
## OvertimePay OtherPay Benefits TotalPay
## Min. : 0 Min. : 0 Min. : 0 Min. : 1.8
## 1st Qu.: 0 1st Qu.: 0 1st Qu.:10417 1st Qu.: 33688.3
## Median : 0 Median : 700 Median :28443 Median : 72414.3
## Mean : 5409 Mean : 3510 Mean :24819 Mean : 75570.7
## 3rd Qu.: 5132 3rd Qu.: 4105 3rd Qu.:35445 3rd Qu.:108066.1
## Max. :173548 Max. :342803 Max. :96571 Max. :471952.6
## TotalPayBenefits Status
## Min. : 7.2 Length:38069
## 1st Qu.: 44561.8 Class :character
## Median :101234.9 Mode :character
## Mean :100389.8
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## 3rd Qu.:142814.2
## Max. :510732.7

We can see that in fact we still have some weird pay entires (e.g. total payment
of $1.8). This points to the slippery slope you can get into in “cleaning” your
data – where do you stop?

A better observation is to notice that all the zero-entries have ”Status” value of
PT, meaning they are part-time workers.
summary(subset(salaries2014, Status == "FT"))

## X Id JobTitle BasePay
## Min. :110533 Min. :110533 Length:22334 Min. : 26364
## 1st Qu.:116598 1st Qu.:116598 Class :character 1st Qu.: 65055
## Median :122928 Median :122928 Mode :character Median : 84084
## Mean :123068 Mean :123068 Mean : 91174
## 3rd Qu.:129309 3rd Qu.:129309 3rd Qu.:112171
## Max. :140326 Max. :140326 Max. :318836
## OvertimePay OtherPay Benefits TotalPay
## Min. : 0 Min. : 0 Min. : 0 Min. : 26364
## 1st Qu.: 0 1st Qu.: 0 1st Qu.:29122 1st Qu.: 72356
## Median : 1621 Median : 1398 Median :33862 Median : 94272
## Mean : 8241 Mean : 4091 Mean :35023 Mean :103506
## 3rd Qu.: 10459 3rd Qu.: 5506 3rd Qu.:38639 3rd Qu.:127856
## Max. :173548 Max. :112776 Max. :91302 Max. :390112
## TotalPayBenefits Status
## Min. : 31973 Length:22334
## 1st Qu.:102031 Class :character
## Median :127850 Mode :character
## Mean :138528
## 3rd Qu.:167464
## Max. :479652
summary(subset(salaries2014, Status == "PT"))

## X Id JobTitle BasePay
## Min. :110532 Min. :110532 Length:15783 Min. : 0
## 1st Qu.:136520 1st Qu.:136520 Class :character 1st Qu.: 6600
## Median :140757 Median :140757 Mode :character Median : 20557
## Mean :138820 Mean :138820 Mean : 31749
## 3rd Qu.:144704 3rd Qu.:144704 3rd Qu.: 47896
## Max. :148650 Max. :148650 Max. :257340
## OvertimePay OtherPay Benefits TotalPay
## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0
## 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 115.7 1st Qu.: 7359
## Median : 0.0 Median : 191.7 Median : 4659.4 Median : 22410
## Mean : 1385.6 Mean : 2676.7 Mean :10312.3 Mean : 35811
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## 3rd Qu.: 681.2 3rd Qu.: 1624.7 3rd Qu.:19246.2 3rd Qu.: 52998
## Max. :74936.0 Max. :342802.6 Max. :96570.7 Max. :471953
## TotalPayBenefits Status
## Min. : 0 Length:15783
## 1st Qu.: 8256 Class :character
## Median : 27834 Mode :character
## Mean : 46123
## 3rd Qu.: 72569
## Max. :510733

So it is clear that analyzing data from part-time workers will be tricky (and we
have no information here as to whether they worked a week or eleven months).
To simplify things, we will make a new data set with only full-time workers:
salaries2014_FT <- subset(salaries2014, Status == "FT")

2.1.1 Histograms

Let’s draw a histogram of the total salary for full-time workers only.
hist(salaries2014_FT$TotalPay, main = "Total Pay",

xlab = "Pay (in dollars)")
abline(v = mean(salaries2014_FT$TotalPay), lty = "dashed")
abline(v = median(salaries2014_FT$TotalPay))
legend("topright", legend = c("Median", "Mean"), lty = c("solid",

"dashed"))

Question: What do you notice about the histogram? What does it tell
you about the data?
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Question: How good of a summary is the mean or median here?

2.1.1.1 Constructing Frequency Histograms

How do you construct a histogram? Practically, most histograms are created by
taking an evenly spaced set of 𝐾 breaks that span the range of the data, call
them 𝑏1 ≤ 𝑏2 ≤ ... ≤ 𝑏𝐾, and counting the number of observations in each bin.2
Then the histogram consists of a series of bars, where the x-coordinates of the
rectangles correspond to the range of the bin, and the height corresponds to the
number of observations in that bin.

2.1.1.1.1 Breaks of Histograms

Here’s two more histogram of the same data that differ only by the number of
breakpoints in making the histograms.
par(mfrow = c(2, 2))
hist(salaries2014_FT$TotalPay, main = "Total Pay, default breaks",

xlab = "Pay (in dollars)")
hist(salaries2014_FT$TotalPay, main = "Total Pay, breaks=100",

xlab = "Pay (in dollars)", breaks = 100)
hist(salaries2014_FT$TotalPay, main = "Total Pay, breaks=1000",

xlab = "Pay (in dollars)", breaks = 1000)
hist(salaries2014_FT$TotalPay, main = "Total Pay, Zoomed-in",

xlab = "Pay (in dollars)", xlim = c(0, 1e+05),
breaks = 1000)

2You might have been taught that you can make a histogram with uneven break points,
which is true, but in practice is rather exotic thing to do. If you do, then you have to calculate
the height of the bar differently based on the width of the bin because it is the area of the bin
that should be proportional to the number of entries in a bin, not the height of the bin.
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Question: What seems better here? Is there a right number of breaks?

What if we used a subset, say only full-time firefighters? Now there are only
738 data points.
salaries2014_FT_FF <- subset(salaries2014_FT, JobTitle ==

"Firefighter" & Status == "FT")
dim(salaries2014_FT_FF)

## [1] 738 10
par(mfrow = c(2, 2))
hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, default breaks",

xlab = "Pay (in dollars)")
hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, breaks=30",

xlab = "Pay (in dollars)", breaks = 30)
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hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, breaks=100",
xlab = "Pay (in dollars)", breaks = 100)

hist(salaries2014_FT_FF$TotalPay, main = "Firefighters, breaks=1000",
xlab = "Pay (in dollars)", breaks = 1000)

2.1.1.2 Density Histograms

The above are called frequency histograms, because we plot on the y-axis
(the height of the rectangles) the count of the number of observations in each
bin. Density histograms plot the height of rectangles so that the area of each
rectangle is equal to the proportion of observations in the bin. If each rectangle
has equal width, say 𝑤, and there are 𝑛 total observations, this means for a bin
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𝑘, it’s height is given by

𝑤 ∗ ℎ𝑘 = #observations in bin 𝑘
𝑛

So that the height of a rectangle for bin 𝑘 is given by

ℎ𝑘 = #observations in bin 𝑘
𝑤 × 𝑛

In other words, the density histogram with equal-width bins will look like the
frequency histogram, only the heights of all the rectangles will be divided by
𝑤𝑛.

We will return to the importance of density histograms more when we discuss
continuous distributions.

2.1.2 Boxplots

Another very useful visualization can be a boxplot. A boxplot is like a histogram,
in that it gives you a visualization of how the data are distributed. However, it
is a much greater simplification of the distribution.

Box: It plots only a box for the bulk of the data, where the limits of the box
are the 0.25 and 0.75 quantiles of the data (or 25th and 75th percentiles). A
dark line across the middle is the median of the data.

Whiskers: In addition, a boxplot gives additional information to evaluate the
extremities of the distribution. It draws “whiskers” out from the box to indicate
how far out is the data beyond the 25th and 75th percentiles. Specifically it
calculates the interquartitle range (IQR), which is just the difference between
the 25th and 75th percentiles:

𝐼𝑄𝑅 = 3rd Qu. − 1st Qu.

It then draws the whiskers out an additional 1.5 IQR distance from the boxes
OR to the smallest/largest data point (whichever is closest to the box).

lower whisker ∶ 𝑚𝑎𝑥(1st Qu. − 1.5𝐼𝑄𝑅,Min)

upper whisker ∶ 𝑚𝑖𝑛(3rd Qu. + 1.5𝐼𝑄𝑅,Max)
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Any data points outside of this range of the whiskers are ploted individually.
These points are often called “outliers” based the 1.5 IQR rule of thumb. The
term outlier is usually used for unusual or extreme points. However, we can
see a lot of data points fall outside this definition of “outlier” for our data; this
is common for data that is skewed, and doesn’t really mean that these points
are “wrong”, or “unusual” or anything else that we might think about for an
outlier.3

Whiskers Why are the whiskers set like they are? Why not draw them out to
the min and max?4 The motivation is that the whiskers give you the range of
“ordinary” data, while the points outside the whiskers are “outliers” that might
be wrong or unrepresentative of the data. As mentioned above, this is often
not the case in practice. But that motivation is still reasonable. We don’t want
our notion of the general range of the data to be manipulated by a few extreme
points; 1.5 IQR is a more stable, reliable (often called “robust”) description of
the data.

Taking off the explanations from the plot and going back to our data, our boxplot
is given by:
par(mfrow = c(1, 1))
boxplot(salaries2014_FT$TotalPay, main = "Total Pay",

ylab = "Pay (in dollars)")

3If our data had a nice symmetric distribution around the median, like the normal distri-
bution, the rule of thumb would be more appropriate, and this wouldn’t happen to the same
degree. Specifically, for a normal distribution with standard deviation, 𝐼𝑄𝑅 = 1.35𝜎, so
the whiskers would be a distance of 2.17𝜎 from the mean/median, so the chance of a single
observation from a normal being outside of the range of the whiskers would be 0.03.

4Some boxplots do define the whiskers to be the min and max, showing the range of the
data. This isn’t the accepted definition anymore in most areas, but it is always good to check.
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You might think, why would I want such a limited display of the distribution,
compared to the wealth of information in the histogram? I can’t tell at all that
the data is bimodal from a boxplot, for example.

First of all, the boxplot emphasizes different things about the distribution. It
shows the main parts of the bulk of the data very quickly and simply, and
emphasizes more fine grained information about the extremes (“tails”) of the
distribution.

Furthermore, because of their simplicity, it is far easier to plot many boxplots
and compare them than histograms. For example, I have information of the job
title of the employees, and I might be interested in comparing the distribution
of salaries with different job titles (firefighters, teachers, nurses, etc). Here I
will isolate only those samples that correspond to the top 10 most numerous
full-time job titles and do side-by-side boxplots of the distribution within each
job title for all 10 jobs.
tabJobType <- table(subset(salaries2014_FT, Status ==

"FT")$JobTitle)
tabJobType <- sort(tabJobType, decreasing = TRUE)
topJobs <- head(names(tabJobType), 10)
salaries2014_top <- subset(salaries2014_FT, JobTitle %in%

topJobs & Status == "FT")
salaries2014_top <- droplevels(salaries2014_top)
dim(salaries2014_top)

## [1] 5816 10
par(mar = c(10, 4.1, 4.1, 0.1))
boxplot(salaries2014_top$TotalPay ~ salaries2014_top$JobTitle,

main = "Total Pay, by job title, 10 most frequent job titles",
xlab = "", ylab = "Pay (in dollars)", las = 3)
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This would be hard to do with histograms – we’d either have 10 separate plots, or
the histograms would all lie on top of each other. Later on, we will discuss “violin
plots” which combine some of the strengths of both boxplots and histograms.

Notice that the outliers draw a lot of attention, since there are so many of them;
this is common in large data sets especially when the data are skewed. I might
want to mask all of the “outlier” points as distracting for this comparison,
boxplot(TotalPay ~ JobTitle, data = salaries2014_top,

main = "Total Pay, by job title, 10 most frequent job titles",
xlab = "", ylab = "Pay (in dollars)", las = 3,
outline = FALSE)
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2.1.3 Descriptive Vocabulary

Here are some useful terms to consider in describing distributions of data or
comparing two different distributions.

Symmetric refers to equal amounts of data on either side of the ‘middle’ of
the data, i.e. the distribution of the data on one side is the mirror image
of the distribution on the other side. This means that the median of the
data is roughly equal to the mean.

Skewed refers to when one ‘side’ of the data spreads out to take on larger
values than the other side. More precisely, it refers to where the mean
is relative to the median. If the mean is much bigger than the median,
then there must be large values on the right-hand side of the distribution,
compared to the left hand side (right skewed), and if the mean is much
smaller than the median then it is the reverse.

Spread refers to how spread out the data is from the middle (e.g. mean or
median).

Heavy/light tails refers to how much of the data is concentrated in values far
away from the middle, versus close to the middle.

As you can see, several of these terms are mainly relevant for comparing two
distributions.5

Here are the histograms of some simulated data that demonstrate these features
set.seed(1)
par(mfrow = c(2, 2))
hist(rgamma(1000, shape = 2), main = "Right Skew")
hist(rnorm(1000), main = "Symmetric")
breaks = seq(-20, 20, 1)
hist(rnorm(1000), main = "Light tails", xlim = c(-20,

20), breaks = breaks, freq = TRUE)
x <- rcauchy(1000)
hist(x[abs(x) <= 20], main = "Heavy tails", xlim = c(-20,

20), breaks = breaks, freq = TRUE)

5But they are often used without providing an explicit comparison distribution; in this case,
the comparison distribution is always the normal distribution, which is a standard benchmark
in statistics
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2.1.4 Transformations

When we have skewed data, it can be difficult to compare the distributions
because so much of the data is bunched up on one end, but our axes stretch to
cover the large values that make up a relatively small proportion of the data.
This is also means that our eye focuses on those values too.

This is a mild problem with this data, particularly if we focus on the full-time
workers, but let’s look quickly at another dataset that really shows this problem.

2.1.4.1 Flight Data from SFO

This data consists of all flights out of San Francisco Airport in 2016 in January
(we will look at this data more in the next module).
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flightSF <- read.table(file.path(dataDir, "SFO.txt"),
sep = "\t", header = TRUE)

dim(flightSF)

## [1] 13207 64
names(flightSF)

## [1] "Year" "Quarter" "Month"
## [4] "DayofMonth" "DayOfWeek" "FlightDate"
## [7] "UniqueCarrier" "AirlineID" "Carrier"
## [10] "TailNum" "FlightNum" "OriginAirportID"
## [13] "OriginAirportSeqID" "OriginCityMarketID" "Origin"
## [16] "OriginCityName" "OriginState" "OriginStateFips"
## [19] "OriginStateName" "OriginWac" "DestAirportID"
## [22] "DestAirportSeqID" "DestCityMarketID" "Dest"
## [25] "DestCityName" "DestState" "DestStateFips"
## [28] "DestStateName" "DestWac" "CRSDepTime"
## [31] "DepTime" "DepDelay" "DepDelayMinutes"
## [34] "DepDel15" "DepartureDelayGroups" "DepTimeBlk"
## [37] "TaxiOut" "WheelsOff" "WheelsOn"
## [40] "TaxiIn" "CRSArrTime" "ArrTime"
## [43] "ArrDelay" "ArrDelayMinutes" "ArrDel15"
## [46] "ArrivalDelayGroups" "ArrTimeBlk" "Cancelled"
## [49] "CancellationCode" "Diverted" "CRSElapsedTime"
## [52] "ActualElapsedTime" "AirTime" "Flights"
## [55] "Distance" "DistanceGroup" "CarrierDelay"
## [58] "WeatherDelay" "NASDelay" "SecurityDelay"
## [61] "LateAircraftDelay" "FirstDepTime" "TotalAddGTime"
## [64] "LongestAddGTime"

This dataset contains a lot of information about the flights departing from
SFO. For starters, let’s just try to understand how often flights are delayed
(or canceled), and by how long. Let’s look at the column ‘DepDelay’ which
represents departure delays.
summary(flightSF$DepDelay)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -25.0 -5.0 -1.0 13.8 12.0 861.0 413

Notice the NA’s. Let’s look at just the subset of some variables for those obser-
vations with NA values for departure time (I chose a few variables so it’s easier
to look at)
naDepDf <- subset(flightSF, is.na(DepDelay))
head(naDepDf[, c("FlightDate", "Carrier", "FlightNum",

"DepDelay", "Cancelled")])



22 CHAPTER 2. DATA DISTRIBUTIONS

## FlightDate Carrier FlightNum DepDelay Cancelled
## 44 2016-01-14 AA 209 NA 1
## 75 2016-01-14 AA 218 NA 1
## 112 2016-01-24 AA 12 NA 1
## 138 2016-01-22 AA 16 NA 1
## 139 2016-01-23 AA 16 NA 1
## 140 2016-01-24 AA 16 NA 1
summary(naDepDf[, c("FlightDate", "Carrier", "FlightNum",

"DepDelay", "Cancelled")])

## FlightDate Carrier FlightNum DepDelay Cancelled
## Length:413 Length:413 Min. : 1 Min. : NA Min. :1
## Class :character Class :character 1st Qu.: 616 1st Qu.: NA 1st Qu.:1
## Mode :character Mode :character Median :2080 Median : NA Median :1
## Mean :3059 Mean :NaN Mean :1
## 3rd Qu.:5555 3rd Qu.: NA 3rd Qu.:1
## Max. :6503 Max. : NA Max. :1
## NA's :413

So, the NAs correspond to flights that were cancelled (Cancelled=1).

2.1.4.1.1 Histogram of flight delays

Let’s draw a histogram of the departure delay.
par(mfrow = c(1, 1))
hist(flightSF$DepDelay, main = "Departure Delay", xlab = "Time (in minutes)")
abline(v = c(mean(flightSF$DepDelay, na.rm = TRUE),

median(flightSF$DepDelay, na.rm = TRUE)), lty = c("dashed",
"solid"))
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Question: What do you notice about the histogram? What does it tell
you about the data?

Question: How good of a summary is the mean or median here? Why
are they so different?

Effect of removing data

What happened to the NA’s that we saw before? They are just silently not
plotted.

Question: What does that mean for interpreting the histogram?

We could give the cancelled data a ‘fake’ value so that it plots.
flightSF$DepDelayWithCancel <- flightSF$DepDelay
flightSF$DepDelayWithCancel[is.na(flightSF$DepDelay)] <- 1200
hist(flightSF$DepDelayWithCancel, xlab = "Time (in minutes)",

main = "Departure delay, with cancellations=1200")

Boxplots

If we do boxplots separated by carrier, we can see the problem with plotting
the ”outlier” points
boxplot(flightSF$DepDelay ~ flightSF$Carrier, main = "Departure Delay, by airline carrier",

ylab = "Time (in minutes)")
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Here is the same plot suppressing the outlying points:
boxplot(flightSF$DepDelay ~ flightSF$Carrier, main = "Departure Delay, by airline carrier",

ylab = "Time (in minutes)", outline = FALSE)

2.1.4.2 Log and Sqrt Transformations

In data like the flight data, we can remove these outliers for the boxplots to
better see the median, etc, but it’s a lot of data we are removing – what if the
different carriers are actually quite different in the distribution of these outer
points? This is a problem with visualizations of skewed data: either the outlier
points dominate the visualization or they get removed from the visualization.

A common way to get around this is to transform our data, which simply means
we pick a function 𝑓 and turn every data point 𝑥 into 𝑓(𝑥). For example, a
log-transformation of data point 𝑥 means that we define new data point 𝑦 so
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that
𝑦 = log(𝑥).

A common example of when we want a transformation is for data that are all
positive, yet take on values close to zero. In this case, there are often many data
points bunched up by zero (because they can’t go lower) with a definite right
skew.

Such data is often nicely spread out for visualization purposes by either the log
or square-root transformations.
ylim <- c(-3, 3)
curve(log, from = 0, to = 10, ylim = ylim, ylab = "Transformed",

xlab = "Original")
curve(sqrt, from = 0, to = 10, add = TRUE, col = "red")
legend("bottomright", legend = c("log", "sqrt"), fill = c("black",

"red"))
title(main = "Graph of log and sqrt functions")

These functions are similar in two important ways. First, they are both mono-
tone increasing, meaning that the slope is always positive. As a result, the
rankings of the data points are always preserved: if 𝑥1 > 𝑥2 then 𝑓(𝑥1) > 𝑓(𝑥2),
so the largest data point in the original data set is still the largest in the trans-
formed data set.

The second important property is that both functions are concave, meaning
that the slope of 𝑓(𝑥) gets smaller as 𝑓 increases. As a result, the largest
data points are pushed together while the smallest data points get spread apart.
For example, in the case of the log transform, the distance between two data
points depends only on their ratio: log(𝑥1) − log(𝑥2) = log(𝑥1/𝑥2). Before
transforming, 100 and 200 were far apart but 1 and 2 were close together, but
after transforming, these two pairs of points are equally far from each other.
The log scale can make a lot of sense in situations where the ratio is a better
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match for our “perceptual distance,” for example when comparing incomes, the
difference between making $500,000 and $550,000 salary feels a lot less important
than the difference between $20,000 and $70,000.

Let’s look at how this works with simulated data from a fairly skewed distribu-
tion (the Gamma distribution with shape parameter 1/10):
y <- rgamma(10000, scale = 1, shape = 0.1)
par(mfrow = c(1, 2))
hist(y, main = "Original data", xlab = "original scale",

breaks = 50)
hist(log(y), main = "Log of data", xlab = "log-scale",

breaks = 50)

Note that in this case, after transforming the data they are even a bit left-skewed
because the tiny data points are getting pulled very far apart: log(𝑥) = −80
corresponds to 𝑥 = 𝑒−80 = 1.8 × 10−35, and log(𝑥) = −40 to 𝑥 = 4.2 × 10−18.
Still, it is much less skewed than before.

Does it make sense to use transformations? Doesn’t this mess-up our
data?

Notice an important property is that these are monotone functions, meaning
we are preserving the rank of our data – we are not suddenly inverting the rela-
tive order of the data. But it does certainly change the meaning when you move
to the log-scale. A distance on the log-scale of ‘2’ can imply different distances
on the original scale, depending on where the original data was located.6

6Of course the distance of ‘2’ on the log-scale does have a very specific meaning: a distance
of ‘2’ on the (base 10) log scale is equivalent to being 100 times greater
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2.1.4.3 Transforming our data sets

Our flight delay data is not so obliging as the simulated data, since it also
has negative numbers. But we could, for visualization purposes, shift the data
before taking the log or square-root. Here I compare the boxplots of the original
data, as well as that of the data after the log and the square-root.
addValue <- abs(min(flightSF$DepDelay, na.rm = TRUE)) +

1
par(mfrow = c(3, 1))
boxplot(flightSF$DepDelay + addValue ~ flightSF$Carrier,

main = "Departure Delay, original", ylab = "Time")
boxplot(log(flightSF$DepDelay + addValue) ~ flightSF$Carrier,

main = "Departure Delay, log transformed", ylab = paste("log(Time+",
addValue, ")"))

boxplot(sqrt(flightSF$DepDelay + addValue) ~ flightSF$Carrier,
main = "Departure Delay, sqrt-transformed", ylab = paste("sqrt(Time+",

addValue, ")"))
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Notice that there are fewer ‘outliers’ and I can see the differences in the bulk of
the data better.

Question: Did the data become symmetrically distributed or is it still
skewed?

2.2 Probability Distributions

Let’s review some basic ideas of sampling and probability distributions that
you should have learned in Data 8/STAT 20, though we may describe them
somewhat more formally than you have seen before. If any of these concepts in
this section are completely new to you or you are having difficulty with some of
the mathematical formalism, I recommend that you refer to the online book for
STAT 88 by Ani Adhikari that goes into these ideas in great detail.

http://stat88.org/textbook/content/intro.html
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In the salary data we have all salaries of the employees of SF in 2014. This a
census, i.e. a complete enumeration of the entire population of SF employees.

We have data from the US Census that tells us the median household income
in 2014 in all of San Fransisco was around $72K.7 We could want to use this
data to ask, what was the probability an employee in SF makes less than the
regional median household number?

We really need to be more careful, however, because this question doesn’t really
make sense because we haven’t defined any notion of randomness. If I pick
employee John Doe and ask what is the probability he makes less than $72K,
this is not a reasonable question, because either he did or didn’t make less than
that.

So we don’t actually want to ask about a particular person if we are interested
in probabilities – we need to have some notion of asking about a randomly se-
lected employee. Commonly, the randomness we will assume is that a employee
is randomly selected from the full population of full-time employees, with all
employees having an equal probability of being selected. This is called a simple
random sample.

Now we can ask, what is the probability of such a randomly selected employee
making less than $72K? Notice that we have exactly defined the randomness
mechanism, and so now can calculate probabilities.

This kind of sampling is called a simple random sample and is what most people
mean when they say “at random” if they stop to think about it. However, there
are many other kinds of samples where data are chosen randomly, but not every
data point is equally likely to be picked. There are, of course, also many samples
that are not random at all.

Notation and Terminology

We call the salary value of a randomly selected employee a random variable.
We can simplify our notation for probabilities by letting the variable 𝑋 be
short hand for the value of that random variable, and make statements like
𝑃(𝑋 > 20𝐾). We call the complete set of probabilities of a random variable
𝑋 the probability distribution of 𝑋. Once you know all the probabilities of
𝑋 you can calculate more general statements. For example, assuming 𝑋 only
takes on values of increments of $1K, we have

𝑃(10𝐾 ≤ 𝑋 ≤ 20𝐾) = 𝑃(𝑋 = 10𝐾) + 𝑃(𝑋 = 11𝐾) + ... + 𝑃(𝑋 = 20𝐾)

So the probability distribution of 𝑋 provides the entire set of possible prob-
abilities we can calculate for 𝑋. We will frequently speak of the distribution
of a random variable 𝑋, and it’s important to remember that if we know the
distribution of 𝑋 we know everything there is to know about 𝑋.

7http://www.hcd.ca.gov/grants-funding/income-limits/state-and-federal-income-
limits/docs/inc2k14.pdf

http://www.hcd.ca.gov/grants-funding/income-limits/state-and-federal-income-limits/docs/inc2k14.pdf
http://www.hcd.ca.gov/grants-funding/income-limits/state-and-federal-income-limits/docs/inc2k14.pdf
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2.2.1 Definition of a Probability Distribution

Let’s take a moment and pull together some formal ideas about probability dis-
tributions. Formal probability is not the main focus of this class, and hopefully
much of this is review, but it’s important to have some background and be
comfortable with the notation and vocabulary.

What is a probability distribution? We’ve said that it is the complete set of
probabilities of a random variable. For example, if we roll a six-sided dice and
assume each side is equally likely, we would have the following distribution of
probabilities of the possible outcomes:

𝑘 Probability
0 1/6
1 1/6
2 1/6
…
6 1/6

This is similar to our simple random sample of SF employee salaries – each em-
polyee salary is a possible outcome and each is equally likely (though obviously
too long to write down as a table!).

But we don’t have to have equal probabilities for each outcome to be a proba-
bility distribution. Here’s a random variable that takes on the values 0, 1 or 2
with different probabilities:

𝑘 Probability
0 0.5
1 0.25
2 0.25

These tables give us the distribution of the random variable.

Formal Definitions

Let’s discuss probability distributions more formally and with mathematical
notation.

A random variable 𝑋 designates the outcome of the random experiment. The
sample space Ω are all the possible values that our random variable 𝑋 can
take. For the dice example Ω = {1, … , 6}. A random draw from the SF salaries
has an Ω equal to all of the salaries in our dataset. Ω could also be non-numeric
values. For example, we could have a bag of M&Ms and randomly draw an
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M&M and record the color of the M&M. 𝑋 would be the color and our sample
space Ω = {red,blue, …}.
An event is something we take the probability of. You often hear “event”
used to describe a possible outcome of a random experiment. However, an
event is actually more than just the specific outcomes that are possible (Ω).
This is because we can be interested in the probability of an outcome that is a
combination of values of Ω, like the probability of rolling an odd number. In
that case the event actually corresponds to a set of three values in Ω, {1, 3, 5}.
So an event is defined as any subset of the values of Ω. Usually we will write an
event as “𝑋 = 2” or “𝑋 ∈ {1, 3, 5}” or more informally as “dice is odd”. We can
sometimes emphasize that this concerns the outcome of a random experiment
by saying a “random event”

A probability distribution is a function 𝑃 that gives a value between 0 and 1,
inclusive, to every possible event. The value that 𝑃 assigns to an event is called
the probability of the event and we write it like 𝑃(𝑋 = 2) or 𝑃(𝑋 ∈ {1, 3, 5})8

or 𝑃(dice is odd). The requirements on this function 𝑃 to be a probability is
that

1. 𝑃 is gives a value for all subsets of Ω. This ensures that all possible
events have a probability (the probability could be zero!)

2. 𝑃 gives values only in [0, 1] This ensures we don’t have negative proba-
bilities or probabilities greater than 1. This is pretty intuitive to our idea
of probability.

3. 𝑃(𝑋 ∈ Ω) = 1 This one might be harder to parse the notation, but it
means the probability you will see an outcome from Ω is 1. This is like
saying the probability that my dice rolls some number between 1 and 6
is 1. This rule ensures that every possible observed outcome has been
included in Ω – there’s no “missing” probability.

Translating words into probabilities and events

Remember that an “event” corresponds to a set of possible outcomes. We often
use words to describe events, but it’s helpful to go back and forth between
words and the set of outcomes that correspond to the event. Furthermore in
manipulating probabilities, we will often be interested in multiple events, like
“dice rolls odd” or “dice rolls number greater than 4”, and want to put them
together, like “what is the probability that the dice rolls an odd number OR
the dice rolls a number greater than 4”.

To think how to work with such a question, we want to convert between our
words to a mathematical notation. We will assign events a variable like

𝐴 = “dice rolls odd” = 𝑋 ∈ {1, 3, 5}
8The notation ∈ means “in”, as part of the set. So 𝑋 ∈ {1, 3, 5} means that 𝑋 is one of

the values 1,3, or 5
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and
𝐵 = “dice rolls number greater than 4” = 𝑋 ∈ {5, 6}.

Then “OR” refers to either the outcome observed is in 𝐴 or the outcome observed
is in 𝐵 (or both!):

𝐴 ∪ 𝐵 = 𝑋 ∈ {1, 3, 5, 6}
and our probability is defined as

𝑃(𝐴 ∪ 𝐵).
Alternatively, we might ask “what is the probability that the dice rolls an odd
number AND the dice rolls a number greater than 4”. The AND refers to an
outcome that is in both 𝐴 and 𝐵:

𝐴 ∩ 𝐵 = {𝑋 = 6}
and the probability is written

𝑃(𝐴 ∩ 𝐵).

We call two events 𝐴 and 𝐵 are mutually exclusive if they don’t share any
outcomes,

𝐴 ∩ 𝐵 = ∅
For example

𝐴 = Dice rolls an odd number = 𝑋 ∈ {1, 3, 5}
and

𝐵 = Dice rolls an even number = 𝑋 ∈ {2, 4, 6}
are mutually exclusive events because the union of their two sets is empty.

Finally we might ask questions about an event described in the negative, like
“the dice is NOT even”. Again, we have

𝐴 = ”the dice is even” = 𝑋 ∈ {2, 4, 6}
The NOT is the complement of 𝐴,

𝐴𝐶 = Ω\𝐴 = ”the dice is NOT even” = 𝑋 ∈ {1, 3, 5}.

Properties of Probabilities

We can now talk about a couple of important properties of 𝑃 you should be
familiar with for calculating the probability of multiple events.

1. If 𝐴 and 𝐵 are mutually exclusive events, then

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).
This can be extended to many mutually exclusive events 𝐴, 𝐵, 𝐶, …

𝑃(𝐴 ∪ 𝐵 ∪ 𝐶 …) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶)
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2. Otherwise, for general events 𝐴 and 𝐵

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

3. 𝑃(𝐴𝐶) = 1 − 𝑃(𝐴)
Notice these rules allow me to do things like

𝑃(Dice rolls an odd number) = 𝑃(𝑋 ∈ {1, 3, 5}) = 𝑃(𝑋 = 1)+𝑃(𝑋 = 2)+𝑃(𝑋 = 3) = 3/6

Similarly I can make some complicated questions simple by using the negative
of an event

𝑃(Dice is NOT one) = 𝑃(𝑋 ∈ {2, 3, 4, 5, 6}) = 1 − 𝑃(𝑋 = 1) = 1 − 1/6 = 5/6

In this case it is not overly complicated to figure out 𝑃(𝑋 ∈ {2, 3, 4, 5, 6}),
since its the sum of the individual outcomes and each outcome has the same
probability. But if there are a lot of outcomes, each with a different probability,
1 − 𝑃(𝑋 = 1) is much easier to work with.

How would you calculate the following probabilities of a single random sample
from the SF salaries?

1. 𝑃(income = $72𝐾)
2. 𝑃(income ≤ $72K)
3. 𝑃(income > $200K)

2.2.1.1 Probabilities and Histograms

In the section on histograms we plotted frequency histograms of the SF data,
where the height of each bin is the number of observations falling in the interval
of the bin. Histograms of a data also have a relationship to the probability
distribution of a single random sample from the data. Specifically, if the interval
of a histogram bin is (𝑏1, 𝑏2], the probability a single sample from the data lies
in this range is

𝑃(𝑏1 < 𝑋 ≤ 𝑏2).
This probability is

𝑃(𝑏1 < 𝑋 ≤ 𝑏2) = #data in (𝑏1, 𝑏2]
𝑛

The numerator of this fraction is the height of the corresponding of a frequency
histogram. So the histogram gives us a visualization of what values are most
probable.



34 CHAPTER 2. DATA DISTRIBUTIONS

I’m going to plot these probabilities for each bin of our histogram, for both large
and small size bins. 9

Question: What happens as I decrease the size of the bins?

However, be careful because this plot is for instructive purposes, and is not what
we usually use to visualize a distribution (we will show more visualizations later).
In particular, this plot is not the same thing as a density histogram that you
have probably learned about. A density histogram requires that the area of a
bin is equal to the probability of being in our bin. We will learn more about
why density histograms are defined in this way when we discuss continuous
distributions below, but density histograms are what should be considered as
the primary tool to visualize a probability distribution. To motivate why density
histograms are more useful, however, you should note a density histograms will
not drop to zero values as you make the bins smaller, so you can get the sense
of the spread of probabilities in the distribution more independently from the
choice of the size of the bin.

2.2.1.2 Probability Mass Function (pmf)

Notice that we’ve subtly switched in how we describe a probability distribution.
Previously I implied that a probability distribution was the complete set of
probabilities of the values in Ω – that is what my tables I initially showed above
were. But we see that the actual definition of a probability distribution is a
function that gives a probability to every event. We’ve learned that events

9Plotting these probabilities is not done automatically by R, so we have to mainpulate the
histogram command in R to do this (and I don’t normally recommend that you make this
plot – I’m just making it for teaching purposes here).
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involve combinations of values of Ω, so there are a lot more events than there
are values in Ω. We’ll explain now why we can go back and forth between these
concepts.

The function that gives the probabilities of the all the values in Ω is a separate
quantity called the probability mass function often abbreviated as “pmf.” An
example from our simple table above has a probability mass function 𝑝 given by

𝑝(𝑘) = 𝑃(𝑋 = 𝑘) =
⎧{
⎨{⎩

1/2, 𝑘 = 0
1/4, 𝑘 = 1
1/4 𝑘 = 2

The probability mass function is a function that goes from the values in Ω to a
value in [0, 1]

As we will see later, not all probability distributions have probability mass func-
tions. But if they do, I can actually go back and forth between the probability
mass function 𝑝 and the probability distribution 𝑃 . By which I mean if I know
one, then I can figure out the other. Clearly, if I know my probability dis-
tribution 𝑃 , I can define the probability mass function 𝑝. But what is more
interesting is that if I know 𝑝, I can get 𝑃 , i.e. I can get the probability of any
event. How?

Any event 𝑋 ∈ {𝜈1, 𝜈2, …} is a set of outcomes where the 𝜈𝑖 are some values
in Ω. If we let 𝐴 = 𝑋 ∈ {𝜈1, 𝜈2, …}, we can write 𝐴 = 𝑋 ∈ 𝜈1 ∪ 𝑋 ∈ 𝜈2 ∪ ….
Moreover, 𝑋 ∈ 𝜈1 and 𝑋 ∈ 𝜈2 are clearly mutually exclusive events because 𝑋
can only take on one of those two possibilities. So for any event 𝐴 we can write

𝑃(𝐴) = 𝑃(𝑋 ∈ {𝜈1, 𝜈2, …})
= 𝑃(𝑋 ∈ 𝜈1 ∪ 𝑋 ∈ 𝜈2 ∪ …)
= 𝑃(𝑋 ∈ 𝜈1) + 𝑃(𝑋 ∈ 𝜈2) + …

So we can get the entire probability distribution 𝑃 from our probability mass
function 𝑝. Which is fortunate, since it would be quite difficult to write down
the probability of all events – just enumerating all events is not feasible in
complicated settings.

Properties of a Probability Mass Function (pmf)

We need some restrictions about how the probabilities of the events combine
together. Otherwise we could have the following probability distribution

𝑃(𝑋 = 𝑘) =
⎧{
⎨{⎩

1, 𝑘 = 0
1, 𝑘 = 1
1 𝑘 = 2
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Every possible outcome has probability 1 of occurring! The following example
is less obvious, but still a problem

𝑃(𝑋 = 𝑘) =
⎧{
⎨{⎩

3/4, 𝑘 = 0
3/4, 𝑘 = 1
3/4 𝑘 = 2

This would imply that the probability of the event 𝑋 ∈ {1, 2} (we get either a
1 OR a 2) would be,

𝑃(𝑋 ∈ {1, 2}) = 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) = 1.5 > 1

These examples will violate the basic properties of 𝑃 .

This means that the properties of 𝑃 (the probability distribution) imply a valid
probability mass function 𝑝 has certain properties:

1. 𝑝 is defined for all values of Ω
2. 𝑝(𝑘) is in [0, 1]
3. ∑𝑘∈Ω 𝑝(𝑘) = 1

2.2.2 More Examples of Probability Distributions

A random variable 𝑋 is the outcome of a “random experiments” (or we could
say “random process”). The only random experiments we’ve discussed so far is
rolling a dice and randomly drawing a sample from a fixed population on which
we have data (SF Full Time Employees). There are other kinds of descriptions
of random processes. Here are two simple examples,

• You flip a coin 50 times and count the number of heads you get. The
number of heads is a random variable (𝑋).

• You flip a coin until you get a head. The number of times it takes to get
a head is a random variable (𝑌 ).

These descriptions require multiple random actions, but still result in a single
outcome. This outcome is a random variable because if we repeated the process
we would get a different number. We could ask questions like

• What is the probability you get out of 50 flips you get 20 or more heads,
𝑃(𝑋 ≥ 20)

• What is the probability it takes at least 20 flips to get a head, 𝑃(𝑌 ≥ 20)
In both examples, the individual actions that make up the random process are
the same (flipping a coin), but the outcome of interest describes random vari-
ables with different distributions. For example, if we assume that the probability
of heads is 0.5 for every flip, we have:

• 𝑃(𝑋 ≥ 20) = 0.94
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• 𝑃(𝑌 ≥ 20) = 1.91 × 10−6

Where did these numbers come from? When we were dealing with a sim-
ple random sample from a population, we had a very concrete random process
for which we could calculate the probabilities. Similarly, when we flip coins, if
we make assumptions about the coin flipping process (e.g. that we have a 0.5
probability of a head on each flip), we can similarly make precise statements
about the probabilities of these random variables. These are standard combi-
natoric exercises you may have seen. For example, the probability that you get
your first head in the 5th flip (𝑌 = 5) is the same as saying you have exactly
four tails and then a head. If the result of each flip is independent of each
other, then you have (0.5 x 4) as the probability of four tails in a row, and then
(0.5) as the probability of the final head, resulting in the total probability being
𝑃(𝑌 = 5) = (0.5)4(0.5) = (0.5)5.

We can write down the entire the probability mass function 𝑝(𝑘) of both of these
random variables (i.e. the probabilities of all the possible outcomes) for both
of these two examples as a mathematical equation. These distributions are so
common the distributions have a name:

• Binomial Distribution

𝑝(𝑘) = 𝑃(𝑋 = 𝑘) = 𝑛!
𝑘!(𝑛 − 𝑘)!𝑝

𝑘(1 − 𝑝)𝑛−𝑘

where 𝑛 ∈ {1, 2, …} is equal to the number of flips (50), 0 ≤ 𝑝 ≤ 1 is the
probability of heads (0.5), and 𝑘 ∈ {0, 1, … , 50}

• Geometric Distribution

𝑝(𝑘) = 𝑃(𝑌 = 𝑘) = (1 − 𝑝)𝑘−1𝑝

where 0 ≤ 𝑝 ≤ 1 is the probability of heads (0.5) and 𝑘 ∈ {1, …}.

Recall that we showed that knowledge of the pmf gives us knowledge of the
entire probability distribution. Thus the above equations define the binomial
and geometric distributions.

There are many standard probability distributions and they are usually de-
scribed by their probability mass functions. These standard distributions are
very important in both probability and statistics because they come up fre-
quently.

We can visualize pmfs and see how their probabilities change for different choices
of parameters. Here is a plot of the binomial pmf for 𝑛 = 5 and 𝑝 = 0.1
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Notice that the lines are just there to visualize, but the actual values are the
points

Here is the geometric distribution:
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Question: Think about the shape of the pmfs of these distributions.
How do they change as you change 𝑝? What would you expect to happen
if 𝑝 = 0.9?

Relationship to Histograms? Notice with the lines drawn, the pdf start to
look a bit like histograms. Histograms show the probability of being within an
interval, where the area of the rectangle is the probability. Of course, there’s no
probability of being between 1 and 2 for the binomial distribution (you can’t get
1.5 heads!), so in fact if we drew a “histogram” for this distribution, it would
look similar, only the height would have to account for the size of the bins of the
histogram, so would not be the actual probability of being equal to any point.
We can think of these visualizations being like histograms with “infinitely small”
sized bins. And we can interpret them similarly, in the sense of understanding
the shape and spread of the distribution, whether it is symmetric, etc.

Common features of probability mass functions (pmfs)

Notice some common features of these pmfs. 𝑘 corresponds to the possible
values the random variables can take on. So to get a specific probability, like
𝑃 (𝑋 = 5), you would substitute 5 in for 𝑘 in the equation. Also 𝑘 can only
take on specific values. The set of all of these values is our sample space Ω.
For the binomial the sample space is Ω = {0, 1, … , 50} and for the geometric
distribution the sample space is Ω = {1, …} (an infinite sample space).

There are also other variables in the equation, like 𝑝 (and 𝑛 for the binomial
distribution). These are called parameters of the distribution. These are val-
ues that you set depending on your problem. For example, in our coin problem,
the probability of a head was 𝑝 = 0.5 and the total number of flips was 𝑛 = 50.
However, this equation could be also be used if I changed my setup and decided
that 𝑛 = 2000. It is common for a standard distribution to have parameters that



40 CHAPTER 2. DATA DISTRIBUTIONS

you need to set. This allows for a single expression that can be used for multiple
settings. However, it’s important to recognize which values in the equation are
parameters defined by your setting (𝑝 and 𝑛) and which is specific to probability
you decided to calculate (𝑘). In the end you need all of them defined, of course,
to calculate a specific probability.

Similar to 𝑘, sometimes parameters can only take on a limited range of values.
𝑝 for example has to be between 0 and 1 (it’s a probability of heads – makes
sense!), and 𝑛 needs to be a positive integer. The set of values allowed for
parameters is called the parameter space.

Notation conventions

Please be aware that the choice of variables for all of these equations and for
the random variable is arbitrary! Here are some common variations to be ready
for

• We can use many different variables for the random variable, usually cap-
italized. Commonly they are at the end of the alphabet, 𝑋, 𝑌 , 𝑍, and
even 𝑈 , 𝑉 , and 𝑊 .

• I used “k” in the probability mass function to indicate the particular out-
come of which we want to calculate the probability. This is common
(especially for the distributions we are considering right now). But it’s
also common to write 𝑝(𝑥) = 𝑃(𝑋 = 𝑥). The capital letter, e.g. 𝑋, is
for keeping track of the random variable and the lower case letter (of the
same letter, e.g. 𝑥) is for indicating the particular outcome of which we
want to calculate the probability. That outcome we are calculating the
probability of is also called a realization of 𝑋. This notation can be
confusing, but as we’ll see it is also a notation that is easier to expand to
multiple random variables e.g.

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧),

without needing to introduce a large number of additional variables. Oth-
erwise we start to run out of letters and symbols once we have multiple
random variables – we don’t want statements like 𝑃(𝑊 = 𝑣, 𝑋 = 𝑦, 𝑍 = 𝑢)
because it’s hard to remember which value goes with which random vari-
able.

• The choice of variables for the parameters change a good bit from person
to person. It is common that they are Greek letters (𝛼, 𝛽, 𝜃, 𝜓, 𝜙, 𝜆,
𝜇,𝜎,𝜏 , 𝜋 are all common). This helps the parameters stand out from the
other variables floating around in the equation. This is obviously not a
universal rule, as the two distributions above clearly demonstrate (𝑝 for a
probability is a quite common choice of parameter…)

• The choice of 𝑝(𝑘) for the pmf is common, but it can also be a different
letter. It’s not uncommon to see 𝑓(𝑘) or 𝑔(𝑘).

• A probability distribution is a function generally called 𝑃 , and this is why
we write 𝑃(𝑋 = 2). 𝑃 is pretty universal – so you don’t even have to
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explain 𝑃 denotes a probability distribution when you write 𝑃(𝑋 = 2).
But even this we could change to another letter, like 𝑄; in this case we’d
write 𝑄(𝑋 = 2) and it would still be a probability. Doing so is mainly when
we might want to consider multiple distributions, and we need different
letters to keep them apart.

Probability Calculations In R

Calculations with these standard probability distributions are built into R.
Specifically functions dbinom and dgeom calculate 𝑃(𝑋 = 𝑘) for the binomial
and geometric distributions.
dbinom(2, size = 50, prob = 0.5)

## [1] 1.088019e-12
dgeom(3 - 1, prob = 0.5)

## [1] 0.125

and the functions pbinom and pgeom calculate 𝑃(𝑋 ≤ 𝑘) for these distributions
pbinom(19, size = 50, prob = 0.5)

## [1] 0.05946023
pgeom(19 - 1, prob = 0.5)

## [1] 0.9999981

Question: How can you put these results together to get 𝑃(𝑋 ≥ 20)?

2.2.2.1 Modeling real-life settings

We can also have situations in life that are usefully thought of as a random
variables but are not well described as the result of sampling from a population:

• Suppose 5% of adults experience negative side-effects from a drug which
result in a negative side effect. A research study enrolls 200 adults using
this drug. The number of people in the study experiencing these negative
side-effects can be considered a random variable.

• A polling company wants to survey people who have do not have college
diplomas about their job experiences; they will call random numbers un-
til they reach someone without a college diploma, and once they identify
someone will ask their questions. The number of people the polling com-
pany will have to call before reaching someone without a college diploma
can be considered as a random variable.
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• A call center generally receives an average of 180 calls per day in 2023.
The actual number of calls in a particular day can be considered as a
random variable.

Already, we can see that analyzing these real life situations through the lens
of probability is tricky, since our descriptions are clearly making simplifications
(shouldn’t the volume of calls be more on some days of the weeks than others?).
We could make more complicated descriptions, but there will be a limit. This
is always a non-trivial consideration. At the same time, it can be important to
be able to quantify these values to be able to ask questions like: do we need
more staff members at the call center? Is our polling strategy for identifying
non-college graduates feasible, or will it take too long? We just have to be
careful that we consider the limitations of our probability model and recognize
that it is not equivalent to the real-life situation.

The other tricky question is how to make these real-life situations quantifiable
– i.e. how can we actually calculate probabilities? However, if you look at our
examples, the first two actually look rather similar to the two coin-flipping
settings we described above:

• Suppose we let “coin is heads” be equated to “experience negative side-
effects from the drug”, and “the total number of coin flips” be “200 adults
using this drug”. Then our description is similar to the binomial coin
example. In this case the probability 𝑝 of heads is given as 𝑝 = 0.05
and 𝑛 = 200. And 𝑋 is the number of people in the study experiencing
negative side-effects.

• Suppose we let a “coin flip” be equated to “call a random number”, and
“coin is heads” be equated to “reach someone without a college diploma”.
Then this is similar to our description of the geometric distribution, and
our random variable 𝑌 is the number of random numbers that will need
to be called in order to reach someone without a college diploma. Notice,
however, that the geometric distribution has a parameter 𝑝, which in this
case would translate into “the probability that a random phone number is
that of a person without a college diploma”. This parameter was not given
in the problem, so we can’t calculate any probabilities for this problem.
A reasonable choice of 𝑝 would be the proportion of the entire probabil-
ity that does not have a college diploma, an estimate of which we could
probably grab from government survey data.

The process of relating a probability distribution to a real-life setting is often
referred to as modeling, and it will never be a perfect correspondence – but can
still be useful! We will often spend a lot of time considering how the model
deviates from reality, because being aware of a model’s shortcomings allows us
to think critically about whatever we calculate. But it doesn’t mean it is a
bad practice to model real life settings. Notice how in this last example of the
polling survey, by translating it to a precise probability distribution, it becomes
clear what additional information (𝑝) we need to be able to make the probability
calculations for this problem.
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Returning to our examples, the example of the call center is not easily captured
by the two distributions above, but is often modeled with what is called a
Poisson distribution

• Poisson Distribution 𝑃(𝑍 = 𝑘) = 𝜆𝑘𝑒−𝜆𝑘
𝑘! where 𝜆 > 0.

When modeling a problem like the call center, the needed parameter 𝜆 is the
rate of the calls per the given time frame, in this case 𝜆 = 180.

2.2.3 Conditional Probability and Independence

Previously we asked about the population of all FT employees, so that 𝑋 is
the random variable corresponding to income of a randomly selected employee
from that population. We might want to consider asking questions about the
population of employees making less than $72K. For example, low-income in
2014 for an individual in San Francisco was defined by the same source as $64K
– what is the probability of a random employee making less than $72K to be
considered low income?

We can write this as 𝑃(𝑋 ≤ 64 ∣ 𝑋 < 72), which we say as the probability a
employee is low-income given that or conditional on the employee makes less
than the median income. A probability like 𝑃(𝑋 ≤ 64 ∣ 𝑋 < 72) is often called
a conditional probability.

Question: How would we compute a probability like this?

Note that this is a different probability than 𝑃(𝑋 ≤ 64).

Question: How is this different? What changes in your calculation?

Once we condition on a portion of the population, we’ve actually defined a new
random variable. We could call this new random variable a new variable like 𝑌 ,
but we usually notated it as 𝑋 ∣ 𝑋 > 72𝐾. Since it is a random variable, it has
a new probability distribution, which is called the conditional distribution.
We can plot the histogram of this conditional distribution:
condPop <- subset(salaries2014_FT, TotalPay < 72000)
par(mfrow = c(1, 1))
hist(condPop$TotalPay, main = "Conditional Distribution, less than $72K",

xlab = "Pay (in dollars)")
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We can think of the probabilities of a conditional distribution as the probabilities
we would get if we repeatedly drew 𝑋 from its marginal distribution but only
“keeping” it when we get one with 𝑋 < 72𝐾.

Consider the flight data we looked at briefly above. Let 𝑋 for this data be the
flight delay, in minutes, where if you recall NA values were given if the flight
was cancelled.

Question: How would you state the following probability statements in
words?

𝑃(𝑋 > 60|𝑋 ≠ NA)
𝑃 (𝑋 > 60|𝑋 ≠ NA&𝑋 > 0)

Conditional probability versus population

Previously we limited ourselves to only full-time employees, which is also a
subpopulation of the entire set of employees. Why weren’t those conditional
probabilities too? It’s really a question of what is our reference point, i.e. how
have we defined our full population. When we write a conditional probability, we
keeping our reference population the same, but writing questions that consider a
subpopulation of it. This allows us, for example, to write statements regarding
different subpopulations in the same sentence and compare them, for example
𝑃(𝑋 ≤ 64 ∣ 𝑋 < 72) versus 𝑃(𝑋 ≤ 64 ∣ 𝑋 > 72), because the full population
space is the same between the two statements (full-time employees), while the
conditional statement makes clear that we are considering a subpopulation.
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2.2.3.1 Formal Notation for Conditional Probabilities

Our more formal notation of probability distributions can be extended to con-
dition probabilities. We’ve already seen that a probability is a value given to a
random event. Our conditional probabilities deal with two random events. The
conditional probability

𝑃(𝑋 ≤ 64 ∣ 𝑋 < 72)

involves the event 𝐴 = 𝑋 ≤ 64 and 𝐵 = 𝑋 < 72. Our conditional probability
is thus 𝑃(𝐴|𝐵).
Note that 𝑃 (𝐴|𝐵) (outcome is in 𝐴 given outcome is in 𝐵) is different from
𝑃(𝐴 ∩ 𝐵) (outcome is in both 𝐴 and 𝐵=) or 𝑃(𝐴 ∪ 𝐵) (outcome is in either
𝐴 or 𝐵). Remember the conditional distribution is really just a completely
distribution than 𝑃 – we cannot create an event from Ω (or combination of
events) whose probability would (always) be equal to 𝑃(𝐴|𝐵). We noted above
that we could call this new distribution 𝑄 and just write 𝑄(𝐴) with possibly a
different sample space Ω and definitely completely different values assigned to
𝐴 than 𝑃 would provide. However, there is an important property that links
𝑃 (𝐴|𝐵) to 𝑃(𝐴 ∩ 𝐵):

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵)

You can also see this written in the equivalent form

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

This formula relates our conditional probability distribution to our probability
distribution 𝑃 . So there’s not an event whose probability using 𝑃 equals 𝑃(𝐴|𝐵),
we can make calculations of the distribution of 𝐴|𝐵 using the distribution 𝑃 .
This is an important reason why we don’t just create a new distribution 𝑄 – it
helps us remember that we can go back and forth between these distributions.

For example, for the dice example, we can say something like

𝑃(𝑋 ∈ {1, 2, 3}|𝑋 ∈ {2, 4, 5}) = 𝑃(𝑋 ∈ {1, 2, 3} ∩ 𝑋 ∈ {2, 4, 5})
𝑃 (𝑋 ∈ {2, 4, 5})

= 1/6
3/6 = 1/3

We can compare this to

𝑃(𝑋 ∈ {1, 2, 3}) = 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) + 𝑃(𝑋 = 3) = 3/6 = 1/2

So of all rolls where the outcome has 𝑋 in {2, 4, 5} the probability of 𝑋 being
in {1, 2, 3} is smaller than if we consider all rolls of the dice.
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2.2.3.2 Independence

If we are considering two events, we frequently talk about events being inde-
pendent. Informally, we say two events are independent if whether one event
happens doesn’t affect whether the other event happens. For example, if we roll
a dice twice, we don’t expect the fact the first die rolled is an odd number to
affect whether the second rolled is even (unless someone is cheating!). So if we
model these two dice rolls as a random process, we’d usually assume these two
events are independent.

However we might have two events describing the outcome of a single role of
the dice. We’ve seen many examples above, where we might have an event
𝑋 ∈ {1, 2, 3} and 𝑋 ∈ {2, 4, 5} and consider the joint probability of these

𝑃(𝑋 ∈ {1, 2, 3} ∩ 𝑋 ∈ {2, 4, 5})
or the conditional probability

𝑃(𝑋 ∈ {1, 2, 3}|𝑋 ∈ {2, 4, 5})
We can similarly consider whether these two events are independent. It’s clearly
a trickier question to answer on the same role of the dice, but it doesn’t seem
like it should be independent. Clearly if you know whether “dice is odd” should
have an effect on whether “dice is even” when it’s the same dice roll!

The formal definition of independence allows us to answer this question. Two
events 𝐴 and 𝐵 are defined as independent if

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)
Notice that this means that if two events are independent

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) = 𝑃(𝐴)𝑃(𝐵)

𝑃(𝐵) = 𝑃(𝐴)

So if 𝐴 is independent from 𝐵, the probability of 𝐴 is the same regardless of
the outcome of 𝐵.

2.2.4 Expectation and Variance

The last formal probability idea I want to review is the expectation and variance
of a distribution. These are things we can calculate from a probability distribu-
tion that describe the probability distribution, similar to how we can calculate
summary statistics from data to summarize the dataset.

Expectation

The expectation or mean of a distribution is defined as

𝐸(𝑋) = ∑
𝑘∈Ω

𝑘𝑝(𝑘)
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where 𝐸(𝑋) stands for the expectation of 𝑋.10

For example, for our dice example Ω = {1, 2, 3, 4, 5, 6} and 𝑝(𝑘) = 1/6 for all 𝑘.
So we have

𝐸(𝑋) = ∑
𝑘∈Ω

𝑘𝑝(𝑘) = 1𝑃(𝑋 = 1) + 2𝑃(𝑋 = 2) + … + 6𝑃(𝑋 = 6)

= 1/6(1 + 2 + … + 6)
= 21/6 = 3.5

Notice that because each outcome is equally likely in this example, the expec-
tation is just the mean of all the values in Ω; this is why the expectation of a
distribution is also called the mean of the distribution.

Consider our earlier simple example where we don’t have equal probabilities,

𝑝(𝑘) = 𝑃(𝑋 = 𝑘) =
⎧{
⎨{⎩

1/2, 𝑘 = 0
1/4, 𝑘 = 1
1/4 𝑘 = 2

In this case

𝐸(𝑋) = ∑
𝑘∈Ω

𝑘𝑝(𝑘) = 0𝑃(𝑋 = 0) + 1𝑃(𝑋 = 1) + 2𝑃(𝑋 = 2)

= 0 + 1/4 + 1/2
= 3/4

This is smaller than the average of the values in Ω (which would be 1). This
is because we have more probability on zero, which pulls down our expecta-
tion. In the case of unequal probabilities, the expectation can be considered a
weighted mean, meaning it gives different weights to different possible outcomes
depending on how likely they are.

Variance

Just as there is a mean defined for a probability distribution, there is also a
variance defined for a probability distribution. It has the same role as the
sample variance of data – to describe the spread of the data. It has a similar
definition

𝑣𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))2 = ∑
𝑘∈Ω

(𝑘 − 𝐸(𝑋))2𝑝(𝑘)

The variance of a probability distribution measures the average distance a ran-
dom draw from the distribution will be from the mean of the distribution – a
measure of spread of the distribution.

10This is the definition of a distribution with a pdf. We will expand this definition for other
distributions when we discuss continuous distributions.
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Notice the similarity to the equation for the variance for data:

1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�)2 =
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2 1
𝑛 − 1

The equations are pretty much equivalent, except that for the variance of a
probability distribution we weight different values differently based on how likely
they are, while the data version weighs each observation equally.11

Properties of Expectation and Variance

The following properties are important to know for calculations involving expec-
tation and variance

1. 𝐸(𝑎 + 𝑏𝑋) = 𝑎 + 𝑏𝐸(𝑋)
2. 𝑣𝑎𝑟(𝑎+𝑏𝑋) = 𝑏2𝑣𝑎𝑟(𝑋) – adding a constant to a random variable doesn’t

change the variance
3. Generally, 𝐸(𝑔(𝑋)) ≠ 𝑔(𝐸(𝑋)) and 𝑣𝑎𝑟(𝑔(𝑋)) ≠ 𝑔(𝑣𝑎𝑟(𝑋))
4. 𝑣𝑎𝑟(𝑋) = 𝐸(𝑋 − 𝐸(𝑋))2 = 𝐸(𝑋2) − [𝐸(𝑋)]2

2.3 Continuous Distributions

Our discussions so far primarily relied on probability from discrete distribu-
tions. This often has meant that the complete set of possible values (the sample
space Ω) that can be observed is a finite set of values. For example, if we draw a
random sample from our salary data we know that only the 35711 unique values
of the salaries in that year can be observed – not all numeric values are possible.
We saw this when we asked what was the probability that we drew a random
employee with salary exactly equal to $72K.

We also saw the geometric distribution where the sample space Ω = {1, 2, 3, …}.
The geometric distribution is also a discrete distribution, even though Ω is
infinite. This is because we cannot observe 1.5 or more generally the full range
of values in any interval – the distribution does not allow continuous values.12

However, it can be useful to think about probability distributions that allow for
all numeric values in a range (i.e. continuous values). These are continuous
distributions.

Continuous distributions are useful even for settings when we know the actual
population is finite. For example, suppose we wanted to use this set of data about
SF salaries to make decisions about policy to improve salaries for a certain class

11Of course 1/(𝑛 − 1) can’t be a probability for 𝑛 samples because they wouldn’t sum to 1!
It would need to be 1/𝑛 to be a probability. This is a small difference from the definition for
a probability distribution; we won’t go into the reasons for 1/(𝑛 − 1) right now.

12For more mathematically minded, a discrete distribution is one where Ω is a countable
set, which can be infinite.
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of employees. It’s more reasonable to think that there is an (unknown) probabil-
ity distribution that defines what we expect to see for that data that is defined
on a continuous range of values, not the specific ones we see in 2014. We might
reasonably assume the sample space of such a distribution is Ω = [0, ∞). Notice
that this definition still kept restrictions on Ω – only non-negative numbers;
this makes sense because these are salaries. But the probability distribution on
Ω = [0, ∞) would still be a continuous distribution because its a restriction to
an interval and thus takes on all the numeric values in that interval.

Of course some data are “naturally” discrete, like the set of job titles or the
number of heads in a series of coin tosses, and there no rational way to think of
them being continuous.

2.3.1 Probability with Continuous distributions

Many of the probability ideas we’ve discussed carry forward to continuous dis-
tributions. Specifically, our earlier definition of a probability distribution is
universal and includes continuous distributions. But some probability ideas be-
come more complicated/nuanced for continuous distributions. In particular, for
a discrete distribution, it makes sense to say 𝑃(𝑋 = 72𝐾) (the probability of
a salary exactly equal to 72𝐾). For continuous distributions, such an innocent
statement is actually fraught with problems.

To see why, remember what you know about a probability distributions. In
particular, a probability must be between 0 and 1, so

0 ≤ 𝑃(𝑋 = 72, 000) ≤ 1
Moreover, this is a property of any probability statement, not just ones involving
‘=’: e.g. 𝑃(𝑋 ≤ 10) or 𝑃(𝑋 ≥ 0). This is a fundamental rule of a probability
distribution that we defined earlier, and thus also holds true for continuous
distributions as well as discrete distributions.

Okay so far. Now another thing you learned is if I give all possible values that
my random variable 𝑋 can take (the sample space Ω) and call them 𝑣1, … , 𝑣𝐾,
then if I sum up all these probabilities they must sum exactly to 1,

𝑃(Ω) =
𝐾

∑
𝑖=1

𝑃(𝑋 = 𝑣𝑖) = 1

Well this becomes more complicated for continuous values – this leads us to an
infinite sum since we have an infinite number of possible values. If we give any
positive probability (i.e. ≠ 0) to each point in the sample space, then we won’t
‘sum’ to one.13 These kinds of concepts from discrete probability just don’t
translate over exactly to continuous random variables.

13For those with more math: convergent infinite series can of course sum to 1. This is the
case for distributions like the geometric distribution, which is a distribution and has an infinite
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To deal with this, continuous distributions do not allow any positive probability
for a single value: if 𝑋 has a continuous distribution, then 𝑃(𝑋 = 𝑥) = 0 for
any value of 𝑥.

Instead, continuous distributions only allow for positive probability of an inter-
val: 𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2) can be greater than 0.

Question: Note that this also means that for continuous distributions
𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 < 𝑥). Why?

Key properties of continuous distributions

1. 0 ≤ 𝑃(𝐴) ≤ 1, inclusive.
2. Probabilities are only calculated for events that are intervals, not individ-

ual points/outcomes.
3. 𝑃(Ω) = 1.

Giving zero probability for a single value isn’t so strange if you think about it.
Think about our flight data. What is your intuitive sense of the probability of
a flight delay of exactly 10 minutes – and not 10 minutes 10 sec or 9 minutes 45
sec? You see that once you allow for infinite precision, it is actually reasonable
to say that exactly 10 minutes has no real probability that you need worry about.

For our salary data, of course we don’t have infinite precision, but we still see
that it’s useful to think of ranges of salary – there is no one that makes exactly
$72K, but there is 1 employee within $1 dollar of that amount, and 6 employees
within $10 dollars of that amount. These are all equivalent salaries in any
practical discussion of salaries.

What if you want the chance of getting a 10 minute flight delay? Well, you
really mean a small interval around 10 minutes, since there’s a limit to our mea-
surement ability anyway. This is what we also do with continuous distributions:
we discuss the probability in terms of increasingly small intervals around 10
minutes.

The mathematics of calculus give us the tools to do this via integration. In
practice, the functions we want to integrate are not tractable anyway, so we
will use the computer. We are going to focus on understanding how to think
about continuous distributions so we can understand the statistical question of
how to estimate distributions and probabilities (rather than the more in-depth
probability treatment you would get in a probability class).

sample space Ω. But we are working with the continuous real line (or an interval of the real
line), and there is not a bijection between the integers and the continuous line. The interval
of the real line isn’t a countable set.
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2.3.2 Cummulative Distribution Function (cdfs)

For discrete distributions, we can completely describe the distribution of a ran-
dom variable by describing the probability mass function. In other words, know-
ing 𝑃(𝑋 = 𝑣𝑖) for all possible values of 𝑣𝑖 in the sample space Ω completely
defines the probability distribution.

However, we just said that 𝑃(𝑋 = 𝑥) = 0 for any value of 𝑥, so clearly the
probability mass function doesn’t make sense for continuous distributions, and
certainly doesn’t define the distribution. Indeed, continuous distributions are
not considered to have a probability mass function.

Are we stuck going back to basics and defining the probability of every possible
event? All events with non-zero probability can be described as a combination
of intervals, so it suffices to define the probably of every single possible interval.
This is still a daunting task since there are an infinite number of intervals, but
we can use the simple fact that

𝑃(𝑥1 < 𝑋 ≤ 𝑥2) = 𝑃(𝑋 ≤ 𝑥2) − 𝑃(𝑋 ≤ 𝑥1)

Question: Why is this true? (Use the case of discrete distribution to
reason it out)

Thus rather than define the probably of every single possible interval, we can
tackle the simpler task to define 𝑃(𝑋 ≤ 𝑥) for every single 𝑥 on the real line.
That’s just a function of 𝑥

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)

𝐹 is called a cumulative distribution function (cdf) and it has the property
that if you know 𝐹 you know 𝑃 , i.e. you can go back and forth between them.

While we will focus on continuous distributions, discrete distributions can also
be defined in the same way by their cumulative distribution function instead of
their probability mass functions. In fact cumulative distribution functions are
the most general way to numerically describe a probability distribution^[More
specifically, for all real-valued probability distributions, where Ω is a subset of
𝑅𝑝.

Here are some illustrations of different 𝐹 functions for 𝑥 between −3 and 3:
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Question: Consider the following questions about a random variable 𝑋
defined by each of these distributions:

• Which of these distributions is likely to have values of 𝑋 less than −3?
• For which is it equally likely for 𝑋 to be positive or negative?

• What is 𝑃(𝑋 > 3) – how would you calculate that from the cdfs pictured
above? Which of the above distributions are likely to have 𝑃(𝑋 > 3) be
large?

• What is lim𝑥→∞ 𝐹(𝑥) for all cdfs? What is lim𝑥→−∞ 𝐹(𝑥) for all cdfs?
Why?

2.3.3 Probability Density Functions (pdfs)

You see from these questions at the end of the last section, that you can make all
of the assessments we have discussed (like symmetry, or compare if a distribution
has heavier tails than another) from the cdf. But it is not the most common
way to think about the distribution. More frequently the probability density
function (pdf) is more intuitive. It is similar to a histogram in the information
it gives about the distribution and is the continuous analog of the probability
mass functions for discrete distributions.

Formally, the pdf 𝑝(𝑥) is the derivative of 𝐹(𝑥): if 𝐹(𝑥) is differentiable

𝑝(𝑥) = 𝑑
𝑑𝑥𝐹(𝑥).

If 𝐹 isn’t differentiable, the distribution doesn’t have a density, which in practice
you will rarely run into for continuous variables.14

14Discrete distributions have cdfs where 𝐹(𝑥) is not differentiable, so they do not have
densities. But even some continuous distributions can have cdfs that are non-differentiable
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Conversely, 𝑝(𝑥) is the function such that if you take the area under its curve for
an interval (a,b), i.e. take the integral of 𝑝(𝑥), that area gives you probability
of that interval:

∫
𝑏

𝑎
𝑝(𝑥) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)

More formally, you can derive 𝑃(𝑋 ≤ 𝑣) = 𝐹(𝑣) from 𝑝(𝑥) as

𝐹(𝑣) = ∫
𝑣

−∞
𝑝(𝑥)𝑑𝑥.

Let’s look at an example with the following pdf, which is perhaps vaguely similar
to our flight or salary data, though on a different scale of values for 𝑋,

𝑝(𝑥) = 1
4𝑥𝑒−𝑥/2

Suppose that 𝑋 is a random variable from a distribution with this pdf. Then
to find 𝑃(5 ≤ 𝑋 ≤ 10), I find the area under the curve of 𝑝(𝑥) between 5 and
10, by taking the integral of 𝑝(𝑥) over the range of (5, 10):

∫
10

5

1
4𝑥𝑒−𝑥/2
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In this case, we can actually solve the integral through integration by parts
(which you may or may not have covered),

∫
10

5

1
4𝑥𝑒−𝑥/2 = (−1

2𝑥𝑒−𝑥/2−𝑒−𝑥/2)∣
10

5
= (−1

2(10)𝑒−10/2−𝑒−10/2)−(−1
2(5)𝑒−5/2−𝑒−5/2)

Evaluating this gives us 𝑃(5 ≤ 𝑋 ≤ 10) = 0.247. Most of the time, however,
the integrals of common distributions that are used as models for data have pdfs
that cannot be integrated by hand, and we rely on the computer to evaluate the
integral for us.

Question: Recall above that same rule from discrete distribution applies
for the total probability, namely that the probability of 𝑋 being in the
entire sample space must be 1. For continuous distributions the sample
space is generally the whole real line (or a specific interval). What does
this mean in terms of the total area under the curve of 𝑝(𝑥)?

Question: The following plots show functions that cannot be pdfs, at
least not over the entire range of Ω = (−∞, ∞), why?
What if I restrict Ω = [−10, 10], could these functions be pdfs?
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Interpreting density curves

“Not much good to me” you might think – you can’t evaluate 𝑝(𝑥) and get any
probabilities out. It just requires the new task of finding an area. However,
finding areas under curves is a routine integration task, and even if there is not
an analytical solution, the computer can calculate the area. So pdfs are actually
quite useful.

Moreover, 𝑝(𝑥) is interpretable, just not as a direct tool for probability calcu-
lations. For smaller and smaller intervals you are getting close to the idea of
the “probability” of 𝑋 = 72𝐾. For this reason, where discrete distributions
use 𝑃(𝑋 = 72𝐾), the closest corresponding idea for continuous distributions is
𝑝(72, 000): though 𝑝(72, 000) is not a probability like 𝑃(𝑋 = 72, 000) the value
of 𝑝(𝑥) gives you an idea of more likely regions of data.

More intuitively, the curve 𝑝(𝑥) corresponds to the idea of of a histogram of
data. It’s shape tells you about where the data are likely to be found, just like
the bins of the histogram. We see for our example of �̄� that the histogram of
�̄� (when properly plotted on a density scale) approaches the smooth curve of a
normal distribution. So the same intuition we have from the discrete histograms
carry over to pdfs.

Properties of pdfs

1. A probability density function gives the probability of any interval by
taking the area under the curve

2. The total area under the curve 𝑝(𝑥) must be exactly equal to 1.
3. Unlike probabilities, the value of 𝑝(𝑥) can be ≥ 1 (!).

This last one is surprising to people, but 𝑝(𝑥) is not a probability – only the
area under it’s curve is a probability.
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To understand this, consider this very simple density function:

𝑝(𝑥) = {1 𝑥 ∈ [0, 1]
0 𝑥 > 1, 𝑥 < 0

This is a density function that corresponds to a random variable 𝑋 that is
equally likely for any value between 0 and 1.

Question: Why does this density correspond to being equally likely for
any value between 0 and 1?

Question: What is the area under this curve? (Hint, it’s just a rectangle,
so…)

This distribution is called a uniform distribution on [0,1], some times abbreviated
𝑈(0, 1).

Suppose instead, I want density function that corresponds to being equally likely
for any value between 1/4 and 1/2 (i.e. 𝑈(1/4, 1/2)).
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Again, we can easily calculate this area and confirm it is equal to 1. This is why
𝑝(𝑥) must be able to take on values greater than 1 – if 𝑝(𝑥) was required to be
less than one, you couldn’t get the total area of this rectangle to be 1.
You can see that the scale of values that 𝑋 takes on matters to the value of 𝑝(𝑥).
If 𝑋 is concentrated on a small interval, then the density function will be quite
large, while if it is diffuse over a large area the value of the density function will
be small.

Example: Changing the scale of measurements:

Suppose my random variable 𝑋 are measurements in centimeters, with a normal
distribution, 𝑁(𝜇 = 100cm, 𝜎2 = 100cm2).

Question: What is the standard deviation?

Then I decide to convert all the measurements to meters (FYI: 100 centime-
ters=1 meter).

Question: What is now the mean? And standard deviation?

Expectation and Variance

The density has a similar role in calculation expectations and variances as the
pmf for discrete distributions

𝐸(𝑋) = ∫
Ω

𝑥𝑝(𝑥)𝑑𝑥

𝑣𝑎𝑟(𝑋) = ∫
Ω

(𝑥 − 𝐸(𝑋))2𝑝(𝑥)𝑑𝑥
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We basically replace the sum with an integral. We won’t be doing these calcu-
lations in this class (they are generally intractable), but it is important to know
that the same definitions and properties of variance and expectation carry over.

2.3.4 Examples of Continuous Distributions

Let’s look at some examples of common probability distributions to make the
pdf more concrete.

The most well-known probability distribution is the normal distribution with
pdf

𝑝(𝑥) = 1√
2𝜋𝜎2 𝑒− (𝑥−𝜇)2

2𝜎2

It’s a mouthful, but easy for a computer to evaluate. It has two parameters
that define the distribution: its mean 𝜇 and variance 𝜎2 (recall the variance is the
standard deviation squared). We often write a normal distribution as 𝑁(𝜇, 𝜎2)
to indicate its parameters. A standard normal distribution is 𝜇 = 0,𝜎2 = 1,
written 𝑁(0, 1)

The cdf of the normal – the integral of this equation – is intractable to write
down, but again easy for a computer to approximate to arbitrarily good preci-
sion.

For a normal distribution, the probability of being within 1 standard deviation
of 𝜇 is roughly 0.68 and the probability of being within 2 standard deviations
of 𝜇 is roughly 0.95.

## [1] 0.6826895

## [1] 0.9544997
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Question: What is the probability that a observed random variable from
a 𝑁(𝜇, 𝜎2) distribution is less than 𝜇 by more than 2𝜎?

Other distributions Here are some examples of some pdfs from some two
common continuous distributions other than the normal:

These are all called parametric distributions. The discrete distributions we
introduced earlier (the Binomial, Geometric, and Poisson) are also parametric
distributions, only instead of a probability density function, they have probabil-
ity mass functions. You should look back on the introduction of those distribu-
tions to see the discussion of important aspects of the notation for parametric
distributions which will also be true for continuous distributions. We make a
few more comments illustrated by these examples:

• that ‘a’ parametric distribution is actually a family of distributions that
differ by changing the parameters. For example, a normal distribution
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has two parameters, the mean and the standard deviation. All possible
normal distributions can be created by combinations a mean and a stan-
dard deviation parameter. We say “the” normal distribution to encompass
all of these distributions.

• Unlike the normal, many distributions have very different shapes for dif-
ferent parameters

• Continuous distributions can be limited to an interval or region (i.e. Ω
does not take on all values of the real line). They are still considered
continuous distributions because the range of points that have positive
probability is still a continuous range.

2.4 Distributions of Sample Data

Usually the data we work with is a sample from a population, not the complete
population. Moreover our data is not usually a single observation drawn from
a population but many observations. We designate the number of observations
with 𝑛 or 𝑁 . This means we have 𝑛 random variables, 𝑋1, … , 𝑋𝑛.

2.4.1 The Sampling Distribution

We are often are often interested in features of the total population, like the
mean salary of employees, and we want to use our sample to estimate it. The
logical way to do this is to take the mean of our sample. But we know it won’t
be exactly the same as the true population. In fact, for different samples we’d
get different values of the sample mean. How can I be confident about what is
the true mean? What if I was very unlucky and my �̄� was very far from the
truth?

As a thought experiment, I could think, what if I had done it another time and
gotten another sample 𝑋∗

1, … , 𝑋∗
𝑛 (I use ∗ to indicate it’s different)? I would

get a different �̄�∗ and it wouldn’t equal my previous �̄�. Nor would it equal the
true mean of the population. I could ask myself, is it similar to �̄�? How much
do they vary?

I could carry this further and do this many times: get a lot of samples of size
𝑛, each time take the mean. I would get a lot of �̄�∗ values. Let’s call them

�̄�∗(1), … , �̄�∗(𝐵).

None of them would be exactly equal to the true population mean, but this
would start to give me a good idea of how likely I am to get a “weird” value
from a sample.

This describes the sampling distribution of �̄�, and is very important in
statistics. It’s how we think probabilistically about an estimate. We can make



2.4. DISTRIBUTIONS OF SAMPLE DATA 61

probability statements from this distribution to answer questions about how
likely it is that our estimate is far from the truth.

I can do this with the salary data, creating many samples of size 1,000 and
calculating the mean of each sample. Here’s a histogram of the �̄�∗(1), … , �̄�∗(𝐵)

this creates
sampleSize <- 1000
sampleMean <- replicate(n = 10000, expr = mean(sample(salaries2014_FT$TotalPay,

size = sampleSize, replace = TRUE)))
hist(sampleMean, xlab = "Mean Pay", main = paste("Sampling distribution of mean of",

sampleSize, "observations"))

Note that the sampling distribution of the mean is very different from the his-
togram of the actual population of salary data:
par(mfrow = c(1, 2))
hist(sampleMean, xlab = "Mean Pay", main = paste("Sampling distribution of mean of",

sampleSize, "observations"))
hist(salaries2014_FT$TotalPay, main = "Histogram of Pay in Population")
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It is also different from the histogram of a single sample (which does look like
the histogram of the population), so this is not due to a difference between the
sample and the true population.
singleSample <- sample(salaries2014_FT$TotalPay, size = sampleSize,

replace = TRUE)
par(mfrow = c(1, 2))
hist(sampleMean, xlab = "Mean Pay", main = paste("Sampling distribution of mean of",

sampleSize, "observations"))
hist(singleSample, main = paste("Histogram of Pay from a Sample of size",

sampleSize))

It is due to the fact that the sampling distribution of the mean is quite different
from the distribution of the data that created these means. We will discuss
this further, when we discuss the CLT below, but it is very important to keep
distinct the distribution of the individual data points, and the distribution of
summary statistics that are created from the data.
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What Probability? Why is �̄� random? It is random because the draws from
the population are random, and this induces �̄� to be random. So �̄� is a random
variable that has a distribution, as we have seen above in our simulation.

I emphasized above that we need a precise definition of random mechanisms to
create probability statements. What does that look like for a sample of data?
To make precise probability statements on �̄�, I need a description of how each
of the 𝑋1, … , 𝑋𝑛 samples was chosen from the population. We’ll discuss this
more below, but you have already seen a simple random sample in previous
classes, where each observation has equal probability of being selected. This is
what we modelled with the salary data.

Moving Beyond the Thought Experiment The sampling distribution of
an estimate is an important “thought experiment”. But to be clear, we only get
one sample 𝑋1, … , 𝑋𝑛 and one mean �̄�. Our sample data gave us �̄�, and we
will never get to compare our �̄� with these other potential �̄�∗ to see if the value
we got was strange or unusual.

If we knew the true population distribution, we could say something about the
sampling distribution of �̄�. (How to do that is for a higher probability class, but
these are common questions answered in probability). But that kind of defeats
the point – if we knew the true distribution, we wouldn’t need to draw a sample
from it.

However, sometimes probability theory can say something about the sampling
distribution without knowing the population distribution. We need to make
some assumptions, but they are usually much less than knowing the entire
distribution.

What kind of assumptions? Well, it depends. Here’s some examples:

• knowing the parametric distribution, but not the exact parameters. e.g. I
assume each 𝑋𝑖 ∼ 𝐵𝑖𝑛(𝑛, 𝑝), but I don’t know 𝑝.

• knowing how the data was collected, e.g. 𝑋1, … , 𝑋𝑛 are from a Simple
Random Sample

• knowing that 𝑋1, … , 𝑋𝑛 are independently drawn from the same distribu-
tion, but not knowing the distribution they come from.

Obviously some of these assumptions require more knowledge than others, and
how many assumptions are needed are an important consideration in learning
data analysis tools.

2.4.2 Types of Samples

We said above that we need to know the random mechanism for how the samples
were selected to be able to make statements about the sampling distribution of
estimates created from the data.
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A common description of how samples might be chosen from a population is
a simple random sample. We previously described this for a single sample
(𝑛 = 1) drawn from the population, and in that case it means each member of
the population has equal probability of being selected. We won’t describe the
details of how to extend to 𝑛 samples (you should have seen that in previous
classes), but the basic idea is the sample is created by repeated draws from the
same population.

Alternatively, we might not specify how the samples were drawn, but spec-
ify certain characteristics of the resulting random variables, 𝑋1, … , 𝑋𝑛. The
most common assumption is that they are independent and identically dis-
tributed (i.i.d). This means every 𝑋𝑖 was drawn from the same distribution 𝑃 ,
and that they were drawn independently from every other 𝑋𝑗. Note this means
from our definitions above that we can say

𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) = 𝑃(𝑋1 = 𝑥1)𝑃 (𝑋2 = 𝑥2) … 𝑃(𝑋𝑛 = 𝑥𝑛)

SRS and i.i.d samples are the most common examples, and have very similar
properties so that we can almost think of SRS as a special case of i.i.d samples.
However, there are subtle issues that make a SRS not exactly a i.i.d sample. A
SRS is the result of successive draws, meaning that you remove a member from
the population once you draw it. This means the resulting data has a small
amount of correlation between the data, but for large 𝑛 the correlation becomes
negligible.

Some datasets might be a sample of the population with no easy way to describe
the process of how the sample was chosen from the population, for example
data from volunteers or other convenience samples that use readily available
data rather than randomly sampling from the population. Having convenience
samples can make it quite fraught to try to make any conclusions about the
population from the sample; generally we have to make assumptions about the
data was collected, but because we did not control how the data is collected, we
have no idea if the assumptions are true.

Examples of other types of samples Consider the following concrete ex-
ample of different ways to collect data. Suppose that I want to compare the
salaries of fire-fighters and teachers in all of California. To say this more pre-
cisely for data analysis, I want to see how similar is the distribution of salaries
for fire-fighters to that of teachers in 2014 in California. Consider the following
samples of data I might take

• All salaries in San Francisco (the data we have)
• A simple random sample drawn from a list of all employees in all localities

in California.
• A separate simple random sample drawn from every county, combined

together into a single dataset
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Question: Why do I now consider all salaries in San Franscisco as a
sample, when before I said it was a census?

All three of these are samples from the population of interest and for simplicity
let’s assume that we make them so that they all result in data with the same
total sample size.

One is not a random sample (which one? ). We can’t reasonably make proba-
bility statements about data that is not a random sample from a population.

Only one is a simple random sample . The last sampling scheme, created by
doing a SRS of each locality and combining the results, is a random sampling
scheme, its just not a SRS. We know it’s random because if we did it again, we
wouldn’t get exactly the same set of data (unlike our SF data). But it is not a
SRS – it is called a Stratified random sample.

So are only SRS good random samples?

NO! The stratified random sample described above can actually be a much
better way to get a random sample and give you better estimates – but you
must correctly create your estimates to account for .

For the case of the mean, you have to estimate the population mean in such
a way that it correctly estimates the distribution of population. How? The
key thing is that because it is a random sample, drawn according to a known
probability mechanism, it is possible to make a correct estimate of the population
– but it won’t be the simple mean of the sample.

How to make these kind of estimates for random samples that are not SRS is
beyond the scope of this class, but there are standard ways to do so for stratified
samples and many other sampling designs (this field of statistics is called survey
sampling). Indeed most national surveys, particularly any that require face-to-
face interviewing, are not SRS but much more complicated sampling schemes
that can give equally accurate estimates, but often with less cost.

2.4.3 Normal Distribution and Central Limit Theorem

Let’s go back to thinking about the sampling distribution. You’ve seen in previ-
ous classes an example of the kind of probability result we want, which tells you
about the sampling distribution of an estimate – known as the central limit
theorem. Let’s review this important theorem.

The idea is that if you have i.i.d data, and the size of the sample (𝑛) is large
enough, the central limit theorem tells us that the distribution of �̄� will be
well approximated by a normal distribution. What’s so important about this
theorem is that it tells us that for large sample sizes this always happens –
regardless of the original distribution of the data.
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Specifically, the central limit theorem says that if you have i.i.d. sample of size
𝑛 from an (unknown) distribution with mean 𝜇𝑡𝑟𝑢𝑒 and variance 𝜏2

𝑡𝑟𝑢𝑒, then the
distribution of �̄� will be approximately

𝑁(𝜇𝑡𝑟𝑢𝑒, 𝜏2
𝑡𝑟𝑢𝑒
𝑛 )

Many natural estimates we will encounter are actually means in one form or
another. There are also many extensions of the CLT that give this same result
in other settings too, for example a SRS (which is not i.i.d. data). This is the
reason that the normal is a key distribution for statistics.

For �̄�, which is approximately normal, if the original population had mean 𝜇
and standard deviation 𝜏 , the standard deviation of that normal is 𝜏/√𝑛.

Question: What does this mean for the chance of a single mean calculated
from your data being far from the true mean (relate your answer to the
above information about probabilities in a normal)?

Back to the Salary data

This means that our sample mean �̄� from our salary data should start to follow
the normal distribution. For most actual datasets, of course, we don’t know the
true mean of the population, but in this case, since we sampled from a known
population, we do,

Question: What would be the parameters of this normal distribution?

mean(salaries2014_FT$TotalPay)

## [1] 103505.8
sqrt(var(salaries2014_FT$TotalPay)/sampleSize)

## [1] 1287.772

Recall that for a normal distribution, the probability of being within 1 standard
deviation of 𝜇 is roughly 0.68 and the probability of being within 2 standard
deviations of 𝜇 is roughly 0.95. So the CLT gives us an idea of what mean values
are likely.

Question: What are the range of values this corresponds to in the salary
data?
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c(mean(salaries2014_FT$TotalPay) - 2 * sqrt(var(salaries2014_FT$TotalPay)/sampleSize),
mean(salaries2014_FT$TotalPay) + 2 * sqrt(var(salaries2014_FT$TotalPay)/sampleSize))

## [1] 100930.2 106081.3
summary(salaries2014_FT$TotalPay)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 26364 72356 94272 103506 127856 390112

2.4.4 Density Histograms Revisited

A natural way to visualize the CLT on our salary data is to overlay the normal
distribution on our histogram of our many samples of �̄�. Let’s discuss briefly
why this makes sense.

We’ve been showing histograms with the frequency of counts in each bin on
the y-axis. But histograms are actually meant to represent the distribution of
continuous measurements, i.e. to approximate density functions. In which case
you want histogram to be drawn on the scale we expect for a density, called
density histograms. This is done by requiring that the total area, when
combined across all of the rectangles of the histogram, to have area 1. This
means that the height of each rectangle for an interval (𝑏1, 𝑏2] is given by

#obs. in (𝑏1, 𝑏2]
(𝑏2 − 𝑏1)𝑛

The area of each rectangle will then be

#obs. in (𝑏1, 𝑏2]
𝑛

and so therefore they will sum up to 1. This matches our requirements for a
density function as well, and results in the histogram being on the same scale
as the density.

Notice that this area is also the proportion of observations in the interval (𝑏1, 𝑏2]
and is our natural estimate of 𝑃(𝑏1 ≤ 𝑋 ≤ 𝑏2) from our data. So they also match
densities in that the area in each rectangle is an estimate of the probability.
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We can plot the density of pay in $10K values or $1K units instead.

This demonstrates the effect of the scale of the data on this density histogram.
Just like in our earlier discussion of density values, the width of our bins after
dividing by 10,000 is a smaller number than if we divide by 1,000, so to get
rectangles to have total area 1, we have to have larger values. And, if you plot
histograms on the density scale, you can get values greater than 1, like densities.

Notice how density values stay on similar scales as you change the breaks.
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If I pick very small bins, I have the appearance of larger numbers, but when I
zoom in, I can this is more due to a few bins being very large (and some have
dropped to zero) but most of them are on the same scale.
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Back to the CLT

Having thought about this, we now can return to the question of comparing
our sampling distribution of �̄� with the prediction given by the CLT. In other
words, we can overlay the normal distribution, as predicted by the CLT, with
the histogram of the actual sampling distribution and compare them. Notice
to do this, we also have to pick the right mean and standard deviation for our
normal distribution for these to align.
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Notice how when I overlay the normal curve for discussing the central limit
theorem, I had to set my hist function to freq=FALSE to get proper density
histograms. Otherwise the histogram is on the wrong scale.

2.4.5 Improvement with larger 𝑛

We generally want to increase the sample size to be more accurate. What does
this mean and why does this work? The mean �̄� we observe in our data will be
a random, single observation. If we could collect our data over and over again,
we know that �̄� will fluctuates around the truth for different samples. If we’re
lucky, 𝜏 is small, so that variability will be small, so any particular sample (like
the one we get!) will be close to the mean. But we can’t control 𝜏 . We can
(perhaps) control the sample size, however – we can gather more data. The CLT
tells us that if we have more observations, 𝑛, the fluctations of the mean �̄� from
the truth will be smaller and smaller for larger 𝑛 – meaning the particular mean
we observe in our data will be closer and closer to the true mean. So means
with large sample size should be more accurate.

However, there’s a catch, in the sense that the amount of improvement you get
with larger 𝑛 gets less and less for larger 𝑛. If you go from 𝑛 observations to
2𝑛 observations, the standard deviation goes from 𝜏𝑡𝑟𝑢𝑒√𝑛 to 𝜏𝑡𝑟𝑢𝑒√

2𝑛 – a decrease of
1
√

2. In other words, the standard deviation decreases as 𝑛 decreases like 1/√𝑛.
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2.4.6 Visualizations as Estimates

To do exploratory analysis of our sample, we often use the same techniques we
described above for the population, like histograms and boxplots. But working
with a sample changes our interpretation of these plots. Consider what happens
if you take a simple random sample of 100 employees from our complete set of
full-time employees.
salariesSRS <- sample(x = salaries2014_FT$TotalPay,

size = 100, replace = FALSE)
sample(1:5)

## [1] 5 3 2 1 4

Let’s draw a plot giving the proportions of the total sample in each bin like I
did in the previous section (remember – not a histogram!). I’m going to also
draw the true population probabilities of being in each bin as well, and put it on
the same histogram as the sample proportions. To make sure they are using the
same bins, I’m going to define the break points manually (otherwise the specific
breakpoints will depend on the range of each dataset and so be different)
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Question: Suppose I had smaller width breakpoints (next figure), what
conclusions would you make?

We can consider the above plots, but with more breaks:

When we are working with a sample of data, we should always think of prob-
abilities obtained from a sample as an estimate of the probabilities of the full
population distribution. This means histograms, boxplots, quantiles, and any
estimate of a probability calculated from a sample of the full population have
variability, like any other estimate.

This means we need to be careful about the dual use of histograms as both
visualization tools and estimates. As visualization tools, they are always appro-
priate for understanding the data you have: whether it is skewed, whether there
are outlying or strange points, what are the range of values you observe, etc.
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To draw broader conclusions from histograms or boxplots performed on a sample,
however, is by definition to view them as estimates of the entire population. In
this case you need to think carefully about how the data was collected.

2.4.6.1 Thinking about Histograms as Estimates

If we draw histograms from samples they will all describe the observed dis-
tribution of the sample we have, but they will not all be good estimates of
the underlying population distribution depending on what was the probability
mechanism of how the sample was created. Recall we proposed three types of
samples from SF salary data.

• All salaries in San Franscisco (the data we have)
• A simple random sample drawn from a list of all employees in all localities

in California.
• A separate simple random samples drawn from every locality, combined

together into a single dataset

We don’t have each of these three types of samples from SF salary data, but we
do have the full year of flight data in 2015/2016 academic year (previously we
analyzed only the month of January). Consider the following ways of sampling
from the full set of flight data and consider how they correspond to the above:

• 12 separate simple random samples drawn from every month in the
2015/2016 academic year, combined together into a single dataset

• All flights in January
• A simple random sample drawn from all flights in the 2015/2016 academic

year.

We can actually make all of these samples and compare them to the truth (I’ve
made these samples previously and I’m going to just read them, because the
entire year is a big dataset to work with in class).
flightSFOSRS <- read.table(file.path(dataDir, "SFO_SRS.txt"),

sep = "\t", header = TRUE, stringsAsFactors = FALSE)
flightSFOStratified <- read.table(file.path(dataDir,

"SFO_Stratified.txt"), sep = "\t", header = TRUE,
stringsAsFactors = FALSE)

par(mfrow = c(2, 2))
xlim <- c(-20, 400)
hist(flightSF$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)
hist(flightSFOSRS$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)
hist(flightSFOStratified$DepDelay, breaks = 100, xlim = xlim,

freq = FALSE)
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Question: How do these histograms compare?

In particular, drawing histograms or estimating probabilities from data as we
have done here only give good estimates of the population distribution if the
data is a SRS. Otherwise they can vary quite dramatically from the actual
population.

2.5 Density Curve Estimation

We’ve seen that histograms can approximate density curves (assuming we make
the area in the histogram sum to 1). More formally, we can consider that if we
observe continuous valued data from an unknown distribution, we would like
an estimate of the unknown pdf 𝑝(𝑥) for the distribution that created the data.
This is a problem known as density curve estimatation. This is moving
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far beyond estimating a single value, like the mean, and trying to estimate the
entire pdf.

The setup we consider is that we assume we have a sample of 𝑖.𝑖.𝑑 data
𝑋1, … , 𝑋𝑛 from an unknown distribution with density 𝑝(𝑥). We want to create
a function ̂𝑝(𝑥) (based on the data) that is an estimate of 𝑝(𝑥). As we’ll see, a
density histogram is one such simple estimate of 𝑝(𝑥), but we will also discuss
other estimates that are better than a histogram.

2.5.1 Histogram as estimate of a density

To understand why a histogram is an estimate of a density, let’s think of an easy
situation. Suppose that we want to estimate 𝑝(𝑥) between the values 𝑏1, 𝑏2, and
that in that region, we happen to know that 𝑝(𝑥) is constant, i.e. a flat line.

If we actually knew 𝑝(𝑥) we could find 𝑃(𝑏1 ≤ 𝑋 ≤ 𝑏2) as the area under 𝑝(𝑥).
Since 𝑝(𝑥) is a flat line in this region, this is just

𝑃(𝑋 ∈ [𝑏1, 𝑏2]) = 𝑢 ∗ (𝑏2 − 𝑏1)

where 𝑢 = 𝑝(𝑏1) − 𝑝(𝑏2). To estimate 𝑝(𝑥) in this region is to estimate 𝑢. So
in this very simple case, we have a obvious way to estimate 𝑝(𝑥) if 𝑥 ∈ [𝑏1, 𝑏2]:
first estimate 𝑃(𝑏1 ≤ 𝑋 ≤ 𝑏2) and then let

�̂� = ̂𝑝(𝑥) =
̂𝑃 (𝑏1 ≤ 𝑋 ≤ 𝑏2)

𝑏2 − 𝑏1

We have already discussed above one way to estimate 𝑃(𝑏1 ≤ 𝑋 ≤ 𝑏2) if we
have i.i.d data: count up the data in that interval, and divide by total number
of data points 𝑛,

̂𝑃 (𝑏1 ≤ 𝑋 ≤ 𝑏2) = # Points in [𝑏1, 𝑏2]
𝑛
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Using this, a good estimate of 𝑝(𝑥) (if it is a flat function in that area) is going
to be:

̂𝑝(𝑥) = ̂𝑃 (𝑏1 ≤ 𝑋 ≤ 𝑏2)/(𝑏2 − 𝑏1) = # Points in [𝑏1, 𝑏2]
(𝑏2 − 𝑏1) × 𝑛

Relationship to Density Histograms

In fact, this is a pretty familiar calculation, because it’s also exactly what we
calculate for a density histogram.

However, we don’t expect the true 𝑝(𝑥) to be a flat line, so why do we use this
density histograms when we know this isn’t true? If the pdf 𝑝(𝑥) is a pretty
smooth function of 𝑥, then in a small enough window around a point 𝑥, 𝑝(𝑥) is
going to be not changing too in the scheme of things. In other words, it will be
roughly the same value in a small interval–i.e. flat. So if 𝑥 is in an interval [𝑏1, 𝑏2]
with width 𝑤, and the width of the interval is small, we can more generally say
a reasonable estimate of 𝑝(𝑥) would be the same as above.

With this idea, we can view our (density) histogram as a estimate of the pdf.
For example, suppose we consider a frequency histogram of our SRS of salaries,

We showed this histogram as is commonly done using frequencies. But a density
histogram will divide by the width of the interval of the bins (this is what is
meant by the density values in a histogram), i.e. each bin defines an interval
(𝑏1, 𝑏2), and the density histogram value is

# Points in [𝑏1, 𝑏2]
(𝑏2 − 𝑏1) × 𝑛
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Question: Suppose we want to calculate ̂𝑝ℎ𝑖𝑠𝑡(60𝐾), and we’ve set up
our breaks of our histogram so that 𝑥 = 60𝐾 is in the bin with interval
[50𝐾, 70𝐾). How do you calculate ̂𝑝ℎ𝑖𝑠𝑡(60𝐾) from a sample of size 100?

This is exactly the same as our estimate of 𝑝(𝑥) above in the special case when
𝑝(𝑥) is a flat line in (𝑏1, 𝑏2). Thus, if our true 𝑝(𝑥) is not changing much in
the interval (𝑏1, 𝑏2], then the density histogram value is an estimate of 𝑝(𝑥) in
(𝑏1, 𝑏2).

Thus, the density histogram is a function that estimates 𝑝(𝑥). We can call it
̂𝑝ℎ𝑖𝑠𝑡(𝑥) to denote that it is a histogram estimate of the density.

We of course need to do this for a lot of intervals to cover the range of 𝑥. This
gives us, for every 𝑥, an estimated value of ̂𝑝ℎ𝑖𝑠𝑡(𝑥), based on what interval 𝑥 is
in:

̂𝑝ℎ𝑖𝑠𝑡(𝑥) =
̂𝑃 (data in bin of 𝑥 )

𝑤

̂𝑝ℎ𝑖𝑠𝑡(𝑥) is a function that is what is called a step function and as a function we
can visualize it as:
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Sensitivity to breaks

How we choose the breaks in a histogram can affect their ability to be a good
estimate of the density. Consider our sample of �̄� values from the previous
section when we were discussing the central limit theorem. We know roughly
many samples of �̄� should look like it comes from a normal distribution. Below
we draw histograms based our repeated values of �̄� for different breaks. We
also overlay the normal distribution which represents the distribution the mean
should follow.

We can see that the accuracy of ̂𝑝ℎ𝑖𝑠𝑡(𝑥) as an approximation of the values of the
pdf of a normal varies a great deal with the number of breaks (or equivalently
the width of the intervals).
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2.5.2 Kernel density estimation

A step function as an estimate of 𝑝(𝑥) does not seem to make sense if we think
the true 𝑝(𝑥) a continuous function. We will now consider the most commonly
used method of estimating the density, kernel density smoothing, for estimate
𝑝(𝑥). To understand how this works, we will go through several “improvements”
to the histogram, each one of which improves on our estimate. The kernel
density smoothing will put all of these ideas together.

2.5.2.1 Moving Windows

Let’s consider a simple improvement first: using a moving window or bin to
calculate a histogram, rather than a fixed set of non-overlaping intervals.

Motivation

Previously, we said if the pdf 𝑝(𝑥) is a pretty smooth function of 𝑥, then in
a small enough window around a point 𝑥, 𝑝(𝑥) is going to be not changing
too much, so it makes sense to assume it’s approximately a flat line. So if
you want to estimate 𝑝(𝑥) at a specific 𝑥, say 𝑥 = 64, 000, we would make
an interval (𝑏1, 𝑏2) with 64, 000 at the center and calculate our estimate, say
(𝑏1, 𝑏2) = (54, 000, 74, 000)

̂𝑝(64, 000) = # Points in (𝑏1, 𝑏2]
(𝑏2 − 𝑏1) × 𝑛 = # Points in (54𝐾, 74𝐾]

20𝐾 × 𝑛 .

However, when we make a histogram, we set a fix intervals of the bins, irrelevant
of where 64, 000 lies. In our histogram above, our bins were every 20𝐾 starting
with zero. So our estimate of 𝑝(64, 000) is

̂𝑝ℎ𝑖𝑠𝑡(64, 000) = # Points in (60𝐾, 80𝐾]
20𝐾 × 𝑛 .
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While this makes sense for our plot, this is strange if our goal is to estimate
𝑝(64, 000). We would do better to use the first interval we considered above of
(54, 000, 74, 000]

This is the example just a single specific value of 𝑥 = 64, 000. But in estimating
the function 𝑝(𝑥), we are really wanting to estimate 𝑝(𝑥) for every 𝑥. So by the
same analogy, I should estimate a ̂𝑝(𝑥) by making a bin centered at 𝑥, for every
𝑥. I.e. for every value of 𝑥, we make an interval of ±20, 000 and use the same
formula.

Question: For example, for 𝑥 = 80, 000, how would you estimate
𝑝(80, 000)?

Doing this for every single 𝑥 would give us a curve like this (as compared to the
density histogram):
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More formally, for chosen bin width 𝑤 our estimate of 𝑝(𝑥), is

̂𝑝(𝑥) = #𝑋𝑖 ∈ [𝑥 − 𝑤
2 , 𝑥 + 𝑤

2 )
𝑤 × 𝑛

Of course, in our plots, we don’t actually calculate for every 𝑥, but take a large
number of 𝑥 values that span the range.

Window size

We had a fixed size of 20𝐾 on either size of 𝑥, but we can consider using different
size windows around our point 𝑥:

Question: What is the effect of larger windows or bins?

2.5.2.2 Weighted Kernel Function

Now we consider further improving our estimate of 𝑝(𝑥).
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Re-writing our estimate

We said our estimate of 𝑝(𝑥), is

̂𝑝(𝑥) = #𝑋𝑖 ∈ [𝑥 − 𝑤
2 , 𝑥 + 𝑤

2 )
𝑤 × 𝑛 ,

where 𝑤 is the width of our are interval.

To estimate the density around 𝑥, this estimate counts individual data observa-
tions if and only if they within 𝑤/2 to 𝑥. We could write this as a sum over all
of our data in our SRS, where some of the data are not counted depending on
whether it is close enough to 𝑥 or not.

To do that mathematically, we’re going to create a function that tells os for each
observation whether it is within 𝑤/2 of 𝑥. Let

𝐼(𝑋𝑖 ∈ [𝑥 − 𝑤
2 , 𝑥 + 𝑤

2 )) = {1 𝑋𝑖 ∈ [𝑥 − 𝑤
2 , 𝑥 + 𝑤

2 ))
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is called an indicator function. Generally and indicator function 𝐼(⋅) is a
function which is 1 if the value inside it is true and zero otherwise. If we want to
count how many times something happens, we can write it as a sum of indicator
functions.

Then we can write our estimate as

̂𝑝(𝑥) = 1
𝑤 × 𝑛

𝑛
∑
𝑖=1

𝐼(𝑋𝑖 ∈ [𝑥 − 𝑤
2 , 𝑥 + 𝑤

2 ))

Since we only get 1 for the observations that are in the interval, this sum is the
same as

#𝑋𝑖 ∈ [𝑥 − 𝑤
2 , 𝑥 + 𝑤

2 )

If we rearrange this a bit, we have

̂𝑝(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

1
𝑤𝐼(𝑋𝑖 ∈ [𝑥 − 𝑤

2 , 𝑥 + 𝑤
2 )),

and we see that in this way that we are starting to get an estimate that looks
more like quantities like the sample mean or sample variance, i.e.

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖, 𝑣𝑎𝑟 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − �̄�)2

where we are taking a function of all our observations and then taking an average
over these values.

Interpreting our estimate
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Using this expression, we can see that every observation is contributing, in
principle, to our estimate. We can thus interpret how much a point 𝑋𝑖 counts
toward estimating 𝑝(𝑥): it either contributes 1/𝑤 or 0 depending on how far it
is from 𝑥. We can visualize this:

We can think of this as a function 𝑓 with input variables 𝑥 and 𝑋𝑖: for every 𝑥
for which we want to estimate 𝑝(𝑥), we have a function that tells us how much
each of our data points 𝑋𝑖 should contribute.

𝑓(𝑥, 𝑋𝑖) = {
1
𝑤 𝑋𝑖 ∈ [𝑥 − 𝑤

2 , 𝑥 + 𝑤
2 )

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

It’s a function that is different for every 𝑥, but just like our moving windows,
it’s the same function and we just apply it across all of the 𝑥. So we can simply
write our estimate at each 𝑥 as an average of the values 𝑓(𝑥, 𝑋𝑖)

̂𝑝(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑥, 𝑋𝑖)

Is this a proper density?

Does ̂𝑝(𝑥) form a proper density, i.e. is the area under its curve equal 1? We
can answer this question by integrating ̂𝑝(𝑥),

∫
∞

−∞
̂𝑝(𝑥)𝑑𝑥 = ∫

∞

−∞

1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑥, 𝑋𝑖)𝑑𝑥

= 1
𝑛

𝑛
∑
𝑖=1

∫
∞

−∞
𝑓(𝑥, 𝑋𝑖)𝑑𝑥

So if ∫∞
−∞ 𝑓(𝑥, 𝑋𝑖)𝑑𝑥 = 1 for any 𝑋𝑖, we will have,

∫
∞

−∞
̂𝑝(𝑥)𝑑𝑥 = 1

𝑛
𝑛

∑
𝑖=1

1 = 1.
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Is this the case? Well, considering 𝑓(𝑥, 𝑋𝑖) as a function of 𝑥 with a fixed 𝑋𝑖
value, it is equal to 1/𝑤 when 𝑥 is within 𝑤/2 of 𝑋𝑖, and zero otherwise (i.e. the
same function as before, but now centered at 𝑋𝑖) which we can visualize below:

This means ∫∞
−∞ 𝑓(𝑥, 𝑋𝑖)𝑑𝑥 = 1 for any fixed 𝑋𝑖, and so it is a valid density

function.

Writing in terms of a kernel function 𝐾

For various reasons, we will often speak in terms of the distance between 𝑥 and
the 𝑋𝑖 relative to our the width on one side of 𝑥, given by ℎ:

|𝑥 − 𝑋𝑖|
ℎ

The parameter ℎ is called the bandwidth parameter.

You can think of this as the amount of ℎ units 𝑋𝑖 is from 𝑥. So if we are trying
to estimate 𝑝(64, 000) and our bin width is 𝑤 = 5, 000, then ℎ = 2, 500 and
|𝑥−𝑋𝑖|

ℎ is the number of 2.5𝐾 units a data point 𝑋𝑖 is from 64, 000.}
Doing this we can write

𝑓𝑥(𝑋𝑖) = 1
ℎ𝐾(|𝑥 − 𝑋𝑖|

ℎ )

where

𝐾(𝑑) = {
1
2 𝑑 ≤ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We call a function 𝐾(𝑑) that defines a weight for each data point at ℎ-units
distance 𝑑 from 𝑥 a kernel function.

̂𝑝(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

1
ℎ𝐾(|𝑥 − 𝑋𝑖|

ℎ )

All of this mucking about with the function 𝐾 versus 𝑓(𝑥, 𝑋𝑖) is not really
important – it gives us the same estimate! 𝐾 is just slightly easier to discuss
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mathematically because we took away it’s dependence on 𝑥, 𝑋𝑖 and (somewhat)
ℎ.

Example of Salary data

In R, the standard function to calculate the density is density. Our moving
window is called the “rectangular” kernel, and so we can replicate what we did
using the option kernel="rectangular" in the density function15

2.5.2.3 Other choices of kernel functions

Once we think about our estimate of 𝑝(𝑥) as picking a weight for neighboring
points, we can think about not having such a sharp distinction for the interval
around 𝑥. After all, what if you have a data point that is 5, 100 away from
𝑥 rather than 5, 000? Similarly, if you have 50 data points within 100 of 𝑥
shouldn’t they be more informative about the density around 𝑥 than 50 data
points more than 4, 500 away from 𝑥?

This generates the idea of letting data points contribute to the estimate of 𝑝(𝑥)
based on their distance from 𝑥, but in a smoother way. For example, consider
this more ‘gentle’ visualization of the contribution or weight of a data point 𝑋𝑖
to the estimate of the density at 𝑥:

15It’s actually hard to exactly replicate what I did above with the density function, because
R is smarter. First of all, it picks a bandwidth from the data. Second, it doesn’t evaluate
at every possible x like I did. It picks a number, and interpolates between them. For the
rectangular density, this makes much more sense, as you can see in the above plot.
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This is also the form of a kernel function, called a normal (or gaussian) kernel
and is very common for density estimation. It is a normal curve centered at
𝑥16; as you move away from 𝑥 you start to decrease in your contribution to the
estimate of 𝑝(𝑥) but more gradually than the rectangle kernel we started with.

If we want to formally write this in terms of a function 𝐾, like above then we
would say that our 𝐾(⋅) function is the standard normal curve centered at zero
with standard deviation 0. This would imply that

1
ℎ𝐾(|𝑥 − 𝑋𝑖|

ℎ )

will give you the normal curve with mean 𝑥 and standard deviation ℎ.
We can compare these two kernel estimates. The next plot is the estimate of
the density based on the rectangular kernel and the normal kernel (now using
the defaults in density), along with our estimate from the histogram:

16You have to properly scale the height of the kernel function curve so that you get area
under the final estimate �̂�(𝑥) curve equal to 1
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Question: What do you notice when comparing the estimates of the
density from these two kernels?

Bandwidth

Notice that I still have a problem of picking a width for the rectangular kernel,
or the spread/standard deviation for the gaussian kernel. This 𝑤 value is called
generically a bandwidth parameter. In the above plot I forced the functions
to have the same bandwidth corresponding to the moving window of $20K.

Here are plots of the estimates using different choices of the bandwidth:

The default parameter of the density function is usually pretty reasonable,
particularly if used with the gaussian kernel (also the default). Indeed, while
we discussed the rectangular kernel to motivate going from the histogram to
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the kernel density estimator, it’s rarely used in practice. It is almost always the
gaussian kernel.

2.5.3 Comparing multiple groups with density curves

In addition to being a more satisfying estimation of a pdf, density curves are
much easier to compare between groups than histograms because you can easily
overlay them.

Previously we considered dividing the SF salary data into different groups based
on their job title and comparing them. Because of the large number of job titles,
we earlier created a smaller dataset salaries2014_top with just the top 10 job
titles (by frequency) which we will use again here. Here is the boxplot we created
previously.

The boxplots allow us to compare some basic summary statistics of the distribu-
tions visually. We could ask if there were more subtle differences by estimating
the density of each group and comparing them. I’ve defined a small function
perGroupDensity to do this (not shown, see the accompanying code for the
book for the function) and I will plot each density with a different color:
par(mfrow = c(1, 1))
output <- perGroupDensity(x = salaries2014_top$TotalPay,

salaries2014_top$JobTitle, main = "Total Pay, by job title",
sub = "Top 10 most common full-time")
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A note on colors Before we talk about what we can see, first of all notice
that the default colors were not perhaps the best choice of colors. We can’t
actually tell apart the various greens, for example. These kinds of details are
really important in thinking about visualizations. Sometimes you want similar
colors. For example, we might want all of the police categories with a similar
shade. Or we might be dividing based on a continuous variable, like age, and it
would make sense to have the colors for the ages follow a spectrum (though it’s
still a problem if you can’t tell them apart). But generally for distinct categories
we want some distinct colors that we can easily tell apart.

So now I’m going to define some colors and replot the densities for the multiple
groups (I’m not going to plot the combined density to simplify the plot). I will
plot the boxplot next to it so we can compare.
nGroups <- nlevels(factor(salaries2014_top$JobTitle))
library(RColorBrewer)
cols <- brewer.pal(n = nGroups, "Paired")
par(mfrow = c(1, 2))
output <- perGroupDensity(x = salaries2014_top$TotalPay,

salaries2014_top$JobTitle, cols = cols, main = "Total Pay, by job title",
sub = "Top 10 most common full-time", includeCombined = FALSE)

par(mar = c(10, 4.1, 4.1, 0.1))
boxplot(salaries2014_top$TotalPay ~ salaries2014_top$JobTitle,

main = "Total Pay, by job title, 10 most frequent job titles",
xlab = "", col = cols, ylab = "Pay (in dollars)",
las = 3)
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Compared to the boxplot, we can see that “HSA Sr Eligibility Worker” seems to
be bimodal (two peaks in the density). This suggests there are two groups in this
category with different salary rates. One of those modes/groups overlaps with
the lower wages of the “Custodian” category while the other mode is higher.

We can see that with density plots we can see more subtle differences between
the groups, but it is a much noisier plot. It’s easier to see the big shifts between
the job titles with a boxplot. Whether boxplots or multiple density plots is
better depends a lot on the data and what your question is. It also depends on
how many groups you are comparing.

What are we estimating? We discussed density estimation as estimating the
density 𝑝(𝑥) of an unknown distribution. In the case of the SF salaries, as we’ve
discussed, the data is an entire census of the population, so there’s nothing to
estimate. This is a rare situation, since normally your data will not be a census.
Furthermore, we’ve already discussed that histograms can be used as either
a visualization of the existing data or an estimate of the unknown generating
distribution. The same is true for kernel density estimates. So in this case it’s
just a visualization tool for comparing the groups, and not an estimate of an
unknown distribution.

2.5.3.1 Violin Plots

We can combine the idea of density plots and boxplots to get something called
a “violin plot”.
library(vioplot)
vioplot(salaries2014_FT$TotalPay)
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This is basically just turning the density estimate on its side and putting it next
to the boxplot so that you can get finer-grain information about the distribution.

Like boxplots, this allows you to compare many groups.
source("http://www.stat.berkeley.edu/~epurdom/RcodeForClasses/myvioplot.R")
par(mar = c(10, 4.1, 4.1, 0.1))
vioplot2(salaries2014_top$TotalPay, salaries2014_top$JobTitle,

col = cols, las = 3, ylab = "Salary (in dollars)")

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11



Chapter 3

Comparing Groups and
Hypothesis Testing

We’ve mainly discussed informally comparing the distribution of data in different
groups. Now we want to explore tools about how to use statistics to make this
more formal. Specifically, how can we quantify whether the differences we see
are due to natural variability or something deeper? We will do this through
hypothesis testing.

In addition to reviewing specific hypothesis tests, we have the following goals:

• Abstract the ideas of hypothesis testing: in particular what it means to
be “valid” and what makes a good procedure

• Dig a little deeper as to what assumptions we are making in using a
particular test

• Learn about two paradigms for hypothesis testing:
– parametric methods

– resampling methods

Depending on whether you took STAT 20 or Data 8, you may be more familiar
with one of these paradigms than the other.

We will first consider the setting of comparing two groups, and then expand out
to comparing multiple groups.

3.1 Choosing a Statistic

Example of Comparing Groups

93
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Recall the airline data, with different airline carriers. We could ask the question
about whether the distribution of flight delays is different between carriers.

Question: If we wanted to ask whether United was more likely to have
delayed flights than American Airlines, how might we quantify this?

The following code subsets to just United (UA) and American Airlines (AA) and
takes the mean of DepDelay (the delay in departures per flight)
flightSubset <- flightSFOSRS[flightSFOSRS$Carrier %in%

c("UA", "AA"), ]
mean(flightSubset$DepDelay)

## [1] NA

Question: What do you notice happens in the above code when I take
the mean of all our observations?

Instead we need to be careful to use na.rm=TRUE if we want to ignore NA values
(which may not be wise if you recall from Chapter 2, NA refers to cancelled
flights!)
mean(flightSubset$DepDelay, na.rm = TRUE)

## [1] 11.13185

We can use a useful function tapply that will do calculations by groups. We
demonstrate this function below where the variable Carrier (the airline) is a
factor variable that defines the groups we want to divide the data into before
taking the mean (or some other function of the data):
tapply(X = flightSubset$DepDelay, flightSubset$Carrier,

mean)

## AA UA
## NA NA

Again, we have a problem of NA values, but we can pass argument na.rm=TRUE
to mean:
tapply(flightSubset$DepDelay, flightSubset$Carrier,

mean, na.rm = TRUE)

## AA UA
## 7.728294 12.255649
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We can also write our own functions. Here I calculate the percentage of flights
delayed or cancelled:
tapply(flightSubset$DepDelay, flightSubset$Carrier,

function(x) {
sum(x > 0 | is.na(x))/length(x)

})

## AA UA
## 0.3201220 0.4383791

These are statistics that we can calculate from the data. A statistic is any
function of the input data sample.

3.2 Hypothesis Testing

Once we’ve decided on a statistic, we want to ask whether this is a meaningful
difference between our groups. Specifically, with different data samples, the
statistic would change. Inference is the process of using statistical tools to
evaluate whether the statistic observed indicates some kind of actual difference,
or whether we could see such a value due to random chance even if there was
no difference.

Therefore, to use the tools of statistics – to say something about the generating
process – we must be able to define a random process that we imagine created
the data.

Hypothesis testing encapsulate these inferential ideas. Recall the main com-
ponents of hypothesis testing:

1. Hypothesis testing sets up a null hypothesis which describes a feature of
the population data that we want to test – for example, are the medians
of the two populations the same?
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2. In order to assess this question, we need to know what would be the
distribution of our sample statistic if that null hypothesis is true. To do
that, we have to go further than our null hypothesis and further describe
the random process that could have created our data if the null hypothesis
is true.

If we know this process, it will define the specific probability distribution
of our statistic if the null hypothesis was true. This is called the null
distribution.

There are a lot of ways “chance” could have created non-meaningful differ-
ences between our populations. The null distribution makes specific and
quantitative what was previously the qualitative question “this difference
might be just due to chance.”

3. How do we determine whether the null hypothesis is a plausible explana-
tion for the data? We take the value of the statistic we actually observed
in our data, and we determine whether this observed value is too unlikely
under the null distribution to be plausible.

Specifically, we calculate the probability (under the null distribution) of
randomly getting a statistic 𝑋 under the null hypothesis as extreme as
or more extreme than the statistic we observed in our data (𝑥𝑜𝑏𝑠). This
probability is called a p-value.

“Extreme” means values of the test-statistic that are unlikely under the
null hypothesis we are testing. In almost all tests it means large numeric
values of the test-statistic, but whether we mean large positive values, large
negative values, or both depends on how we define the test-statistic and
which values constitute divergence from the null hypothesis. For example,
if our test statistic is the absolute difference in the medians of two groups,
then large positive values are stronger evidence of not following the null
distribution:

p-value(𝑥𝑜𝑏𝑠) = 𝑃𝐻0
(𝑋 ≥ 𝑥𝑜𝑏𝑠)

If we were looking at just the difference, large positive or negative values
are evidence against the null that they are the same,1

p-value(𝑥𝑜𝑏𝑠) = 𝑃𝐻0
(𝑋 ≤ −𝑥𝑜𝑏𝑠, 𝑋 ≥ 𝑥𝑜𝑏𝑠) = 1−𝑃𝐻0

(−𝑥𝑜𝑏𝑠 ≤ 𝑋 ≤ 𝑥𝑜𝑏𝑠).

Question: Does the p-value give you the probability that the null is true?

4. If the observed statistic is too unlikely under the null hypothesis we can
say we reject the null hypothesis or that we have a statistically sig-
nificant difference.

1In fact the distribution of 𝑋 and |𝑋| are related, and thus we can simplify our life by
considering just |𝑋|.
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How unlikely is too unlikely? Often a proscribed cutoff value of 0.05 is
used so that p-values less than that amount are considered too extreme.
But there is nothing magical about 0.05, it’s just a common standard if
you have to make a “Reject”/“Don’t reject” decision. Such a standard
cutoff value for a decision is called a level. Even if you need to make a
Yes/No type of decision, you should report the p-value as well because it
gives information about how discordant with the null hypothesis the data
is.

3.2.1 Where did the data come from? Valid tests & As-
sumptions

Just because a p-value is reported, doesn’t mean that it is correct. You must
have a valid test. A valid test simply means that the p-value (or level) that you
report is accurate. This is only true if the null distribution of the test statistic
is correctly identified. To use the tools of statistics, we must assume some kind
of random process created the data. When your data violates the assumptions
of the data generating process, your p-value can be quite wrong.

What does this mean to violate the assumptions? After all, the whole point
of hypothesis testing is that we’re trying to detect when the statistic doesn’t
follow the null hypothesis distribution, so obviously we will frequently run across
examples where the assumption of the null hypothesis is violated. Does this
mean p-values are not valid unless the null-hypothesis is true? Obviously not,
other. Usually, our null hypothesis is about one specific feature of the random
process – that is our actual null hypothesis we want to test. The random process
that we further assume in order to get a precise null statistic, however, will have
further assumptions. These are the assumptions we refer to in trying to evaluate
whether it is legitimate to rely on hypothesis testing/p-values.

Sometimes we can know these assumptions are true, but often not; knowing
where your data came from and how it is collected is critical for assessing these
questions. So we need to always think deeply about where the data come from,
how they were collected, etc.

Example: Data that is a Complete Census For example, for the airline
data, we have one dataset that gives complete information about the month of
January. We can ask questions about flights in January, and get the answer by
calculating the relevant statistics. For example, if we want to know whether the
average flight is more delayed on United than American, we calculate the means
of both groups and simply compare them. End of story. There’s no randomness
or uncertainty, and we don’t need the inference tools from above. It doesn’t
make sense to have a p-value here.

Types of Samples
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For most of statistical applications, it is not the case that we have a complete
census. We have a sample of the entire population, and want to make statements
about the entire population, which we don’t see. Notice that having a sample
does not necessarily mean a random sample. For example, we have all of January
which is a complete census of January, but is also a sample from the entire year,
and there is no randomness involved in how we selected the data from the larger
population.

Some datasets might be a sample of the population with no easy way to describe
the process of how the sample was chosen from the population, for example
data from volunteers or other convenience samples that use readily available
data rather than randomly sampling from the population. Having convenience
samples can make it quite fraught to try to make any conclusions about the
population from the sample; generally we have to make assumptions about the
data was collected, but because we did not control how the data is collected, we
have no idea if the assumptions are true.

Question: What problems do you have in trying to use the flight data
on January to estimate something about the entire year? What would be
a better way to get flight data?

We discussed this issue of how the data was collected for estimating histograms.
There, our histogram is a good estimate of the population when our data is a
i.i.d sample or SRS, and otherwise may be off base. For example, here is the
difference in our density estimates from Chapter 2 applied to three different
kinds of sampling, the whole month of January, a i.i.d sample from the year,
and a Stratified Sample, that picked a SRS of the same size from each month
of the year:

Recall in Chapter 2, that we said while the method we learned is appropriate for
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a SRS, there are also good estimates for other kind of random samples, like the
Stratified Sample, though learning about beyond the reach of this course. The
key ingredient that is needed to have trustworthy estimates is to precisely know
the probability mechanism that drew the samples. This is the key difference
between a random sample (of any kind), where we control the random process,
and a sample of convenience – which may be random, but we don’t know how
the random sample was generated.

Assumptions versus reality

A prominent statistician, George Box, gave the following famous quote,

All models are wrong but some are useful

All tests have assumptions, and most are often not met in practice. This is a
continual problem in interpreting the results of statistical methods. Therefore
there is a great deal of interest in understanding how badly the tests perform
if the assumptions are violated; this is often called being robust to violations.
We will try to emphasize both what the assumptions are, and how bad it is to
have violations to the assumptions.

For example, in practice, much of data that is available is not a carefully con-
trolled random sample of the population, and therefore a sample of convenience
in some sense (there’s a reason we call them convenient!). Our goal is not to
make say that analysis of such data is impossible, but make clear about why
this might make you want to be cautious about over-interpreting the results.

3.3 Permutation Tests

Suppose we want to compare the the proportion of flights with greater than 15
minutes delay time of United and American airlines. Then our test statistic will
be the difference between that proportion

The permutation test is a very simple, straightforward mechanism for comparing
two groups that makes very few assumptions about the distribution of the un-
derlying data. The permutation test basicallly assumes that the data we saw we
could have seen anyway even if we changed the group assignments (i.e. United
or American). Therefore, any difference we might see between the groups is due
to the luck of the assignment of those labels.

The null distribution for the test statistic (difference of the proportion) under the
null hypothesis for a permutation tests is determined by making the following
assumptions:

1. There is no difference between proportion of delays greater than 15 min-
utes between the two airlines,

𝐻0 ∶ 𝑝𝑈𝐴 = 𝑝𝐴𝐴
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This is the main feature of the null distribution to be tested
2. The statistic observed is the result of randomly assigning the labels

amongst the observed data. This is the additional assumption about the
random process that allows for calculating a precise null distribution of
the statistic. It basically expands our null hypothesis to say that the
distribution of the data between the two groups is the same, and the
labels are just random assignments to data that comes from the same
distribution.

3.3.1 How do we implement it?

This is just words. We need to actually be able to compute probabilities under
a specific distribution. In other words, if we were to have actually just randomly
assigned labels to the data, we need to know what is the probablility we saw
the difference we actually saw?

The key assumption is that the data we measured (the flight delay) was fixed for
each observation and completely independent from the airline the observation
was assigned to. We imagine that the airline assignment was completely random
and separate from the flight delays – a bunch of blank airplanes on the runway
that we at the last minute assign to an airline, with crew and passengers (not
realistic, but a thought experiment!)

If our data actually was from such a scenario, we could actually rerun the
random assignment process. How? By randomly reassigning the labels. Since
(under the null) we assume that the data we measured had nothing to do with
those labels, we could have instead observed another assignment of those airline
labels and we would have seen the same data with just different labels on the
planes. These are called permutations of the labels of the data.

Here is some examples of doing that. Below, are the results of three different
possible permutations, created by assigning planes (rows/observations) to an
airline randomly – only the first five observations are shown, but all of the origi-
nal observations get an assignment. Notice the number of planes assigned to UA
vs AA stays the same, just which plane gets assigned to which airline changes.
The column Observed shows the assignment we actually saw (as opposed to the
assignments I made up by permuting the assignments)

## FlightDelay Observed Permutation1 Permutation2 Permutation3
## 1 5 UA AA UA AA
## 2 -6 UA UA UA UA
## 3 -10 AA UA UA UA
## 4 -3 UA UA AA UA
## 5 -3 UA UA AA UA
## 6 0 UA UA UA UA

For each of these three permutations, I can calculate proportion of flights de-
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layed, among those assigned to UA vs those assigned to AA, and calculate the
difference between them

## Proportions per Carrier, each permutation:

## Observed Permutation1 Permutation2 Permutation3
## AA 0.1554878 0.2063008 0.1951220 0.1910569
## UA 0.2046216 0.1878768 0.1915606 0.1929002

## Differences in Proportions per Carrier, each permutation:

## Observed Permutation1 Permutation2 Permutation3
## 0.049133762 -0.018424055 -0.003561335 0.001843290

I’ve done this for three permutations, but we could enumerate (i.e. list) all
possible such assignments of planes to airlines. If we did this, we would have the
complete set potential flight delay datasets possible under the null hypothesis,
and for each one we could calculate the difference in the proportion of delayed
flights between the airlines.

So in principle, it’s straightforward – I just do this for every possible permuta-
tion, and get the difference of proportions. The result set of differences gives
the distribution of possible values under the null. These values would define our
null distribution. With all of these values in hand, I could calculate probabilities
– like the probability of seeing a value so large as the one observed in the data
(p-value!).

Too many! In practice: Random selection

This is the principle of the permutation test, but I’m not about to do that in
practice, because it’s not computationally feasible!

Consider if we had only, say, 14 observations with two groups of 7 each, how
many permutations do we have? This is 14 “choose” 7, which gives 3,432 per-
mutations.

So for even such a small dataset of 14 observations, we’d have to enumerate
almost 3500 permutations. In the airline data, we have 984-2986 observations
per airline. We can’t even determine how many permutations that is, much less
actually enumerate them all.

So for a reasonably sized dataset, what can we do? Instead, we consider that
there exists such a null distribution and while we can’t calculate it perfectly, we
are going to just approximate that null distribution.

How? Well, this is a problem we’ve actually seen. If we want to estimate a
true distribution of values, we don’t usually have a census at our disposal –
i.e. all values. Instead we draw a i.i.d. sample from the population, and with
that sample we can estimate that distribution, either by a histogram or by
calculating probabilities (see Chapter 2).
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How does this look like here? We know how to create a single random permuta-
tion – it’s what I did above using the function sample. If we repeat this over and
over and create a lot of random permutations, we are creating a i.i.d. sample
from our population. Specifically, each possible permutation is an element of
our sample space, and we are randomly drawing a permutation. We’ll do this
many times (i.e. many calls to the function sample), and this will create a i.i.d.
sample of permutations. Once we have a i.i.d. sample of permutations, we can
calculate the test statistic for each permutation, and get an estimate of the true
null distribution. Unlike i.i.d. samples of an actual population data, we can
make the size of our sample as large as our computer can handle to improve our
estimate (though we don’t in practice need it to be obscenely large)

Practically, this means we will repeating what we did above many times. The
function replicate in R allows you to repeat something many times, so we will
use this to repeat the sampling and the calculation of the difference in medians.

I wrote a little function permutation.test to do this for any statistic, not just
difference of the medians; this way I can reuse this function repeatedly in this
chapter. You will go through this function in lab and also in the accompanying
code.
permutation.test <- function(group1, group2, FUN, n.repetitions) {

stat.obs <- FUN(group1, group2)
makePermutedStats <- function() {

sampled <- sample(1:length(c(group1, group2)),
size = length(group1), replace = FALSE)

return(FUN(c(group1, group2)[sampled], c(group1,
group2)[-sampled]))

}
stat.permute <- replicate(n.repetitions, makePermutedStats())
p.value <- sum(stat.permute >= stat.obs)/n.repetitions
return(list(p.value = p.value, observedStat = stat.obs,

permutedStats = stat.permute))
}

Example: Proportion Later than 15 minutes

We will demonstrate this procedure on our the i.i.d. sample from our flight data,
using the difference in the proportions later than 15 minutes as our statistic.

Recall, the summary statistics on our actual data:
tapply(flightSFOSRS$DepDelay, flightSFOSRS$Carrier,

propFun)[c("AA", "UA")]

## AA UA
## 0.1554878 0.2046216

I am going to choose as my statistic the absolute difference between the pro-
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portion later than 15 minutes. This will mean that large values are always
considered extreme for my p-value computations. This is implemented in my
diffProportion function:
diffProportion <- function(x1, x2) {

prop1 <- propFun(x1)
prop2 <- propFun(x2)
return(abs(prop1 - prop2))

}
diffProportion(subset(flightSFOSRS, Carrier == "AA")$DepDelay,

subset(flightSFOSRS, Carrier == "UA")$DepDelay)

## [1] 0.04913376

Now I’m going to run my permutation function using this function.

Here is the histogram of the values of the statistics under all of my permutations.

If my data came from the null, then this is the (estimate) of the actual distri-
bution of what the test-statistic would be.

How would I get a p-value from this? Recall the definition of a p-value – the
probability under the null distribution of getting a value of my statistic as large
or larger than what I observed in my data,

p-value(𝑥𝑜𝑏𝑠) = 𝑃𝐻0
(𝑋 ≥ 𝑥𝑜𝑏𝑠)

So I need to calculate that value from my estimate of the null distribution
(demonstrated in the histogram above), i.e. the proportion of the that are greater
than observed.

My function calculated the p-value as well in this way, so we can output the
value:

## pvalue= 0.0011
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Question:

1. So what conclusions would you draw from this permutation test?
2. What impact does this test have? What conclusions would you be

likely to make going forward?
3. Why do I take the absolute difference? What difference does it make

if you change the code to be only the difference?

Median difference

What about if I look at the difference in median flight delay between the two
airlines? Let’s first look at what is the median flight delay for each airline:
tapply(flightSFOSRS$DepDelay, flightSFOSRS$Carrier,

function(x) {
median(x, na.rm = TRUE)

})[c("AA", "UA")]

## AA UA
## -2 -1

The first thing we might note is that there is a very small difference between
the two airlines (1 minute). So even if we find something significant, who re-
ally cares? That is not going to change any opinions about which airline I fly.
Statistical significance is not everything.

However, I can still run a permutation test (you can always run tests, even if
it’s not sensible!). I can reuse my previous function, but just quickly change the
statistic I consider – now use the absolute difference in the median instead of
proportion more than 15min late.

Here is the histogram I get after doing this:
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This gives us a p-value:

## pvalue (median difference)= 0.1287

Question:

1. What is going on with our histogram? Why does it look so different
from our usual histograms?

2. What would have happened if we had defined our p-value as the
probability of being greater rather than greater than or equal to?
Where in the code of permutation.test was this done, and what
happens if you change the code for this example?

3.3.2 Assumptions: permutation tests

Let’s discuss what might be limitations of the permutation test.

Assumption: the data generating process

What assumption(s) are we making about the random process that generated
this data in determining the null distribution? Does it make sense for our data?

We set up a model that the assignment of a flight to one airline or another was
done at random. This is clearly not a plausible description of our of data.

Some datasets do have this flavor. For example, if we wanted to decide which
of two email solicitations for a political campaign are most likely to lead to
someone to donate money, we could randomly assign a sample of people on
our mailing list to get one of the two. This would perfectly match the data
generation assumed in the null hypothesis.

What if our assumption about random labels is wrong?

Clearly random assignment of labels is not a good description for how the
datasets regarding flight delay data were created. Does this mean the per-
mutation test will be invalid? No, not necessarily. In fact, there are other
descriptions of null random process that do not explicitly follow this descrip-
tion, but in the end result in the same null distribution as that of the randomly
assigned labels model.

Explicitly describing the full set of random processes that satisfy this require-
ment is beyond the level of this class2, but an important example is if each of
your data observations can be considered under the null a random, independent
draw from the same distribution. This is often abbreviated i.i.d: independent
and identically distributed. This makes sense as an requirement – the very

2Namely, if the data can be assumed to be exchangeable under the null hypothesis, then
the permutation test is also a valid test.
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act of permuting your data implies such an assumption about your data: that
you have similar observations and the only thing different about them is which
group they were assigned to (which under the null doesn’t matter).

Assuming your data is i.i.d is a common assumption that is thrown around,
but is actually rather strong. For example, non-random samples do not have
this property, because there is no randomness; it is unlikely you can show that
convenience samples do either. However, permutation tests are a pretty good
tool even in this setting, however, compared to the alternatives. Actual random
assignments of the labels is the strongest such design of how to collect data.

Inferring beyond the sample population

Note that the randomness queried by our null hypothesis is all about the specific
observations we have. For example, in our political email example we described
above, the randomness is if we imagine that we assigned these same people
different email solicitations – our null hypothesis asks what variation in our
statistic would we expect? However, if we want to extend this to the general
population, we have to make the assumption that these people’s reaction are
representative of the greater population.

As a counter-example, suppose our sample of participants was only women, and
we randomly assigned these women to two groups for the two email solicitations.
Then this data matches the assumptions of the permutation test, and the per-
mutation test is valid for answering the question about whether any affect seen
amongst these women was due to the chance assignment to these women. But
that wouldn’t answer our question very well about the general population of
interest, which for example might include men. Men might have very different
reactions to the same email. This is a rather obvious example, in the sense that
most people in designing a study wouldn’t make this kind of mistake. But it’s
exemplifies the kind of problems that can come from a haphazard selection of
participants, even if you do random assignment of the two options. Permutation
tests do not get around the problem of a poor data sample. Random samples
from the population are needed to be able to make the connection back to the
general population.

Conclusion

So while permuting your data seems to intuitive and is often thought to make
no assumptions, it does have assumptions about where your data come from.

Generally, the assumptions for a permutation test are much less than some alter-
native tests (like the parametric tests we’ll describe next), so they are generally
the safest to use. But it’s useful to realize the limitations even for something as
non-restrictive as permutation tests.
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3.4 Parametric test: the T-test

In parametric testing, we assume the data comes from a specific family of dis-
tributions that share a functional form for their density, and define the features
of interest for the null hypothesis based on this distribution.

Rather than resampling from the data, we will use the fact that we can write
down the density of the data-generating distribution to analytically determine
the null distribution of the test statistic. For that reason, parametric tests tend
to be limited to a narrower class of statistics, since the statistics have to be
tractable for mathematical analysis.

3.4.1 Parameters

We have spoken about parameters in the context of parameters that define a
family of distributions all with the same mathematical form for the density. An
example is the normal distribution which has two parameters, the mean (𝜇) and
the variance (𝜎2). Knowing those two values defines the entire distribution of a
normal. The parameters of a distribution are often used to define a null hypoth-
esis; a null hypothesis will often be a direct statement about the parameters
that define the distribution of the data. For example, if we believe our data is
normally distributed in both of our groups, our null hypothesis could be that
the mean parameter in one group is equal to that of another group.

General Parameters However, we can also talk more generally about a param-
eter of any distribution beyond the defining parameters of the distribution. A
parameter is any numerical summary that we can calculate from a distribution.
For example, we could define the .75 quantile as a parameter of the data distri-
bution. Just as a statistic is any function of our observed data, a parameter
is a function of the true generating distribution 𝐹 . Which means that our null
hypothesis could also be in terms of other parameters than just the ones that
define the distribution. For example, we could assume that the data comes from
a normal distribution and our null hypothesis could be about the .75 quantile
of the distribution. Indeed, we don’t have to have assume that the data comes
from any parametric distribution – every distribution has a .75 quantile.

If we do assume our data is generated from a family of distributions defined
by specific parameters (e.g. a normal distribution with unknown mean and vari-
ance) then those parameters completely define the distribution. Therefore any
arbitrary parameter of the distribution we might define can be written as a
function of those parameters. So the 0.75 quantile of a normal distribution
is a parameter, but it is also a function of the mean parameter and variance
parameter of the normal distribution.

Notation Parameters are often indicated with greek letters, like 𝜃, 𝛼, 𝛽, 𝜎.
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Statistics of our data sample are often chosen because they are estimates of our
parameter. In that case they are often called the same greek letters as the pa-
rameter, only with a “hat” on top of them, e.g. ̂𝜃, ̂𝛼, ̂𝛽, �̂�. Sometimes, however,
a statistic will just be given a upper-case letter, like 𝑇 or 𝑋, particularly when
they are not estimating a parameter of the distribution.

3.4.2 More about the normal distribution and two group
comparisons

Means and the normal distribution play a central role in many parametric tests,
so lets review a few more facts.

Standardized Values

If 𝑋 ∼ 𝑁(𝜇, 𝜎2), then
𝑋 − 𝜇

𝜎 ∼ 𝑁(0, 1)

This transformation of a random variable is called standardizing 𝑋, i.e. putting
it on the standard 𝑁(0, 1) scale.

Sums of normals

If 𝑋 ∼ 𝑁(𝜇1, 𝜎2
1) and 𝑌 ∼ 𝑁(𝜇2, 𝜎2

2) and 𝑋 and 𝑌 are independent, then

𝑋 + 𝑌 ∼ 𝑁(𝜇1 + 𝜇2, 𝜎2
1 + 𝜎2

2)

If 𝑋 and 𝑌 are both normal, but not independent, then their sum is still a
normal distribution with mean equal to 𝜇1 + 𝜇2 but the variance is different.3

CLT for differences of means

We’ve reviewed that a sample mean of a i.i.d. sample or SRS sample will have
a sampling distribution that is roughly a normal distribution if we have a large
enough sample size – the Central Limit Theorem. Namely, that if 𝑋1, … , 𝑋𝑛 are
i.i.d from a distribution4 with mean 𝜇 and variance 𝜎2, then ̂𝜇 = �̄� = 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖

will have a roughly normal distribution

𝑁(𝜇, 𝜎2

𝑛 ).

If we have two groups,

• 𝑋1, … , 𝑋𝑛1
i.i.d from a distribution with mean 𝜇1 and variance 𝜎2

1, and
3𝑋 + 𝑌 ∼ 𝑁(𝜇1 + 𝜇2, 𝜎2

1 + 𝜎2
2 + 2𝑐𝑜𝑣(𝑋, 𝑌 )), where 𝑐𝑜𝑣 is the covariance between 𝑋 and

𝑌
4And in fact, there are many variations of the CLT, which go beyond i.i.d samples



3.4. PARAMETRIC TEST: THE T-TEST 109

• 𝑌1, … , 𝑌𝑛2
i.i.d from a distribution with mean 𝜇2 and variance 𝜎2

2

Then if the 𝑋𝑖 and 𝑌𝑖 are independent, then the central limit theorem applies
and �̄� − ̄𝑌 will have a roughly normal distribution equal to

𝑁(𝜇1 − 𝜇2, 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

)

3.4.3 Testing of means

Let 𝜇𝑈𝐴 and 𝜇𝐴𝐴 be the true means of the distribution of flight times of the
two airlines in the population. Then if we want to test if the distributions have
the same mean, we can write our null hypothesis as

𝐻0 ∶ 𝜇𝐴𝐴 = 𝜇𝑈𝐴

This could also be written as

𝐻0 ∶ 𝜇𝐴𝐴 − 𝜇𝑈𝐴 = 𝛿 = 0,

so in fact, we are testing whether a specific parameter 𝛿 is equal to 0.
Let’s assume 𝑋1, … , 𝑋𝑛1

is the data from United and 𝑌1, … , 𝑌𝑛2
is the data

from American. A natural sample statistic to estimate 𝛿 from our data would
be

̂𝛿 = �̄� − ̄𝑌 ,
i.e. the difference in the means of the two groups.

Null distribution

To do inference, we need to know the distribution of our statistic of interest.
Our central limit theorem will tell us that under the null, for large sample sizes,
the difference in means is distributed normally,

�̄� − ̄𝑌 ∼ 𝑁(0, 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

)

This is therefore the null distribution, under the assumption that our random
process that created the data is that the data from the two groups is i.i.d from
normal distributions with the same mean. Assuming we know 𝜎1 and 𝜎2, we can
use this distribution to determine whether the observed �̄� − ̄𝑌 is unexpected
under the null.

We can also equivalently standardize �̄� − ̄𝑌 and say,

𝑍 = �̄� − ̄𝑌
√ 𝜎2

1
𝑛1

+ 𝜎2
2

𝑛2

∼ 𝑁(0, 1)
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and instead use 𝑍 as our statistic.

Calculating a P-value

Suppose that we observe a statistic 𝑍 = 2. To calculate the p-value we need
to calculate the probability of getting a value as extreme as 2 or more under
the null. What does extreme mean here? We need to consider what values of
𝑍 (or the difference in our means) would be considered evidence that the null
hypothesis didn’t explain the data. Going back to our example, �̄� − ̄𝑌 might
correspond to �̄�𝐴𝐴 − ̄𝑌𝑈𝐴, and clearly large positive values would be evidence
that they were different. But large negative values also would be evidence that
the means were different. Either is equally relevant as evidence that the null
hypothesis doesn’t explain the data.

So a reasonable definition of extreme is large values in either direction. This is
more succinctly written as |�̄� − ̄𝑌 | being large.

So a better statistic is,

|𝑍| = |�̄� − ̄𝑌 |
√ 𝜎2

1
𝑛1

+ 𝜎2
2

𝑛2

Question: With this better |𝑍| statistic, what is the p-value if you observe
𝑍 = 2? How would you calculate this using the standard normal density
curve? With R?

|𝑍| is often called a ‘two-sided’ t-statistic, and is the only one that we will
consider.5

5There are rare cases in comparing means where you might consider only evidence against
the null that is positive (or negative). In this case you would then calculate the p-value
correspondingly. These are called “one-sided” tests, for the same value of the observed statistic
𝑍 they give you smaller p-values, and they are usually only a good idea in very specific
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3.4.4 T-Test

The above test is actually just a thought experiment because |𝑍| is not in fact
a statistic because we don’t know 𝜎1 and 𝜎2. So we can’t calculate |𝑍| from our
data!

Instead you must estimate these unknown parameters with the sample vari-
ance

�̂�2
1 = 1

𝑛 − 1 ∑(𝑋𝑖 − �̄�)2,

and the same for �̂�2
2. (Notice how we put a “hat” over a parameter to indicate

that we’ve estimated it from the data.)

But once you must estimate the variance, you are adding additional variability
to inference. Namely, before, assuming you knew the variances, you had

|𝑍| = |�̄� − ̄𝑌 |
√ 𝜎2

1
𝑛1

+ 𝜎2
2

𝑛2

,

where only the numerator is random. Now we have

|𝑇 | = |�̄� − ̄𝑌 |
√ �̂�2

1
𝑛1

+ �̂�2
2

𝑛2

.

and the denominator is also random. 𝑇 is called the t-statistic.

This additional uncertainty means seeing a large value of |𝑇 | is more likely than
of |𝑍|. Therefore, |𝑇 | has a different distribution, and it’s not 𝑁(0, 1).

Unlike the central limit theorem, which deals only with the distributions of
means, when you additionally estimate the variance terms, determining even
approximately what is the distribution of 𝑇 (and therefore |𝑇 |) is more com-
plicated, and in fact depends on the distribution of the input data 𝑋𝑖 and 𝑌𝑖
(unlike the central limit theorem). But if the distributions creating your data
are reasonably close to normal distribution, then 𝑇 follows what is called a
t-distribution.

examples.
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You can see that the 𝑡 distribution is like the normal, only it has larger “tails”
than the normal, meaning seeing large values is more likely than in a normal
distribution.

Question: What happens as you change the sample size?

Notice that if you have largish datasets (e.g. > 30 − 50 samples in each group)
then you can see that the t-distribution is numerically almost equivalent to
using the normal distribution, so that’s why it’s usually fine to just use the
normal distribution to get p-values. Only in small samples sizes are there large
differences.

Degrees of Freedom

The t-distribution has one additional parameter called the degrees of freedom,
often abreviated as df. This parameter has nothing to do with the mean or
standard deviation of the data (since our t-statistic is already standardized),
and depends totally on the sample size of our populations. The actual equation
for the degrees of freedom is quite complicated:

𝑑𝑓 =
( �̂�2

1
𝑛1

+ �̂�2
2

𝑛2
)

2

( �̂�2
1

𝑛1
)2

𝑛1−1 + ( �̂�2
2

𝑛2
)2

𝑛2−1

.

This is not an equation you need to learn or memorize, as it is implemented in
R for you. A easy approximation for this formula is to use

𝑑𝑓 ≈ 𝑚𝑖𝑛(𝑛1 − 1, 𝑛2 − 1)

This approximation is mainly useful to try to understand how the degrees of
freedom are changing with your sample size. Basically, the size of the smaller
group is the important one. Having one huge group that you compare to a
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small group doesn’t help much – you will do better to put your resources into
increasing the size of the smaller group (in the actual formula it helps a little
bit more, but the principle is the same).

3.4.5 Assumptions of the T-test

Parametric tests usually state their assumptions pretty clearly: they assume a
parametric model generated the data in order to arrive at the mathematical
description of the null distribution. For the t-test, we assume that the data
𝑋1, … , 𝑋𝑛1

and 𝑌1, … , 𝑌𝑛2
are normal to get the t-distribution.

What happens if this assumption is wrong? When will it still make sense to use
the t-test?

If we didn’t have to estimate the variance, the central limit theorem tells us the
normality assumption will work for any distribution, if we have a large enough
sample size.

What about the t-distribution? That’s a little tricker. You still need a large
sample size; you also need that the distribution of the 𝑋𝑖 and the 𝑌𝑖, while not
required to be exactly normal, not be too far from normal. In particular, you
want them to be symmetric (unlike our flight data).6

Generally, the t-statistic is reasonably robust to violations of these assumptions,
particularly compared to other parametric tests, if your data is not too skewed
and you have a largish sample size (e.g. 30 samples in a group is good). But the
permutation test makes far fewer assumptions, and in particular is very robust
to assumptions about the distribution of the data.

For small sample sizes (e.g. < 10 in each group), you certainly don’t really have
any good justification to use the t-distribution unless you have a reason to trust
that the data is normally distributed (and with small sample sizes it is also very
hard to justify this assumption by looking at the data).

3.4.6 Flight Data and Transformations

Let’s consider the flight data. Recall, the t-statistic focuses on the difference in
means. Here are the means of the flight delays in the two airlines we have been
considering:

## AA UA
## 7.728294 12.255649

6Indeed, the central limit theorem requires large data sizes, and how large a sample you
need for the central limit theorem to give you a good approximation also depends on things
about the distribution of the data, like how symmetric the distribution is.
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Question: Why might the difference in the means not be a compelling
comparison for the flight delay?

The validity of the t-test depends assumptions about the distribution of the
data, and a common way to assess this is to look at the distribution of each of
the two groups.

With larger sample sizes there is less worry about the underlying distribution,
but very non-normal input data will not do well with the t-test, particularly if
the data is skewed, meaning not symmetrically distributed around its mean.

Here is a histogram of the flight delay data:

Question: Looking at the histogram of the flight data, would you con-
clude that the t-test would be a valid choice?

Note that nothing stops us from running the test, whether it is a good idea or
not, and it’s a simple one-line code:
t.test(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"], flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==
"AA"])

##
## Welch Two Sample t-test
##
## data: flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "UA"] and flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "AA"]
## t = 2.8325, df = 1703.1, p-value = 0.004673
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
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## 1.392379 7.662332
## sample estimates:
## mean of x mean of y
## 12.255649 7.728294

This is a common danger of parametric tests. They are implemented everywhere
(there are on-line calculators that will compute this for you; excel will do this
calculation), so people are drawn to doing this, while permutation tests are more
difficult to find pre-packaged.

Direct comparison to the permutation test

The permutation test can use any statistic we like, and the t-statistic is a per-
fectly reasonable way to compare two distributions if we are interested in com-
paring the means (though as we mentioned, we might not be!). So we can
compare the t-test to a permutation test of the mean using the t-statistic. We
implement the permutation test with the t-statistic here:
set.seed(489712)
tstatFun <- function(x1, x2) {

abs(t.test(x1, x2)$statistic)
}
dataset <- flightSFOSRS
output <- permutation.test(group1 = dataset$DepDelay[dataset$Carrier ==

"UA"], group2 = dataset$DepDelay[dataset$Carrier ==
"AA"], FUN = tstatFun, n.repetitions = 10000)

cat("permutation pvalue=", output$p.value)

## permutation pvalue= 0.0076

We can also run the t-test again and compare it.
tout <- t.test(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"], flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==
"AA"])

cat("t-test pvalue=", tout$p.value)

## t-test pvalue= 0.004673176

They don’t result in very different conclusions.

We can compare the distribution of the permutation distribution of the
t-statistic, and the density of the 𝑁(0, 1) that the parametric model assumes.
We can see that they are quite close, even though our data is very skewed
and clearly non-normal. Indeed for large sample sizes like we have here, they
will often give similar results, even though our data is clearly not meeting the
assumptions of the t-test. The t-test really is quite robust to violations.
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Smaller Sample Sizes

If we had a smaller dataset we would not get such nice behavior. We can take
a sample of our dataset to get a smaller sample of the data of size 20 and 30 in
each group. Running both a t-test and a permutation test on this sample of the
data, we can see that we do not get a permutation distribution that matches
the (roughly) N(0,1) we use for the t-test.

## pvalue permutation= 0.4446

## pvalue t.test= 0.394545

Question: What different conclusions do you get from the two tests with
these smaller datasizes?
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Transformations

We saw that skewed data could be problematic in visualization of the data,
e.g. in boxplots, and transformations are helpful in this setting. Transformations
can also be helpful for applying parametric tests. They can often allow the
parametric t-test to work better for smaller datasets.

If we compare both the permutation test and the t-test on log-transformed data,
then even with the smaller sample sizes the permutation distribution looks much
closer to the t-distribution.

## pvalue permutation= 0.4446

## pvalue t.test= 0.3261271

Question: Why didn’t the p-value for the permutation test change?

Question: What does it mean for my null hypothesis to transform to the
log-scale? Does this make sense?

3.4.7 Why parametric models?

We do the comparison of the permutation test to the parametric t-test not to
encourage the use of the the t-test in this setting – the data, even after transfor-
mation, is pretty skewed and there’s no reason to not use the permutation test
instead. The permutation test will give pretty similar answers regardless of the
transformation7 and is clearly indicated here.

7In fact, if we were working with the difference in the means, rather than the t-statistics,
which estimates the variance, the permutation test would give exactly the same answer since
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This exercise was to show the use and limits of using the parametric tests, and
particularly transformations of the data, in an easy setting. Historically, para-
metric t-tests were necessary in statistics because there were not computers to
run permutation tests. That’s clearly not compelling now! However, it remains
that parametric tests are often easier to implement (one-line commands in R,
versus writing a function), and you will see parametric tests frequently (even
when resampling methods like permutation tests and bootstrap would be more
justifiable).

The take-home lesson here regarding parametric tests is that when there are
large sample sizes, parametric tests can overcome violations of their assump-
tions8 so don’t automatically assume parametric tests are completely wrong to
use. But a permutation test is the better all-round tool for this question: it is
has more minimal assumptions, and can look at how many different statistics
we can use.

There are also some important reasons to learn about t-tests, however, beyond
a history lesson. They are the easiest example of a parameteric test, where
you make assumptions about the distribution your data (i.e. 𝑋1, … , 𝑋𝑛1

and
𝑌1, … , 𝑌𝑛2

are normally distributed). Parametric tests generally are very im-
portant, even with computers. Parametric models are particularly helpful for
researchers in data science for the development of new methods, particularly in
defining good test statistics, like 𝑇 .

Parametric models are also useful in trying to understand the limitations of
a method, mathematically. We can simulate data under different models to
understand how a statistical method behaves.

There are also applications where the ideas of bootstrap and permutation tests
are difficult to apply. Permutation tests, in particular, are quite specific. Boot-
strap methods, which we’ll review in a moment, are more general, but still are
not always easy to apply in more complicated settings. A goal of this class is to
make you comfortable with parametric models (and their accompanying tests),
in addition to the resampling methods you’ve learned.

3.5 Digging into Hypothesis tests

Let’s break down some important concepts as to what makes a test. Note that
all of these concepts will apply for any hypothesis test.

1. A null hypothesis regarding a particular feature of the data
2. A test statistic for which extreme values indicates less correspondence with

the null hypothesis
3. An assumption of how the data was generated under the null hypothesis

the log is a monotone transformation.
8At least those tests based on the central limit theorem!
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4. The distribution of the test statistic under the null hypothesis.

As we’ve seen, different tests can be used to answer the same basic “null” hy-
pothesis – are the two groups “different”? – but the specifics of how that null
is defined can be quite different. For any test, you should be clear as to what
the answer is to each of these points.

3.5.1 Significance & Type I Error

The term significance refers to measuring how incompatible the data is with
the null hypothesis. There are two important terminologies that go along with
assessing significance.

p-values You often report a p-value to quantify how unlikely the data is under
the null.

Decision to Reject/Not reject Make a final decision as to whether the null
hypothesis was too unlikely to have reasonably created the data we’ve seen
– either reject the null hypothesis or not.

We can just report the p-value, but it is common to also make an assessment
of the p-value and give a final decision as well. In this case we pick a cutoff,
e.g. p-value of 0.05, and report that we reject the null.

You might see sentences like “We reject the null at level 0.05.” The level chosen
for a test is an important concept in hypothesis testing and is the cutoff value
for a test to be significant. In principle, the idea of setting a level is that it is a
standard you can require before declaring significance; in this way it can keep
researchers from creeping toward declaring significance once they see the data
and see they have a p-value of 0.07, rather than 0.05. However, in practice a
fixed cutoff value can have the negative result of encouraging researchers to fish
in their data until they find something that has a p-value less than 0.05.

Commonly accepted cutoffs for unlikely events are 0.05 or 0.01, but these values
are too often considered as magical and set in stone. Reporting the actual p-
value is more informative than just saying yes/no whether you reject (rejecting
with a p-value of 0.04 versus 0.0001 tells you something about your data).

More about the level

Setting the level of a test defines a repeatable procedure: “reject if p-value is
< 𝛼”. The level of the test actually reports the uncertainity in this procedure.
Specifically, with any test, you can make two kinds of mistakes:

• Reject the null when the null is true (Type I error)
• Not reject the null when the null is in fact not true (Type II error)

Then the level of a decision is the probability of this procedure making a type
I error: if you always reject at 0.05, then 5% of such tests will wrongly reject
the null hypothesis when in fact the null is true is true.
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Note that this is no different in concept that our previous statement saying that
a p-value is the likelihood under the null of an event as extreme as what we
observed. However, it does a quantify how willing you are to making Type I
Error in setting your cutoff value for decision making.

3.5.2 Type I Error & All Pairwise Tests

Let’s make the importance of accounting and measuring Type I error more
concrete. We have been considering only comparing the carriers United and
American. But in fact there are 10 airlines.

We might want to compare all of them, in other words run a hypothesis test on
each pair of carriers. That’s a hypothesis test for each pair of airlines:

## number of pairs: 45

That starts to be a lot of tests. So for speed purposes in class, I’ll use the t-test
to illustrate this idea and calculate the t-statistic and its p-value for every pair
of airline carriers (with our transformed data):

## [1] 2 45

## statistic.t p.value
## AA-AS 1.1514752 0.2501337691
## AA-B6 -3.7413418 0.0002038769
## AA-DL -2.6480549 0.0081705864
## AA-F9 -0.3894014 0.6974223534
## AA-HA 3.1016459 0.0038249362
## AA-OO -2.0305868 0.0424142975

## statistic.t p.value
## AA-AS 1.1514752 0.2501337691
## AA-B6 -3.7413418 0.0002038769
## AA-DL -2.6480549 0.0081705864
## AA-F9 -0.3894014 0.6974223534
## AA-HA 3.1016459 0.0038249362
## AA-OO -2.0305868 0.0424142975

## Number found with p-value < 0.05: 26 ( 0.58 proportion of tests)
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What does this actually mean? Is this a lot to find significant?

Roughly, if each of these tests has level 0.05, then even if none of the pairs
are truly different from each other, I might expect on average around 2 to be
rejected at level 0.05 just because of variation in sampling.9 This is the danger
in asking many questions from your data – something is likely to come up just
by chance.10

We can consider this by imagining what if I scramble up the carrier labels –
randomly assign a carrier to a flight. Then I know there shouldn’t be any true
difference amongst the carriers. I can do all the pairwise tests and see how many
are significant.

## Number found with p-value < 0.05: 6 ( 0.13 proportion)

9In fact, this is not an accurate statement because these tests are reusing the same data,
so the data in each test are not independent, and the probabilities don’t work out like that.
But it is reasonable for understanding the concepts here.

10Indeed this true of all of science, which relies on hypothesis testing, so one always has to
remember the importance of the iterative process of science to re-examine past experiments.
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Question: What does this suggest to you about the actual data?

Multiple Testing

Intuitively, we consider that if we are going to do all of these tests, we should
have a stricter criteria for rejecting the null so that we do not routinely find
pairwise differences when there are none.

Question: Does this mean the level should be higher or lower to get a
‘stricter’ test? What about the p-value?

Making such a change to account for the number of tests considered falls under
the category of multiple testing adjustments, and there are many different
flavors beyond the scope of the class. Let’s consider the most widely known
correction: the Bonferroni correction.

Specifically, say we will quantify our notion of stricter to require “of all the
tests I ran, there’s only a 5% chance of a type I error”. Let’s make this a precise
statement. Suppose that of the 𝐾 tests we are considering, there are 𝑉 ≤ 𝐾
tests that are type I errors, i.e. the null is true but we rejected. We will define
our cummulate error rate across the set of 𝐾 tests as

𝑃(𝑉 ≥ 1)

So we if we can guarantee that our testing procedure for the set of 𝐾 tests has
𝑃(𝑉 ≥ 1) ≤ 𝛾 we have controlled the family-wise error rate to level 𝛾.

How to control the family-wise error rate?
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We can do a simple correction to our 𝐾 individual tests to ensure 𝑃(𝑉 ≥ 1) ≤ 𝛾.
If we lower the level 𝛼 we require in order to reject 𝐻0, we will lower our
chance of a single type I error, and thus also lowered our family-wise error
rate. Specifically, if we run the 𝐾 tests and set the individual level of each
individualtest to be 𝛼 = 𝛾/𝐾, then we will guarantee that the family-wise error
rate is no more than 𝛾.
In the example of comparing the different airline carriers, the number of tests
is 45. So if we want to control our family-wise error rate to be no more than
0.05, we need each individual tests to reject only with 𝛼 = 0.0011.
## Number found significant after Bonferonni: 16

## Number of shuffled differences found significant after Bonferonni: 0

If we reject each tests only if

𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 = 𝛾/𝐾

, then we can equivalently say we only reject if

𝐾 𝑝 − 𝑣𝑎𝑙𝑢𝑒
≤ 𝛾

We can therefore instead think only about 𝛾 (e.g. 0.05), and create adjusted
p-values, so that we can just compare our adjusted p-values directly to 𝛾. In
this case if our standard (single test) p-value is 𝑝, we have

Bonferroni adjusted p-values = 𝑝 × 𝐾

## statistic.t p.value p.value.adj
## AA-AS 1.1514752 0.2501337691 11.256019611
## AA-B6 -3.7413418 0.0002038769 0.009174458
## AA-DL -2.6480549 0.0081705864 0.367676386
## AA-F9 -0.3894014 0.6974223534 31.384005904
## AA-HA 3.1016459 0.0038249362 0.172122129
## AA-OO -2.0305868 0.0424142975 1.908643388

## statistic.t p.value p.value.adj
## AA-AS -1.3008280 0.19388985 8.725043
## AA-B6 0.5208849 0.60264423 27.118990
## AA-DL -2.0270773 0.04281676 1.926754
## AA-F9 -0.1804245 0.85698355 38.564260
## AA-HA -1.5553127 0.13030058 5.863526
## AA-OO -1.3227495 0.18607903 8.373556

Notice some of these p-values are greater than 1! So in fact, we want to multiply
by 𝐾, unless the value is greater than 1, in which case we set the p-value to be
1.

Bonferroni adjusted p-values = 𝑚𝑖𝑛(𝑝 × 𝐾, 1)
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## statistic.t p.value p.value.adj p.value.adj.final
## AA-AS 1.1514752 0.2501337691 11.256019611 1.000000000
## AA-B6 -3.7413418 0.0002038769 0.009174458 0.009174458
## AA-DL -2.6480549 0.0081705864 0.367676386 0.367676386
## AA-F9 -0.3894014 0.6974223534 31.384005904 1.000000000
## AA-HA 3.1016459 0.0038249362 0.172122129 0.172122129
## AA-OO -2.0305868 0.0424142975 1.908643388 1.000000000

Now we plot these adjusted values, for both the real data and the data I created
by randomly scrambling the labels. I’ve colored in red those tests that become
non-significant after the multiple testing correction.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

3.6 Confidence Intervals

Another approach to inference is with confidence intervals. Confidence intervals
give a range of values (based on the data) that are most likely to overlap the
true parameter. This means confidence intervals are only appropriate when
we are focused on estimation of a specific numeric feature of a distribution (a
parameter of the distribution), though they do not have to require parametric
models to do so.11

Form of a confidence interval
11We can test a null hypothesis without having a specific parameter of interest that we are

estimating. For example, the Chi-squared test that you may have seen in an introductory
statistic class tests whether two discrete distributions are independent, but there is no single
parameter that we are estimating.
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Confidence intervals also do not rely on a specific null hypothesis; instead they
give a range of values (based on the data) that are most likely to overlap the
true parameter. Confidence intervals take the form of an interval, and are paired
with a confidence, like 95% confidence intervals, or 99% confidence intervals.

Question: Which should should result in wider intervals, a 95% or 99%
interval?

General definition of a Confidence interval

A 95% confidence interval for a parameter 𝜃 is a interval (𝑉1, 𝑉2) so that

𝑃(𝑉1 ≤ 𝜃 ≤ 𝑉2) = 0.95.

Notice that this equation looks like 𝜃 should be the random quantity, but 𝜃 is
a fixed (and unknown) value. The random values in this equation are actually
the 𝑉1 and 𝑉2 – those are the numbers we estimate from the data. It can be
useful to consider this equation as actually,

𝑃(𝑉1 ≤ 𝜃 and 𝑉2 ≥ 𝜃) = 0.95,

to emphasize that 𝑉1 and 𝑉2 are the random variables in this equation.

3.6.1 Quantiles

Without even going further, it’s clear we’re going to be inverting our probability
calculations, i.e. finding values that give us specific probabilities. For example,
you should know that for 𝑋 distributed as a normal distribution, the probability
of 𝑋 being within about 2 standard deviations of the mean is 0.95 – more
precisely 1.96 standard deviations.

Figuring out what number will give you a certain probability of being less than
(or greater than) that value is a question of finding a quantile of the distribu-
tion. Specifically, quantiles tell you at what point you will have a particular
probability of being less than that value. Precisely, if 𝑧 is the 𝛼 quantile of a
distribution, then

𝑃(𝑋 ≤ 𝑧) = 𝛼.
We will often write 𝑧𝛼 for the 𝛼 quantile of a distribution.

So if 𝑋 is distributed as a normal distribution and 𝑧 is a 0.25 quantile of a
normal distribution,

𝑃(𝑋 ≤ 𝑧) = 0.25.
𝑧 is a 0.90 quantile of a normal if 𝑃(𝑋 ≤ 𝑧) = 0.90, and so forth

These numbers can be looked up easily in R for standard distributions.
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qnorm(0.2, mean = 0, sd = 1)

## [1] -0.8416212
qnorm(0.9, mean = 0, sd = 1)

## [1] 1.281552
qnorm(0.0275, mean = 0, sd = 1)

## [1] -1.918876

Question: What is the probability of being between -0.84 and 1.2815516
in a 𝑁(0, 1)?

3.7 Parametric Confidence Intervals

This time we will start with using parametric models to create confidence inter-
vals. We will start with how to construct a parametric CI for the mean of single
group.

3.7.1 Confidence Interval for Mean of One group

As we’ve discussed many times, a SRS will have a sampling distribution that
is roughly a normal distribution (the Central Limit Theorem). Namely, that if
𝑋1, … , 𝑋𝑛 are a i.i.d from a distribution with mean 𝜇 and variance 𝜎2, then

̂𝜇 = �̄� = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖 will have a roughly normal distribution

𝑁(𝜇, 𝜎2

𝑛 ).

Let’s assume we know 𝜎2 for now. Then a 95% confidence interval can be
constructed by

�̄� ± 1.96 𝜎√𝑛
More generally, we can write this as

�̄� ± 𝑧𝑆𝐷(�̄�)

Where did 𝑧 = 1.96 come from?

Note for a r.v. 𝑌 ∼ 𝑁(𝜇, 𝜎2) distribution, the value 𝜇 − 1.96
√

𝜎2 is the 0.025
quantile of the distribution, and 𝜇 + 1.96

√
𝜎2 is the 0.975 quantile of the distri-

bution, so the probability of 𝑌 being between these two values is 0.95. By the
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CLT we’ll assume �̄� ∼ 𝑁(𝜇, 𝜎2
𝑛 ), so the the probability that �̄� is within

𝜇 ± 1.96
√

𝜎2

is 95%. So it looks like we are just estimating 𝜇 with �̄�.

That isn’t quite accurate. What we are saying is that

𝑃(𝜇 − 1.96√𝜎2

𝑛 ≤ �̄� ≤ 𝜇 + 1.96√𝜎2

𝑛 ) = 0.95

and we really need is to show that

𝑃(�̄� − 1.96√𝜎2

𝑛 ≤ 𝜇 ≤ �̄� + 1.96√𝜎2

𝑛 ) = 0.95

to have a true 0.95 confidence interval. But we’re almost there.

We can invert our equation above, to get

0.95 = 𝑃(𝜇 − 1.96√𝜎2

𝑛 ≤ �̄� ≤ 𝜇 + 1.96√𝜎2

𝑛 )

= 𝑃(−1.96√𝜎2

𝑛 ≤ �̄� − 𝜇 ≤ 1.96√𝜎2

𝑛 )

= 𝑃(−1.96√𝜎2

𝑛 − �̄� ≤ −𝜇 ≤ 1.96√𝜎2

𝑛 − �̄�)

= 𝑃(1.96√𝜎2

𝑛 + �̄� ≥ 𝜇 ≥ −1.96√𝜎2

𝑛 + �̄�)

= 𝑃(�̄� − 1.96√𝜎2

𝑛 ≤ 𝜇 ≤ �̄� + 1.96√𝜎2

𝑛 )

General equation for CI

Of course, we can do the same thing for any confidence level we want. If we
want a (1 − 𝛼) level confidence interval, then we take

�̄� ± 𝑧𝛼/2𝑆𝐷(�̄�)

Where 𝑧𝛼/2 is the 𝛼/2 quantile of the 𝑁(0, 1).

In practice, we do not know 𝜎 so we don’t know 𝑆𝐷(�̄�) and have to use �̂�,
which mean that we need to use the quantiles of a 𝑡-distribution with 𝑛 − 1
degrees of freedom for smaller sample sizes.

Example in R
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For the flight data, we can get a confidence interval for the mean of the United
flights using the function t.test again. We will work on the log-scale, since
we’ve already seen that makes more sense for parametric tests because our data
is skewed:
t.test(log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"] + addValue))

##
## One Sample t-test
##
## data: log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier == "UA"] + addValue)
## t = 289.15, df = 2964, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.236722 3.280920
## sample estimates:
## mean of x
## 3.258821

Notice the result is on the (shifted) log scale! Because this is a monotonic
function, we can invert this to see what this implies on the original scale:
logT <- t.test(log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"] + addValue))
exp(logT$conf.int) - addValue

## [1] 3.450158 4.600224
## attr(,"conf.level")
## [1] 0.95

3.7.2 Confidence Interval for Difference in the Means of
Two Groups

Now lets consider the average delay time between the two airlines. Then the
parameter of interest is the difference in the means:

𝛿 = 𝜇𝑈𝑛𝑖𝑡𝑒𝑑 − 𝜇𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛.
Using the central limit theorem again,

�̄� − ̄𝑌 ∼ 𝑁(𝜇1 − 𝜇2, 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

)

You can do the same thing for two groups in terms of finding the confidence
interval:

𝑃((�̄� − ̄𝑌 ) − 1.96√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

≤ 𝜇1 − 𝜇2 ≤ (�̄� − ̄𝑌 ) + 1.96√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

) = 0.95
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Then a 95% confidence interval for 𝜇1 − 𝜇2 if we knew 𝜎2
1 and 𝜎2

2 is

�̄� − ̄𝑌 ± 1.96√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

Estimating the variance

Of course, we don’t know 𝜎2
1 and 𝜎2

2, so we will estimate them, as with the
t-statistic. We know from our t-test that if 𝑋1, … , 𝑋𝑛1

and 𝑌1, … , 𝑌𝑛2
are

normally distributed, then our t-statistic,

𝑇 = |�̄� − ̄𝑌 |

√ ̂𝜎1
2

𝑛1
+ ̂𝜎2

2

𝑛2

.

has actually a t-distribution.

How does this get a confidence interval (T is not an estimate of 𝛿)? We can
use the same logic of inverting the equations, only with the quantiles of the
t-distribution to get a confidence interval for the difference.

Let 𝑡0.025 and 𝑡0.975 be the quantiles of the t distribution. Then,

𝑃((�̄� − ̄𝑌 ) − 𝑡0.975√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

≤ 𝜇1 − 𝜇2 ≤ (�̄� − ̄𝑌 ) − 𝑡0.025√𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

) = 0.95

Of course, since the 𝑡 distribution is symmetric, −𝑡0.025 = 𝑡0.975.

Question: Why does symmetry imply that −𝑡0.025 = 𝑡0.975?

We’ve already seen that for reasonably moderate sample sizes, the difference
between the normal and the t-distribution is not that great, so that in most
cases it is reasonable to use the normal-based confidence intervals only with �̂�2

1
and �̂�2

2. This is why ±2 standard errors is such a common mantra for reporting
estimates.

2-group test in R

We can get the confidence interval for the difference in our groups using t.test
as well.
logUA <- log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"UA"] + addValue)
logAA <- log(flightSFOSRS$DepDelay[flightSFOSRS$Carrier ==

"AA"] + addValue)
t.test(logUA, logAA)
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##
## Welch Two Sample t-test
##
## data: logUA and logAA
## t = 5.7011, df = 1800.7, p-value = 1.389e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.07952358 0.16293414
## sample estimates:
## mean of x mean of y
## 3.258821 3.137592

Question: What is the problem from this confidence interval on the log-
scale that we didn’t have before when we were looking at a single group?

3.8 Bootstrap Confidence Intervals

The Setup

Suppose we are interested instead in whether the median of the two groups is
the same.

Question: Why might that be a better idea than the mean?

Or, alternatively, as we saw, perhaps a more relevant statistic than either the
mean or the median would be the difference in the proportion greater than 15
minutes late. Let 𝜃𝑈𝑛𝑖𝑡𝑒𝑑, and 𝜃𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 be the true proportions of the two
groups, and now

𝛿 = 𝜃𝑈𝑛𝑖𝑡𝑒𝑑 − 𝜃𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛.

Question: The sample statistic estimating 𝛿 would be what?

To be able to do hypothesis testing on other statistics, we need the distribution
of our test statistic to either construct confidence intervals or the p-value. In
the t-test, we used the central limit theorem that tells us the difference in
the means is approximately normal. We can’t use the CLT theory for the
median, however, because the CLT was for the difference in the means of the
groups. We would need to have new mathematical theory for the difference
in the medians or proportions. In fact such theory exists (and the proportion
is actually a type of mean, so we can in fact basically use the t-test, which
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some modifications). Therefore, many other statistics can also be handled with
parametric tests as well, but each one requires a new mathematical theory to
get the null distribution. More importantly, when you go with statistics that
are beyond the mean, the mathematics often require more assumptions about
the data-generating distribution – the central limit theorem for the mean works
for most any distribution you can imagine (with large enough sample size), but
that’s a special property of the mean. Furthermore, if you have an uncommon
statistic, the mathematical theory for the statistic may not exist.

Another approach is to try to estimate the distribution of our test-statistic from
our data. This is what the bootstrap does. We’ve talked about estimating the
distribution of our data in Chapter 2, but notice that estimating the distribution
of our data is a different question than estimating the distribution of a summary
statistic. If our data is i.i.d. from the same distribution, then we have 𝑛 ob-
servations from the distribution from which to estimate the data distribution.
For our test statistic (e.g. the median or mean) we have only 1 value. We can’t
estimate a distribution from a single value!

The bootstrap is a clever way of estimating the distribution of most any statistic
from the data.

3.8.1 The Main Idea: Create many datasets

Let’s step back to some first principles. Recall for a confidence interval based
on my statistic 𝛿, I would like to find numbers 𝑤1 and 𝑤2 so that

0.95 = 𝑃( ̂𝛿 − 𝑤1 ≤ 𝛿 ≤ ̂𝛿 + 𝑤2)

so that I would have a CI (𝑉1 = ̂𝛿 − 𝑤1, 𝑉2 = ̂𝛿 + 𝑤2).

Note that this is the same as

𝑃(𝛿 − 𝑤2 ≤ ̂𝛿 ≤ 𝛿 + 𝑤1)

In other words, if I knew ̂𝛿 had following distribution/density, I could find
quantiles that gave me my 𝑤1,𝑤2.
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In order to get the distribution of ̂𝛿, we would like to be able to do is collect
multiple data sets, and for each data set calculate our ̂𝛿. This would give us
a collection of ̂𝛿 from which we could estimate the distribution of ̂𝛿. More
formally, if we knew 𝐹, 𝐺 – the distributions of the data in each group – we
could simulate datasets from each distribution, calculate ̂𝛿, and repeat this over
and over. From each of these multiple datasets, we would calculate ̂𝛿, which
would give us a distribution of ̂𝛿. This process is demonstrated in this figure:

But since we have only one data set, we only see one ̂𝛿, so none of this is an
option.

What are our options? We’ve seen one option is to use parametric methods,
where the distribution of ̂𝛿 is determined mathematically (but is dependent on
our statistic 𝛿 and often with assumptions about the distributions 𝐹 and 𝐺).
The other option we will discuss, the bootstrap, tries instead to create lots of
datasets with the computer.

The idea of the bootstrap is if we can estimate the distributions 𝐹 and 𝐺 with
̂𝐹 and ̂𝐺, we can create new data sets by simulating data from ̂𝐹 and ̂𝐺. So we
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can do our ideal process described above, only without the true 𝐹 and 𝐺, but
with an estimate of them. In other words, while what we need is the distribution
of ̂𝛿 from many datasets from 𝐹, 𝐺, instead we will create many datasets from

̂𝐹 , ̂𝐺 as an approximation.

Here is a visual of how we are trying to replicate the process with our bootstrap
samples:

How can we estimate ̂𝐹 , ̂𝐺? Well, that’s what we’ve discussed in the Chapter
2. Specifically, when we have a i.i.d sample, Chapter 2 went over methods of
estimating the unknown true distribution 𝐹 , and estimating probabilities from
𝐹 . What we need here is a simpler question – how to draw a sample from an
estimate of ̂𝐹 , which we will discuss next.

Assume we get a i.i.d. sample from 𝐹 and 𝐺. We’ve previously estimated for
example, the density of our distribution (which then defines the entire distri-
bution). But right now, we really need to be able to draw a random sample
𝑋1, … , 𝑋𝑛1

and 𝑌1, … , 𝑌𝑛2
from our estimates of the distribution so we can

calculate a 𝛿. Our density estimate doesn’t give us a way to do that.

So we are going to think how can we get an estimate of 𝐹 and 𝐺 that we can get
a sample from? We’ve seen how a full census of our data implies a distribution, if
we assume random independent draws from that full data. In other words, a data
set combined with a mechanism for drawing samples defines a distribution, with
probabilities, etc. So our observed sample gives us an estimated distribution
(also called the empirical distribution) ̂𝐹 and ̂𝐺 from which we can draw
samples.

Question: How would you make a i.i.d. sample from your data?

Let 𝑋∗
1, … , 𝑋∗

𝑛1
be i.i.d. draws from my observed data. This is called a boot-
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strap sample. I can calculate 𝛿 from this data, call it ̂𝛿∗. Unlike the ̂𝛿 from
my actual data, I can repeat the process and calculate many ̂𝛿∗ values. If I do
this enough I have a distribution of ̂𝛿∗ values, which we will call the bootstrap
distribution of 𝛿. So the bootstrap distribution of ̂𝛿 is the distribution of ̂𝛿 if
the data was drawn from ̂𝐹 and ̂𝐺 distribution.

Another funny thing is that ̂𝛿∗ is an estimate of ̂𝛿, i.e. if I didn’t know ̂𝐹 , ̂𝐺 and
only saw the bootstrap sample 𝑋∗

1, … , 𝑋∗
𝑛1

and 𝑌 ∗
1 , … , 𝑌 ∗

𝑛2
, ̂𝛿∗ is an estimate of

̂𝛿. Of course I don’t need to estimate ̂𝛿 – I know them from my data! But my
bootstrap sample can give me an idea of how good of an estimate I can expect

̂𝛿 to be. If the distribution of ̂𝛿∗ shows that we are likely to get estimates of ̂𝛿
is far from ̂𝛿, then it is likely that ̂𝛿 is similarly far from the unknown 𝛿. It’s
when we have simulated data to see what to expect the behavior of our statistic
compared to the truth (only now our observed data and ̂𝛿 are our “truth”).

Back to Confidence Intervals

If draw many bootstrap samples, I can get the following distribution of ̂𝛿∗ (cen-
tered now at ̂𝛿!):

So ̂𝛿∗ is not a direct estimate of the distribution of ̂𝛿! The true distribution of
̂𝛿 should be centered at 𝛿 (and we know ̂𝛿 ≠ 𝛿 because of randomness). So the

bootstrap distribution is NOT the distribution of ̂𝛿
But if the distribution of ̂𝛿∗ around ̂𝛿 is like that of ̂𝛿 around 𝛿, then that gives
me useful information about how likely it is that my ̂𝛿 is far away from the true
𝛿, e.g.

𝑃(| ̂𝛿 − 𝛿| > 1) ≈ 𝑃(| ̂𝛿∗ − ̂𝛿| > 1)

Or more relevant for a confidence interval, I could find 𝑊 ∗
1 and 𝑊 ∗

2 so that

0.95 = 𝑃( ̂𝛿 − 𝑊 ∗
2 ≤ ̂𝛿∗ ≤ ̂𝛿 + 𝑊 ∗

1 )
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Once I found those values, I could use the same 𝑊 ∗
1 , 𝑊 ∗

2 to approximate that

0.95 ≈ 𝑃 (𝛿 − 𝑊 ∗
2 ≤ ̂𝛿 ≤ 𝛿 + 𝑊 ∗

1 ) = 𝑃( ̂𝛿 − 𝑊 ∗
1 ≤ 𝛿 ≤ ̂𝛿 + 𝑊 ∗

2 )

This gives us a confidence interval ( ̂𝛿−𝑊 ∗
1 , ̂𝛿+𝑊 ∗

2 ) which is called the bootstrap
confidence interval for 𝛿.
In short, we don’t need that ̂𝛿∗ approximates the distribution of ̂𝛿. We just want
that the distance of ̂𝛿∗ from it’s true generating value ̂𝛿 replicate the distance
of ̂𝛿 from the (unknown) true generating value 𝛿.

3.8.2 Implementing the bootstrap confidence intervals

What does it actually mean to resample from ̂𝐹? It means to take a sample
from ̂𝐹 just like the kind of sample we took from the actual data generating
process, 𝐹 .

Specifically in our two group setting, say we assume we have a i.i.d sample
𝑋1, … , 𝑋𝑛1

, 𝑌1, … , 𝑌𝑛2
from an unknown distributions 𝐹 and 𝐺.

Question: What does this actually mean? Consider our airline data; if
we took the full population of airline data, what are we doing to create a
i.i.d sample?

Then to recreate this we need to do the exact same thing, only from our sample.
Specifically, we resample with replacement to get a single bootstrap sample of the
same size consisting of new set of samples, 𝑋∗

1, … , 𝑋∗
𝑛1

and 𝑌 ∗
1 , … , 𝑌 ∗

𝑛2
. Every

value of 𝑋∗
𝑖 and 𝑌 ∗

𝑖 that I see in the bootstrap sample will be a value in my
original data.

Question: Moreover, some values of my data I will see more than once,
why?

From this single bootstrap sample, we can recalculate the difference of the me-
dians on this sample to get ̂𝛿∗.
We do this repeatedly, and get a distribution of ̂𝛿∗; specifically if we repeat this
𝐵 times, we will get ̂𝛿∗

1, … , ̂𝛿∗
𝐵. So we will now have a distribution of values for

̂𝛿∗.

We can apply this function to the flight data, and examine our distribution of
̂𝛿∗.
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To construct a confidence interval, we use the 0.025 and 0.975 quantiles as the
limits of the 95% confidence interval.12 We apply it to our flight data set to get
a confidence interval for the difference in proportion of late or cancelled flights.

Question: How do you interpret this confidence interval?

3.8.3 Assumptions: Bootstrap

Assumption: Good estimates of ̂𝐹 , ̂𝐺

A big assumption of the bootstrap is that our sample distribution ̂𝐹 , ̂𝐺 is a
good estimate of 𝐹 and 𝐺. We’ve already seen that will not necessarily the case.

12There are many different strategies for calculating a bootstrap CI from the distribution
of ̂𝛿∗; this method called the percentile method and is the most common and widespread.
It doesn’t exactly correspond to the 𝑣1, 𝑣2 strategy from above – known as using a pivotal
statistic. If it looks like the 𝑣1, 𝑣2 method is backward compared to the percentile method,
it pretty much is! But both methods are legitimate methods for creating bootstrap intervals
and we focus on the percentile method because of it’s simplicity and wider applicability.
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Here are some examples of why that might fail:

• Sample size 𝑛1/𝑛2 is too small
• The data is not i.i.d sample (or SRS)

Assumption: Data generation process

Another assumption is that our method of generating our data 𝑋∗
𝑖 , and 𝑌 ∗

𝑖
matches the way 𝑋𝑖 and 𝑌𝑖 were generated from 𝐹, 𝐺. In particular, in the
bootstrap procedure above, we are assuming that 𝑋𝑖 and 𝑌𝑖 are i.i.d from 𝐹
and 𝐺 (i.e. a SRS with replacement).

Assumption: Well-behaved test statistic

We also need that the parameter 𝜃 and the estimate ̂𝜃 to be well behaved in
certain ways

• ̂𝜃 needs to be an unbiased estimate of 𝜃, meaning across many samples,
the average of the ̂𝜃 is equal to the true parameter 𝜃 13

• 𝜃 is a function of 𝐹 and 𝐺, and we need that the value of 𝜃 changes
smoothly as we change 𝐹 and 𝐺. In other words if we changed from 𝐹
to 𝐹 ′, then 𝜃 would change to 𝜃′; we want if our new 𝐹 ′ is very “close”
to 𝐹 , then our new 𝜃′ would be very close to 𝜃. This is a pretty math-
ematical requirement, and requires a precise definition of ”close” for two
distributions that is not too important for this class to understand.

But here’s an example to make it somewhat concrete: if the parameter 𝜃 you
are interested in is the maximum possible value of a distribution 𝐹 , then 𝜃 does
NOT change smoothly with 𝐹 . Why? because you can choose distributions 𝐹 ′

that are very close to 𝐹 in every reasonable way to compare two distributions,
but their maximum values 𝜃 and 𝜃′ are very far apart.14

Another bootstrap confidence interval (Optional)

We can actually use the bootstrap to calculate a confidence interval similarly to
that of the normal distribution based on estimating the distribution of ̂𝛿 − 𝛿.
Notice with the previous calculation for �̄�, if I know

0.95 = 𝑃(1.96√𝜎2

𝑛 ≤ �̄� − 𝜇 ≤ 1.96√𝜎2

𝑛 )

Then I can invert to get

0.95 = 𝑃(�̄� − 1.96√𝜎2

𝑛 ≤ 𝜇 ≤ �̄� − 1.96√𝜎2

𝑛 )

13There are methods for accounting for a small amount of bias with the bootstrap, but if
the statistic is wildly biased away from the truth, then the bootstrap will not work.

14This clearly assumes what is a “reasonable” definition of ”close” between distributions
that we won’t go into right now.
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So more generally, suppose we have points 𝑧0.025 and 𝑧0.975 so that

0.95 = 𝑃(𝑧0.025 ≤ ̂𝛿 − 𝛿 ≤ 𝑧0.975)

e.g. the 0.025 and 0.975 quantiles of ̂𝛿 − 𝛿. Then I can invert to get

0.95 = 𝑃( ̂𝛿 − 𝑧0.975 ≤ 𝛿 ≤ ̂𝛿 − 𝑧0.025)

So if I can get the quantiles of ̂𝛿 − 𝛿, I can make a confidence interval.

So we could use the bootstrap to get estimates of the distribution of ̂𝛿−𝛿 instead
of the distribution of ̂𝛿 and use the quantiles of ̂𝛿 − 𝛿 to get confidence intervals
that are ( ̂𝛿 −𝑧0.975, ̂𝛿−𝑧0.025). This actually gives a different confidence interval,
particularly if the distribution of ̂𝛿 is not symmetric. The earlier method we
talked about is called the percentile method, and is most commonly used, partly
because it’s easier to generalize than this method.15

3.9 Thinking about confidence intervals

Suppose you have a 95% confidence interval for 𝛿 given by (.02, .07).

Question: What is wrong with the following statements regarding this
confidence interval? - 𝛿 has a 0.95 probability of being between (.02, .07)
- If you repeatedly resampled the data, the difference 𝛿 would be within
(.02, .07) 95% of the time.

Confidence Intervals or Hypothesis Testing?

Bootstrap inference via confidence intervals is more widely applicable than per-
mutation tests we described above. The permutation test relied on being able
to simulate from the null hypothesis, by using the fact that if you detach the
data from their labels you can use resampling techniques to generate a null dis-
tribution. In settings that are more complicated than comparing groups, it can
be difficult to find this kind of trick.

Frequently, confidence intervals and hypothesis testing are actually closely inter-
twined, particularly for parametric methods. For example, for the parametric
test and the parametric confidence interval, they both relied on the distribution
of the same statistic, the t-statistic. If you create a 95% confidence interval, and
then decide to reject a specific null hypothesis (e.g. 𝐻0 ∶ 𝛿 = 0) only when it
does not fall within the confidence interval, then this will exactly correspond to

15If it looks like this method is backward compared to the percentile method, it pretty much
is! But both methods are legitimate methods for creating bootstrap intervals.
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a test with level 0.05. So the same notions of level, and type I error, also apply
to confidence intervals

Confidence intervals, on the other hand, give much greater interpretation and
understanding about the parameter.

3.9.1 Comparing Means: CI of means vs CI of difference

We have focused on creating a confidence interval of the difference (𝛿). Another
common strategy is to do a confidence interval of each mean, and compare them.

We can compare these two options using the t-statistic:

We see that their confidence intervals don’t overlap, and that the CI for the
difference in the means doesn’t overlap zero, so we draw the same conclusion in
our comparison, namely that the means are different.

However, this doesn’t have to be the case. Here’s some made-up data16:

16From https://statisticsbyjim.com/hypothesis-testing/confidence-intervals-compare-
means/

https://statisticsbyjim.com/hypothesis-testing/confidence-intervals-compare-means/
https://statisticsbyjim.com/hypothesis-testing/confidence-intervals-compare-means/
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What to think here? What is the right conclusion? The confidence interval for
the difference for the means corresponds to the test for the difference of the
means, which means that if the CI for 𝛿 doesn’t cover zero, then the correspond-
ing p-value from the t-test will be < 0.05. So this is the “right” confidence
interval for determining statistical significance.

Why does this happen?

Basically, with the t-test-based CI, we can examine this analytically (a big
advantage of parametric models).

In the first case, for a CI of the difference 𝛿 to be significantly larger than zero,
it means that the lower end of the CI for delta is greater than zero:

�̄� − ̄𝑌 > 1.96√�̂�2
1

𝑛1
+ �̂�2

2
𝑛2

Alternatively, if we create the two confidence intervals for �̄� and ̄𝑌 , separately,
to have them not overlap, we need that the lower end of the CI for 𝑋 be greater
than the upper end of the CI of 𝑌 :

�̄� − 1.96√�̂�2
1

𝑛1
> ̄𝑌 + 1.96√�̂�2

2
𝑛2

�̄� − ̄𝑌 > 1.96 ⎛⎜
⎝

√�̂�2
2

𝑛2
+ √�̂�2

1
𝑛1

⎞⎟
⎠

Note that these are not the same requirements. In particular,

√�̂�2
1

𝑛1
+ �̂�2

2
𝑛2

< ⎛⎜
⎝

√�̂�2
2

𝑛2
+ √�̂�2

1
𝑛1

⎞⎟
⎠

(take the square of both sides…).

So that means that the difference of the means doesn’t have to be as big for
CI based for 𝛿 to see the difference as for comparing the individual mean’s CI.
We know that the CI for 𝛿 is equivalent to a hypothesis test, so that means
that IF there is a difference between the individual CI means there is a signifi-
cant difference between the groups, but the converse is NOT true: there could
be significant differences between the means of the groups but the CI of the
individual means are overlapping.

Reality Check

However, note that the actual difference between the two groups in our toy
example is pretty small and our significance is pretty marginal. So it’s not such
a big difference in our conclusions after all.
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3.10 Revisiting pairwise comparisons

Just as with hypothesis testing, you can have multiple comparison problems
with confidence intervals. Consider our pairwise comparisons of the different
carriers. We can also create confidence intervals for them all. Again, we will
use the t-test on the log-differences to make this go quickly.

## mean.of.x mean.of.y lower upper
## AA-AS 3.086589 3.137592 -0.138045593 0.03603950
## AA-B6 3.289174 3.137592 0.071983930 0.23118020
## AA-DL 3.209319 3.137592 0.018600177 0.12485342
## AA-F9 3.164201 3.137592 -0.108192832 0.16141032
## AA-HA 2.943335 3.137592 -0.321473062 -0.06704092
## AA-OO 3.184732 3.137592 0.001615038 0.09266604

These confidence intervals suffer from the same problem as the p-values: even
if the null value (0) is true in every test, roughly 5% of them will happen to not
cover 0 just by chance.

So we can do bonferonni corrections to the confidence intervals. Since a 95%
confidence interval corresponds to a level 0.05 test, if we go to a 0.05/𝐾 level,
which is the bonferonni correction, that corresponds to a 100 ∗ (1 − 0.05/𝐾)%
confidence interval.
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TukeyHSD

In fact, as mentioned, there are many ways to do multiple testing corrections,
and Bonferonni is the simplest, yet often most crude correction. There is a
multiple testing correction just for pairwise comparisons that use the t-test,
called the Tukey HSD test.
tukeyCI <- TukeyHSD(aov(logDepDelay ~ Carrier, data = flightSFOSRS))
plot(tukeyCI, las = 2)

Let’s compare them side-by-side.
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Question: What differences do you see?

Which to use?

The TukeyHSD is a very specific correction – it is only valid for doing pairwise
comparisons with the t-test. Bonferonni, on the other hand, can be used with
any set of p-values from any test, e.g. permutation, and even if not all of the
tests are pairwise comparisons.
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Chapter 4

Curve Fitting

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11

Comparing groups evaluates how a continuous variable (often called the re-
sponse or independent variable) is related to a categorical variable. In our
flight example, the continuous variable is the flight delay and the categorical
variable is which airline carrier was responsible for the flight. We asked how did
the flight delay differ from one group to the next?

However, we obviously don’t want to be constrained to just categorical variables.
We want to be able to ask how a continuous variable affects another continuous
variable – for example how does flight delay differ based on the time of day?

In this chapter, we will turn to relating two continuous variables. We will review
the method that you’ve learned already – simple linear regression – and briefly
discuss inference in this scenario. Then we will turn to expanding these ideas
for more flexible curves than just a line.

4.1 Linear regression with one predictor

An example dataset

Let’s consider the following data collected by the Department of Education
regarding undergraduate institutions in the 2013-14 academic year ((https://
catalog.data.gov/dataset/college-scorecard)). The department of education col-
lects a great deal of data regarding the individual colleges/universities (including
for-profit schools). Let’s consider two variables, the tuition costs and the reten-
tion rate of students (percent that return after first year). We will exclude the
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https://catalog.data.gov/dataset/college-scorecard
https://catalog.data.gov/dataset/college-scorecard
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for-profit institutes (there aren’t many in this particular data set), and focus on
out-of-state tuition to make the values more comparable between private and
public institutions.
dataDir <- "../finalDataSets"
scorecard <- read.csv(file.path(dataDir, "college.csv"),

stringsAsFactors = FALSE)
scorecard <- scorecard[-which(scorecard$CONTROL ==

3), ]
xlab = "Out-of-state tuition fee"
ylab = "Full time student retention rate"
plot(scorecard[, c("TUITIONFEE_OUT", "RET_FT4")], xlab = xlab,

ylab = ylab)

Question: What do you observe in these relationships?

It’s not clear what’s going on with this observation with 0% of students returning
after the first year, but a 0% return rate is an unlikely value for an accreditated
institution and is highly likely to be an error. So for now we’ll drop that value.
This is not something we want to do lightly, and points to the importance of
having some understanding of the data – knowing that a priori 0% is a suspect
number, for example. But just looking at the plot, it’s not particularly clear that
0% is any more “outlying” than other points; we’re basing this on our knowledge
that 0% of students returning after the first year seems quite surprising. If we
look at the college (Pennsylvania College of Health Sciences), a google search
shows that it changed it’s name in 2013 which is a likely cause.
scorecard[scorecard[, "RET_FT4"] == 0, ]

## X INSTNM STABBR ADM_RATE_ALL SATMTMID
## 1238 5930 Pennsylvania College of Health Sciences PA 398 488
## SATVRMID SAT_AVG_ALL AVGFACSAL TUITFTE TUITIONFEE_IN TUITIONFEE_OUT
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## 1238 468 955 5728 13823 21502 21502
## CONTROL UGDS UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN
## 1238 2 1394 0.8364 0.0445 0.0509 0.0294 7e-04
## UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN INC_PCT_LO INC_PCT_M1 INC_PCT_M2
## 1238 0.0029 0.0014 0 0.0337 0.367788462 0.146634615 0.227163462
## INC_PCT_H1 INC_PCT_H2 RET_FT4 PCTFLOAN C150_4 mn_earn_wne_p10
## 1238 0.175480769 0.082932692 0 0.6735 0.6338 53500
## md_earn_wne_p10 PFTFAC
## 1238 53100 0.7564
scorecard <- scorecard[-which(scorecard[, "RET_FT4"] ==

0), ]
plot(scorecard[, c("TUITIONFEE_OUT", "RET_FT4")], xlab = xlab,

ylab = ylab)

Question: In the next plot, I do the same plot, but color the universities
by whether they are private or not (red are public schools). How does that
change your interpretation?
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This highlights why it is very important to use more than one variable in trying
to understand patterns or predict, which we will spend much more time on later
in the course. But for now we are going to focus on one variable analysis, so
lets make this a more valid exercise by just considering one or the other (public
or private). We’ll make two different datasets for this purpose, and we’ll mainly
just focus on private schools.
private <- subset(scorecard, CONTROL == 2)
public <- subset(scorecard, CONTROL == 1)

4.1.1 Estimating a Linear Model

These are convenient variables to consider the simplest relationship you can
imagine for the two variables – a linear one:

𝑦 = 𝛽0 + 𝛽1𝑥

Of course, this assumes there is no noise, so instead, we often write

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑒

where 𝑒 represents some noise that gets added to the 𝛽0 + 𝛽1𝑥; 𝑒 explains why
the data do not exactly fall on a line.1

We do not know 𝛽0 and 𝛽1. They are parameters of the model. We want to
estimate them from the data.

How to estimate the line

There are many possible lines, of course, even if we force them to go through the
middle of the data (e.g. the mean of x,y). In the following plot, we superimpose
a few “possible” lines for illustration, but any line is a potential line:

1It is useful to remember that adding noise is not the only option – this is a choice of a
model.
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How do we decide which line is best? A reasonable choice is one that makes
the smallest errors in predicting the response 𝑦. For each possible 𝛽0, 𝛽1 pair
(i.e. each line), we can calculate the prediction from the line,

̂𝑦(𝛽0, 𝛽1, 𝑥) = 𝛽0 + 𝛽1𝑥

and compare it to the actual observed 𝑦. Then we can say that the error in
prediction for the point (𝑥𝑖, 𝑦𝑖) is given by

𝑦𝑖 − ̂𝑦(𝛽0, 𝛽1, 𝑥𝑖)

We can imagine these errors visually on a couple of “potential” lines:

Of course, for any particular point (𝑥𝑖, 𝑦𝑖), we can choose a 𝛽0 and 𝛽1 so that
𝛽0 + 𝛽1𝑥𝑖 is exactly 𝑦𝑖. But that would only be true for one point; we want to
find a single line that seems “good” for all the points.

We need a measure of the fit of the line to all the data. We usually do this by
taking the average error across all the points. This gives us a measure of the
total amount of error for a possible line.

4.1.2 Choise of error (loss function)

Using our error from above (the difference of 𝑦𝑖 and ̂𝑦𝑖), would give us the
average error of

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)

But notice that there’s a problem with this. Our errors are allowed to cancel
out, meaning a very large positive error coupled with a very large negative error
cancel each other and result in no measured error! That’s not a promising way
to pick a line – we want every error to count. So we want to have a strictly
positive measure of error so that errors will accumulate.
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The choice of how to quantify the error (or loss) is called the loss function,
ℓ(𝑦, ̂𝑦(𝛽0, 𝛽1)). There are two common choices for this problem

• Absolute loss
ℓ(𝑦𝑖, ̂𝑦𝑖) = |𝑦𝑖 − ̂𝑦𝑖(𝛽0, 𝛽1)|

• Squared-error loss

ℓ(𝑦𝑖, ̂𝑦𝑖) = (𝑦𝑖 − ̂𝑦𝑖(𝛽0, 𝛽1))2

Then our overall fit is given by

1
𝑛

𝑛
∑
𝑖=1

ℓ(𝑦𝑖, ̂𝑦𝑖(𝛽0, 𝛽1))

4.1.3 Squared-error loss

The most commonly used loss is squared-error loss, also known as least squares
regression, where our measure of overall error for any particular 𝛽0, 𝛽1 is the
average squared error,

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖(𝛽0, 𝛽1))2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2

We can find the 𝛽0 and 𝛽1 that minimize the least-squared error, using the
function lm in R. We call the values we find ̂𝛽0 and ̂𝛽1. These are estimates
of the unknown 𝛽0 and 𝛽1. Below we draw the predicted line, i.e. the line we
would get using the estimates ̂𝛽0 and ̂𝛽1:
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Question: What do you notice about this line?

Calculating the least squares estimates in R

lm is the function that will find the least squares fit.
lm(RET_FT4 ~ TUITIONFEE_OUT, data = private)

##
## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT, data = private)
##
## Coefficients:
## (Intercept) TUITIONFEE_OUT
## 4.863e-01 9.458e-06

Question:

1. How do you interpret these coefficients that are printed? What do
they correspond to?

2. How much predicted increase in do you get for an increase of $10,000
in tuition?

Notice, as the below graphic from the Berkeley Statistics Department jokes, the
goal is not to exactly fit any particular point, and our line might not actually
go through any particular point.2

2The above graphic comes from the 1999 winner of the annual UC Berkeley Statistics
department contest for tshirt designs
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The estimates of 𝛽0 and 𝛽1

If we want, we can explicitly write down the equation for ̂𝛽1 and ̂𝛽0 (you don’t
need to memorize these equations)

̂𝛽1 =
1
𝑛 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
1
𝑛 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2

̂𝛽0 = ̄𝑦 − ̂𝛽1 ̄𝑥

Question: What do you notice about the denominator of ̂𝛽1?

The numerator is also an average, only now it’s an average over values that
involve the relationship of 𝑥 and 𝑦. Basically, the numerator is large if for the
same observation 𝑖, both 𝑥𝑖 and 𝑦𝑖 are far away from their means, with large
positive values if they are consistently in the same direction and large negative
values if they are consistently in the opposite direction from each other.

4.1.4 Absolute Errors

Least squares is quite common, particularly because it quite easily mathemati-
cally to find the solution. However, it is equally compelling to use the absolute
error loss, rather than squared error, which gives us a measure of overall error
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as:
1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦(𝛽0, 𝛽1)|

We can’t write down the equation for the ̂𝛽0 and ̂𝛽1 that makes this error the
smallest possible, but we can find them using the computer, which is done by
the rq function in R. Here is the plot of the resulting solutions from using
least-squares and absolute error loss.

While least squares is more common for historical reasons (we can write down
the solution!), using absolute error is in many ways more compelling, just like
the median can be better than the mean for summarizing the distribution of a
population. With squared-error, large differences become even larger, increasing
the influence of outlying points, because reducing the squared error for these
outlying points will significantly reduce the overall average error.

We will continue with the traditional least squares, since we are not (right now)
going to spend very long on regression before moving on to other techniques for
dealing with two continuous variables.

4.2 Inference for linear regression

One question of particular interest is determining whether 𝛽1 = 0.

Question: Why is 𝛽1 particularly interesting? (Consider this data on
college tuition – what does 𝛽1 = 0 imply)?

We can use the same strategy of inference for asking this question – hypothesis
testing, p-values and confidence intervals.
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As a hypothesis test, we have a null hypothesis of:

𝐻0 ∶ 𝛽1 = 0

We can also set up the hypothesis

𝐻0 ∶ 𝛽0 = 0

However, this is (almost) never interesting.

Question: Consider our data: what would it mean to have 𝛽0 = 0?

Does this mean we can just set 𝛽0 to be anything, and not worry about it? No,
if we do not get the right intercept, our line won’t fit. Forcing the intercept to
𝛽0 = 0 will make even the “best” line a terrible fit to our data:

Rather, the point is that we just don’t usually care about interpreting that in-
tercept. Therefore we also don’t care about doing hypothesis testing on whether
𝛽0 = 0 for most problems.

4.2.1 Bootstrap Confidence intervals

Once we get estimates ̂𝛽0 and ̂𝛽1, we can use the same basic idea we intro-
duced in comparing groups to get bootstrap confidence intervals for the param-
eters. Previously we had two groups 𝑋1, … , 𝑋𝑛1

and the other group 𝑌1, … , 𝑌𝑛2
and we resampled the data within each group to get new data 𝑋∗

1, … , 𝑋∗
𝑛1

and
𝑌 ∗

1 , … , 𝑌 ∗
𝑛2
, each of the same size as the original samples. From this resampled

data, we estimated our statistic ̂𝛿∗ (e.g. the difference between the averages of
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the two groups). We repeated this 𝐵 times to get the distribution of ̂𝛿∗, which
we used to create a bootstrap distribution to create confidence intervals.

We are going to do the same thing here, only now we only have one population
consisting of 𝑁 pairs of data (𝑥𝑖, 𝑦𝑖). We will resample 𝑁 times from the data
to get

(𝑥∗
1, 𝑦∗

1), … , (𝑥∗
𝑁 , 𝑦∗

𝑁)
Some pairs will show up multiple times, but notice that each pair of 𝑥𝑖 and 𝑦𝑖
will always be together because we sample the pairs.

To get confidence intervals, we will use this bootstrap sample to recalculate
̂𝛽0, ̂𝛽1, and do this repeatedly to get the bootstrap distribution of these values.

Specifically,

1. We create a bootstrap sample by sampling with replacement 𝑁 times from
our data (𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)

2. This gives us a sample (𝑥∗
1, 𝑦∗

1), … , (𝑥∗
𝑁 , 𝑦∗

𝑁) (where, remember some data
points will be there multiple times)

3. Run regression on (𝑥∗
1, 𝑦∗

1), … , (𝑥∗
𝑁 , 𝑦∗

𝑁) to get ̂𝛽∗
1 and ̂𝛽∗

0
4. Repeat this 𝐵 times, to get

( ̂𝛽(1)∗
0 , ̂𝛽(1)∗

1 ), … , ( ̂𝛽(𝐵)∗
0 , ̂𝛽(𝐵)∗

1 )

5. Calculate confidence intervals from the percentiles of these values.

I will write a small function in R that accomplishes this (you will look at this
more closely in a lab):
bootstrapLM <- function(y, x, repetitions, confidence.level = 0.95) {

stat.obs <- coef(lm(y ~ x))
bootFun <- function() {

sampled <- sample(1:length(y), size = length(y),
replace = TRUE)

coef(lm(y[sampled] ~ x[sampled]))
}
stat.boot <- replicate(repetitions, bootFun())
nm <- deparse(substitute(x))
row.names(stat.boot)[2] <- nm
level <- 1 - confidence.level
confidence.interval <- apply(stat.boot, 1, quantile,

probs = c(level/2, 1 - level/2))
return(list(confidence.interval = cbind(lower = confidence.interval[1,

], estimate = stat.obs, upper = confidence.interval[2,
]), bootStats = stat.boot))

}

We’ll now run this on the private data
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privateBoot <- with(private, bootstrapLM(y = RET_FT4,
x = TUITIONFEE_OUT, repetitions = 10000))

privateBoot$conf

## lower estimate upper
## (Intercept) 4.628622e-01 4.863443e-01 5.094172e-01
## TUITIONFEE_OUT 8.766951e-06 9.458235e-06 1.014341e-05

Question: How do we interpret these confidence intervals? What do they
tell us about the problem?

Again, these slopes are very small, because we are giving the change for each
$1 change in tuition. If we multiply by 10,000, this number will be more inter-
pretable:
privateBoot$conf[2, ] * 10000

## lower estimate upper
## 0.08766951 0.09458235 0.10143414

Note that these confidence intervals means that there are a variety of different
lines that are possible under these confidence intervals. For example, we can
draw some lines that correspond to different combinations of these confidence
interval limits.
plot(private[, c("TUITIONFEE_OUT", "RET_FT4")], col = "black")
abline(a = privateBoot$conf[1, 1], b = privateBoot$conf[2,

1], col = "red", lwd = 3)
abline(a = privateBoot$conf[1, 3], b = privateBoot$conf[2,

3], col = "blue", lwd = 3)
abline(a = privateBoot$conf[1, 1], b = privateBoot$conf[2,

3], col = "green", lwd = 3)
abline(a = privateBoot$conf[1, 3], b = privateBoot$conf[2,

1], col = "yellow", lwd = 3)
abline(lmPrivate, lwd = 3)
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However, this is not really quite the right way to think about these two confi-
dence intervals. If we look at these two separate confidence intervals and try
to put them together, then we would think that anything covered jointly by
the confidence intervals is likely. But that is not quite true. Our confidence in
where the true line is located actually is narrower than what is shown, because
some of the combinations of values of the two confidence intervals don’t actu-
ally ever get seen together. This is because these two statistics ̂𝛽0 and ̂𝛽1 aren’t
independent from each other. Separate confidence intervals for the two values
don’t give you that additional information.3

How does this relate to our bootstrap for two groups?

Let’s review our previous bootstrap method we used to compare groups, but
restating the setup using a notation that matches our regression. In the previous
chapter, we had a measurement of a continuous value (like flight delay) which we
divided into two groups based on another characteristic (like airline). Previously
we kept track of this by letting one group be 𝑋1, … , 𝑋𝑛1

and the other group
𝑌1, … , 𝑌𝑛2

.

Let’s introduce a different notation. Let 𝑦 be our continuous measurement, flight
delay, for all our data. To keep track of which of these observations were in
which group, we can instead create another variable 𝑥 that gives an observation’s
airline. This can equivalently store all our information (and indeed matches
more closely with how you might record the data in a spreadsheet, with one
column for the measurement and another column for the airline).

This means 𝑥 is not continuous – it can only take 10 values corresponding to the
10 different airlines. This is not the same as the linear regression case we consider
in this chapter, where 𝑥 is continuous, but it gives us a similar notation to write
the two problems, because now each observation in the flight data consisted of
the pairs

(𝑥𝑖, 𝑦𝑖)
3You can actually have joint confidence regions that demonstrate the dependency between

these values, but that is beyond this class.
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This is similar to our regression case, only with our regression example 𝑥𝑖 is now
continuous.

In our previous notation, when we did the bootstrap, we described this as re-
sampling values from each of our group 𝑋1, … , 𝑋𝑛1

and 𝑌1, … , 𝑌𝑛2
, so that we

created a new dataset 𝑋∗
1, … , 𝑋∗

𝑛1
and 𝑌 ∗

1 , … , 𝑌 ∗
𝑛2

each of the same size as the
original distribution.

We can see that the bootstrap we introduced here would resample 𝑁 = 𝑛1 + 𝑛2
samples from the pairs of (𝑥𝑖, 𝑦𝑖), i.e. the union of the two groups. So if we
applied the bootstrap strategy from this chapter to the two groups, this is a
slight variation from the method in chapter 3. In particular, notice that the
pair-resampling will not result in the two groups having 𝑛1 and 𝑛2 observations
– it will be a random number in each group usually close to 𝑛1 and 𝑛2.

Both strategies are valid for comparing two groups, and there are arguments for
both. Generally unless you have small sample sizes it will not create very large
differences. The strategy in this chapter is more general – it can generalize to
arbitrary numbers of variables as we will see in future chapters.

4.2.2 Parametric Models

Just as in the two-group setting, we can also consider a parametric model for
creating confidence intervals. For linear regression, this is a widely-used strategy
and its important to be familiar with it. Indeed, if we look at the summary of
the lm function that does linear regression in R, we see a lot of information
beyond just the estimates of the coefficients:
summary(lmPrivate)

##
## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT, data = private)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.44411 -0.04531 0.00525 0.05413 0.31388
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.863e-01 1.020e-02 47.66 <2e-16 ***
## TUITIONFEE_OUT 9.458e-06 3.339e-07 28.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08538 on 783 degrees of freedom
## Multiple R-squared: 0.5061, Adjusted R-squared: 0.5055
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## F-statistic: 802.3 on 1 and 783 DF, p-value: < 2.2e-16

We see that it automatically spits out a table of estimated values and p-values
along with a lot of other stuff.

Question: Why are there 2 p-values? What would be the logical null
hypotheses that these p-values correspond to?

This output is exceedingly common – all statistical software programs do this –
and these are based on a standard parametric model. This is a really ubiquitous
model in data science, so its important to understand it well (and we will come
back to it in multiple regression later in the semester).

Parametric Model for the data:

lm uses a standard parametric model to get the distributions of our statistics
̂𝛽0 and ̂𝛽1.

Recall that in fitting our line, we have already assumed a linear model:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑒.

This is a parametric model, in the sense that we assume there are unknown
parameters 𝛽0 and 𝛽1 that describe how our data 𝑦 was created.

In order to do inference (i.e. p-values and confidence intervals) we need to further
assume a probability distribution for the errors 𝑒. Otherwise, there’s nothing
random about 𝑦. Specifically, we assume

• 𝑒 ∼ 𝑁(0, 𝜎2), i..e normal with the same (unknown) variance 𝜎2.
• The unknown errors 𝑒1, … , 𝑒𝑛 are all independent from each other

Notice, this probability model for 𝑒 implies a probability model for 𝑦. For a
given 𝑥𝑖, each 𝑦𝑖 is just a normal (𝑒𝑖) with a (unknown) constant added to it
(𝛽0 + 𝛽1𝑥𝑖). So 𝑦𝑖 is normally distributed, with

𝑦𝑖|𝑥𝑖 ∼ 𝑁(𝛽0 + 𝛽1𝑥𝑖, 𝜎2)

Question: However, even though the errors 𝑒𝑖 are assumed 𝑖.𝑖.𝑑 the 𝑦𝑖
are not i.i.d, why?

This assumption regarding the probability distribution of the errors allows us to
know the distribution of the ̂𝛽1 (recall 𝛽1 is a fixed constant, ̂𝛽1 is an estimate
based on random data, so it is a random variable and has a distribution).
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We won’t show the derivation of its distribution, but since each 𝑦𝑖 is normally
distributed, ̂𝛽1 is as well.4

̂𝛽1 ∼ 𝑁(𝛽1, 𝜈2
1)

where
𝜈2

1 = 𝑣𝑎𝑟( ̂𝛽1) = 𝜎2

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

In what follows, just try to follow the logic, you don’t need to memorize these
equations or understand how to derive them.

Notice the similarities in the broad outline to the parametric t-test for two-
groups. We have an statistic, ̂𝛽1, and the assumptions of the parametric model
gives us that the distribution of ̂𝛽1 is normal with a variance that depends on
the (unknown) 𝜎2, i.e. the true variance in our individual data observations.

Estimating 𝜎2

Of course, we have the same problem as the t-test – we don’t know 𝜎2! But like
the t-test, we can estimate 𝜎2 and get an estimate of the variance of ̂𝛽1 (we’ll
talk more about how we estimate �̂� in a moment)

̂𝜈2
1 = ̂𝑣𝑎𝑟( ̂𝛽1) = �̂�2

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

Hypothesis Testing

Using this knowledge, we can use the same idea as the t-test for two-groups,
and create a similar test statistic for ̂𝛽1 that standardizes ̂𝛽1

5

𝑇1 =
̂𝛽1

√ ̂𝑣𝑎𝑟( ̂𝛽1)

Just like the t-test, 𝑇1 should be normally distributed6 This is exactly what lm
gives us:
summary(lm(RET_FT4 ~ TUITIONFEE_OUT, data = private))

##
## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT, data = private)
##

4If you look at the equation of ̂𝛽1, then we can see that it is a linear combination of the 𝑦𝑖,
and linear combinations of normal R.V. are normal, even if the R.V. are not independent.

5In fact, we can also do this for ̂𝛽0, with exactly the same logic, but 𝛽0 is not interesting
so we don’t do it in practice.

6with the same caveat, that when you estimate the variance, you affect the distribution of
𝑇1, which matters in small sample sizes.
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## Residuals:
## Min 1Q Median 3Q Max
## -0.44411 -0.04531 0.00525 0.05413 0.31388
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.863e-01 1.020e-02 47.66 <2e-16 ***
## TUITIONFEE_OUT 9.458e-06 3.339e-07 28.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08538 on 783 degrees of freedom
## Multiple R-squared: 0.5061, Adjusted R-squared: 0.5055
## F-statistic: 802.3 on 1 and 783 DF, p-value: < 2.2e-16

Confidence intervals

We can also create parametric confidence intervals for ̂𝛽1 in the same way we
did for the difference in two groups:

̂𝛽1 ± 1.96 ̂𝜈1

confint(lmPrivate)

## 2.5 % 97.5 %
## (Intercept) 4.663136e-01 5.063750e-01
## TUITIONFEE_OUT 8.802757e-06 1.011371e-05

4.2.2.1 Estimating 𝜎2

How do we estimate 𝜎2? Recall that 𝜎2 is the variance of the error distribution.
We don’t know the true errors 𝑒𝑖, but if we did, we know they are i.i.d and so
a good estimate of 𝜎2 would be the sample variance of the true errors:

1
𝑛 − 1 ∑(𝑒𝑖 − ̄𝑒)2

However, these true errors are unknown.

Question: If we knew the true 𝛽0 and 𝛽1 we could calculate the true 𝑒𝑖,
how?

Thus with the true coefficients, we could calculate 𝑒𝑖 and therefore use the
above equation to estimate 𝜎2 from the data. But the coefficents 𝛽0, 𝛽1 are also
unknown, so this isn’t possible. Yet, this above thought-experiment does give
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us an idea for how we could estimate 𝜎2. Specifically, though we don’t know 𝛽0
or 𝛽1, we have estimates of 𝛽0 and 𝛽1. Namely, we can calculate the error of
our data from the estimated line,

𝑟𝑖 = 𝑦𝑖 − ( ̂𝛽0 + ̂𝛽1𝑥𝑖)
The 𝑟𝑖 are called the residuals. They are often called the errors, but they are
not the actual (true) error, however (𝑟𝑖 ≠ 𝑒𝑖). They are the error from the
estimated line, and as a group think of them as estimates of the true error.

Using the residuals, we can take the sample variance of the residuals as a good
first estimate of 𝜎2,

1
𝑛 − 1 ∑(𝑟𝑖 − ̄𝑟)2

Mean of residuals, ̄𝑟 In fact, it is an algebraic fact that ̄𝑟 = 0. So we can
rewrite the above equation as

1
𝑛 − 1 ∑ 𝑟2

𝑖

Be careful! Just because you “discover” in your data that ̄𝑟 = 0, this is NOT a
sign your line is a good fit to the data. It is just a mathematical fact due to the
way we estimated our coefficients and is always true for residuals from a least
squared regression – even when the line is a lousy fit to the data.

Better estimate of 𝜎

For regression, a better estimate is to divide by 𝑛 − 2 rather than 𝑛 − 1. Doing
so makes our estimate unbiased, meaning that the average value of �̂�2 over
many repeated samples will be 𝜎. This is the same reason we divide by 𝑛 − 1 in
estimating the sample variance rather than 1/𝑛 for the estimate of the variance
of a single population.

These two facts gives us our final estimate:

�̂�2 = 1
𝑛 − 2 ∑

𝑖
𝑟2

𝑖 .

The residuals 𝑟𝑖 are not always great estimates of 𝑒𝑖 (for example, they aren’t
independent, they don’t have the same variance, etc). But, despite that, it turns
out that �̂�2 is a very good, reliable estimate of 𝜎2, including if our assumptions
about the errors being normally is wrong.

4.2.3 Assumptions

Like the t-test, the bootstrap gives a more robust method than the parametric
linear model for creating confidence intervals.

The parametric linear model makes the following assumptions:
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• Errors 𝑒𝑖 are independent
• Errors 𝑒𝑖 are i.i.d, meaning they have the same variance
• Errors are normally distributed

The bootstrap makes the same kind of assumptions as in the two group com-
parisons:

• The i.i.d resampling of the bootstrapped data mirrors how the actual data
was generated (i.e. the actual data is i.i.d)

• The sample size is large enough that the sample distribution is close to
the real distribution.

• The test statistic is well behaved (e.g. unbiased) – this is true for regression

Notice, that both methods assume the data points are independent. This is
the most critical assumption for both methods. Both implicitly assume that
all of the observations have the same variance (that’s part of being i.i.d). The
parametric method makes the further assumption of normality of the errors (like
the t-test).

In practice, we do not see much difference in these two methods for our data:

## lower estimate upper
## [1,] 8.802757e-06 9.458235e-06 1.011371e-05
## [2,] 8.766951e-06 9.458235e-06 1.014341e-05

4.2.4 Prediction Intervals

In addition to evaluating the coefficients, we can also look at the prediction we
would make. This is a better way than the plots we did before to get an idea of
what our predictions at a particular value would actually be.

Prediction
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Question: How does our model predict a value, say for tuition of $20,000?

coef(lmPrivate)[1] + coef(lmPrivate)[2] * 20000

## (Intercept)
## 0.675509
predict(lmPrivate, newdata = data.frame(TUITIONFEE_OUT = 20000))

## 1
## 0.675509

These predictions are themselves statistics based on the data, and the uncer-
tainty/variability in the coefficients carries over to the predictions. So we can
also give confidence intervals for our prediction. There are two types of confi-
dence intervals.

• Confidence intervals about the predicted average response – i.e. prediction
of what is the average completion rate for all schools with tuition $20,000.

• Confidence intervals about a particular future observation, i.e. prediction
of any particular school that has tuition $20,000. These are actually not
called confidence intervals, but prediction intervals.

Clearly, we will use the same method to predict a value for both of these settings
(the point on the line), but our estimate of the precision of these estimates varies.

Question: Which of these settings do you think would have wider CI?

predict(lmPrivate, newdata = data.frame(TUITIONFEE_OUT = 20000),
interval = "confidence")

## fit lwr upr
## 1 0.675509 0.6670314 0.6839866
predict(lmPrivate, newdata = data.frame(TUITIONFEE_OUT = 20000),

interval = "prediction")

## fit lwr upr
## 1 0.675509 0.5076899 0.843328

We can compare these two intervals by calculating them for a large range of 𝑥𝑖
values and plotting them:
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Question: What do you notice about the difference in the confidence
lines? How does it compare to the observed data?

Parametric versus Bootstrap

Notice that all of these predict commands use the parametric assumptions about
the errors, rather than the bootstrap. We could bootstrap the confidence inter-
vals for the prediction average.

Question: How would we do that?

The prediction intervals, on the other hand, rely more on the parametric model
for estimating how much variability and individual point will have.

4.3 Least Squares for Polynomial Models & Be-
yond

Least squares will spit out estimates of the coefficients and p-values to any data
– the question is whether this is a good idea. For example, consider the variable
SAT_AVG_ALL that gives the average SAT score for the school.
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Question: Looking at the public institutions, what do you see as it’s
relationship to the other two variables?

We might imagine that other functions would be a better fit to the data for the
private schools.

Question: What might be some reasonable choices of functions?

We can fit other functions in the same way. Take a quadratic function, for
example. What does that look like for a model?

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝑒

We can, again, find the best choices of those co-efficients by getting the predicted
value for a set of coefficients:

̂𝑦𝑖(𝛽0, 𝛽1, 𝛽2) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖 ,

and find the error
ℓ(𝑦𝑖, ̂𝑦𝑖(𝛽0, 𝛽1, 𝛽2))

and trying to find the choices that minimizes the average loss over all the obser-
vations.

If we do least squares for this quadratic model, we are trying to find the coeffi-
cients 𝛽0, 𝛽1, 𝛽2 that minimize,

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖 − 𝛽2𝑥2
𝑖 )2
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Here are the results:

It’s a little better, but not much. We could try other functions. A cubic function,
for example, is exactly the same idea.

̂𝑦𝑖(𝛽0, 𝛽1, 𝛽2) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥2
𝑖 + 𝛽3𝑥3

𝑖 .

Question: What do you think about the cubic fit?

We can, of course use other functions as well. For example, we could use log,

𝑦 = 𝑙𝑜𝑔(𝑥) + 𝑒

We don’t show this model fitted to the data here, but this seems unlikely to be
the right scale of the data. If we are going to search for functions to fit, we want
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a function that describes the shape of the curve, but we will undoubtably need
more flexibility than that to match our data. In particular, this model has no
parameters that we can adjust to make it match our data.

If we look at our x values, we see that they are in the range of 800-1400 (i.e. SAT
scores!).Consider what the 𝑙𝑜𝑔 looks like in this range:
par(mfrow = c(1, 1))
curve(log, 600, 1600)

Question: Does this seem like an effective transformation?

We could add an intercept term

𝑦 = 𝛽0 + 𝑙𝑜𝑔(𝑥) + 𝑒

Question: What does adding 𝛽0 mean intuitively?

If we add a constant inside the log, we get flexibility in the shape.
par(mfrow = c(1, 1))
logShift <- function(x) {

log(x - 550)
}
curve(logShift, 600, 1600)
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We could play around with adjusting this model to give us appropriate param-
eters to work with and then fit it with least squares as well, e.g.

𝑦 = 𝛽0 + 𝑙𝑜𝑔(𝛽1𝑥) + 𝑒

However, we are not going to spend time on this, because it will be an arbitrary
and ad hoc way to model the data.7 In general, finding some combination of
standard functions to match the entire scope of the data is unlikely to work for
most data sets. Instead we want something that is more flexible. We’d really
like to say

𝑦 = 𝑓(𝑥) + 𝑒
and just estimate 𝑓 , without any particular restriction on 𝑓 .
So we are going to think much more broadly about how to create a method that
will be adaptive to our data and not require us to define functions in advance
that match our data.

4.4 Local fitting

There are many strategies to estimate 𝑓 without assuming what kind of func-
tion 𝑓 is. Many such strategies have the flavor of estimating a series of “easy”
functions on small regions of the data and then putting them together. The
combination of these functions is much more complex than the “easy” functions
are.

Question: What ideas can you imagine for how you might get a descrip-
tive curve/line/etc to describe this data?

7This can be useful if you have a pre-existing physical model that describes the process
that created the data, e.g. from physics or chemistry
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plot(RET_FT4 ~ SAT_AVG_ALL, data = private, main = "Private schools")

We are going to look at once such strategy that builds up a function 𝑓 as a
series estimates of easy functions like linear regression, but only for a very small
region.

Like with density estimation, we are going to slowly build up to understanding
the most commonly used method (LOESS) by starting with simpler ideas first.

4.4.1 Running Mean or Median

Like with our development of density estimation, we will start with a similar
idea to estimate 𝑓(𝑥) by taking a “window” – a fixed width region of the 𝑥-
axis – with its center at 𝑥. We will identify the points captured in this window
(meaning their 𝑥 values are in the window), and our estimate of 𝑓(𝑥) will be the
mean (or median) of the corresponding 𝑦 values of those points.

We can write this as an equation.

̂𝑓(𝑥) = 1
#in window ∑

𝑖∶𝑥𝑖∈[𝑥− 𝑤
2 ,𝑥+ 𝑤

2 )
𝑦𝑖

Just like with density estimation, we can do this for all 𝑥, so that we slide the
window over the x-axis. For this reason, this estimate is often called a “running
mean” or “running median”.
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There are a lot of varieties on this same idea. For example, you could make the
window not fixed width 𝑤, but a window centered at 𝑥 that has variable width,
but a fixed number of points for all 𝑥. This is what is plotted above (while it’s
conceptually easy to code from scratch, there are a lot of nitpicky details, so
in the above plot we used a built-in implementation which uses this strategy
instead).

Question: What do you notice when I change the number of fixed points
in each window? Which seems more reasonable here?

Comparison to density estimation

If this feels familiar, it should! This is very similar to what we did in density
estimation. However, in density estimation, when estimating the density 𝑝(𝑥),
we captured the data 𝑥𝑖 that were in windows around 𝑥, and calculated basically
the number of points in the window to get ̂𝑝(𝑥),

̂𝑝(𝑥) = # 𝑥𝑖 in window
𝑛𝑤 = ∑

𝑖∶𝑥𝑖∈[𝑥− 𝑤
2 ,𝑥+ 𝑤

2 )

1
𝑛𝑤

With function estimation, we are instead finding the 𝑥𝑖 that are near 𝑥 and then
taking the mean of their corresponding 𝑦𝑖 to calculate ̂𝑓(𝑥). So for function
estimation, the 𝑥𝑖 are used to determining which points (𝑥𝑖, 𝑦𝑖) to use, but the
𝑦𝑖 are used to calculate the value.

̂𝑓(𝑥) = sum of 𝑦𝑖 in window
# 𝑥𝑖 in window

=
∑𝑖∶𝑥𝑖∈[𝑥− 𝑤

2 ,𝑥+ 𝑤
2 ) 𝑦𝑖

∑𝑖∶𝑥𝑖∈[𝑥− 𝑤
2 ,𝑥+ 𝑤

2 ) 1
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4.4.2 Kernel weighting

One disadvantage to a running median is that it can create a curve that is
rather jerky – as you move the window you are added or taking away a point
so the mean of the 𝑦𝑖 abruptly changes. This is particularly pronounced with
windows with a small number of points – changing a single 𝑦𝑖 really affects
the mean. Alternatively, if you have a wide window with many points, then
adding or subtracting a single point doesn’t have a big effect, so the jerky steps
are smaller, so less noticable (though still there!). But the downside of wide
windows is that then your estimate of 𝑓(𝑥) at any point 𝑥 will be the result of
the average of the 𝑦 values from points that are quite far away from the 𝑥 you
are interested in, so you won’t capture trends in the data.

You can see this in this simulated data I created which has a great deal of local
changes:

We’ve already seen a similar concept when we talked about kernel density estima-
tion, instead of histograms. There we saw that we could describe our windows
as weighting of our points 𝑥𝑖 based on their distance from 𝑥. We can do the
same idea for our running mean:

̂𝑓(𝑥) =
∑𝑖∶𝑥𝑖∈[𝑥− 𝑤

2 ,𝑥+ 𝑤
2 ) 𝑦𝑖

∑𝑖∶𝑥𝑖∈[𝑥− 𝑤
2 ,𝑥+ 𝑤

2 ) 1

= ∑𝑛
𝑖=1 𝑦𝑖𝑓(𝑥, 𝑥𝑖)

∑𝑛
𝑖=1 𝑓(𝑥, 𝑥𝑖)

where again, 𝑓(𝑥, 𝑥𝑖) weights each point by 1/𝑤

𝑓(𝑥, 𝑥𝑖) = {
1
𝑤 𝑥𝑖 ∈ [𝑥 − 𝑤

2 , 𝑥 + 𝑤
2 )

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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(notice the constant 1/𝑤 cancels out, but we leave it there to look like the kernel
density estimation).

This is called the Nadaraya-Watson kernel-weighted average estimate or kernel
smoothing regression.

Again, once we write it this way, it’s clear we could again choose different
weighting functions, like the gaussian kernel, similar to that of kernel density
estimation. Just as in density estimation, you tend to get smoother results if
our weights aren’t abruptly changing from 0 once a point moves in or out of the
window. So we will use the same idea, where we weight our point 𝑖 based on
how close 𝑥𝑖 is to the 𝑥 for which we are trying to estimate 𝑓(𝑥). And just like
in density estimation, a gaussian kernel is the common choice for how to decide
the weight:

Here’s how the gaussian kernel smoothing weights compare to a rolling mean
(i.e. based on fixed windows) on the very wiggly simulated data I made

It’s important to see that both methods can overflatten the curve or create overly
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wiggly curves depending on how you change the choices of the algorithms. But
the difference is that the moving average will always have these tiny bumps if
you zoom in, while the kernel smoothing won’t

Window width

The span argument tells you what percentage of points are used in predicting
𝑥 (like bandwidth in density estimation)8. So there’s still an idea of a window
size; it’s just that within the window, you are giving more emphasis to points
near your 𝑥 value.

Notice that one advantage is that you can define an estimate for any 𝑥 in the
range of your data – the estimated curve doesn’t have to jump as you add new
points. Instead it transitions smoothly.

8There’s a lot of details about span and what points are used, but we are not going to
worry about them. What I’ve described here gets at the idea
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Question: What other comparisons might you make here?

Weighted Mean

If we look at our estimate of 𝑓(𝑥), we can actually write it more simply as a
weighted mean of our 𝑦𝑖

̂𝑓(𝑥) = ∑𝑛
𝑖=1 𝑦𝑖𝑓(𝑥, 𝑥𝑖)

∑𝑛
𝑖=1 𝑓(𝑥, 𝑥𝑖)

=
𝑛

∑
𝑖=1

𝑤𝑖(𝑥)𝑦𝑖

where
𝑤𝑖(𝑥) = 𝑓(𝑥, 𝑥𝑖)

∑𝑛
𝑖=1 𝑓(𝑥, 𝑥𝑖)

are weights that indicate how much each 𝑦𝑖 should contribute to the mean (and
notice that these weights sum to one). The standard mean of all the points is
equivalent to choosing 𝑤𝑖(𝑥) = 1/𝑛, i.e. each point counts equally.

4.4.3 Loess: Local Regression Fitting

In the previous section, we use kernels to have a nice smooth way to decide
how much impact the different 𝑦𝑖 have in our estimate of 𝑓(𝑥). But we haven’t
changed the fact that we are essentially taking just a mean of the nearby 𝑦𝑖 to
estimate 𝑓(𝑥).
Let’s go back to our simple windows (i.e. rectangular kernel). When we estimate
𝑓(𝑥), we are doing the following:
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We see that for our prediction ̂𝑓(𝑥) at 𝑥 = 1, we are not actually getting into
where the data is because of the in balance of how the 𝑥𝑖 values are distributed.
That’s because the function is changing around 𝑥 = 1; weighting far-away points
would help some, we’re basically trying to “fit” a constant line to what clearly
is changing in this window.

We could do this for every 𝑥, as our window keeps moving, so we would never
actually be fitting a polynomial across the entire function. So while we wouldn’t
think a line fit the overall data very well, locally around 𝑥 = 1 it would be more
reasonable to say it is roughly like a line:

We could go even further and say a quadratic would be better:

In short, we are saying, to estimate 𝑓(𝑥) locally some simple polynomials will
work well, even though they don’t work well globally.

So we now have the choice of the degree of the polynomial and the span/window
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size.

Question: What conclusions would you draw about the difference be-
tween choosing the degree of the fit (mean/linear/quadratic)?

Generally degree is chosen to be 2, as it usually gives better fitting estimates,
while the span parameter might be tweaked by the user.

4.5 Big Data clouds

It can be particularly helpful to have a smooth scatter for visualization when
you have a lot of data points. Consider the following data on craigs list rentals
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that you saw in lab. We would suspect that size would be highly predictive of
price, and indeed if we plot price against size that’s pretty clear.

But, because of the number of points, we can’t really see much of what’s going
on. In fact our eye is drawn to outlying (and less representative) points, while
the rest is just a black smear where the plots are on top of each other.

We can add a loess smooth curve to get an idea of where the bulk of the data
lie. We’ll zoom in a bit closer as well by changing the x and y limits of the axes.

Question: What does this tell you about the data?

4.5.1 2D density smoothing plots

If we really want to get a better idea of what’s going on under that smear of
black, we can use 2D density smoothing plots. This is the same idea as density
smoothing plots for probability densities, only for 2D. Imagine that instead of
a histogram along the line, a 2D histogram. This would involve griding the 2D
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plane into rectangles (instead of intervals) and counting the number of points
within each rectangle. The high of the bars (now in the 3rd dimension) would
give a visualization of how many points there are in different places in the plot.

Then just like with histograms, we can smooth this, so that we get a smooth
curve over the 2 dimensions.

A 3D picture of this would be cool, but difficult to actually see information, axes,
etc. So its common to instead smash this information into 2D, by representing
the 3rd dimension (the density of the points) by a color scale instead.

Here is an example of such a visualization of a 2D histogram (the hexbin pack-
age)

We can use a smoother version of this and get more gradual changes (and a less
finicky function) using the smoothScatter function
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Question: What do these colors tell you? How does this compare to the
smooth line? What do you see about those points that grabbed our eye
before (and which the loess line ignored)?

Simulated Example

For this data, it turned out that the truth was pretty linear. But many times,
the cloud of data can significantly impair our ability to see the data. We can
simulate a more complicated function with many points.
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4.6 Time trends

Let’s look at another common example of fitting a trend – time data. In the
following dataset, we have the average temperatures (in celecius) by city per
month since 1743.

## dt AverageTemperature AverageTemperatureUncertainty City
## 1 1849-01-01 26.704 1.435 Abidjan
## 2 1849-02-01 27.434 1.362 Abidjan
## 3 1849-03-01 28.101 1.612 Abidjan
## 4 1849-04-01 26.140 1.387 Abidjan
## 5 1849-05-01 25.427 1.200 Abidjan
## 6 1849-06-01 24.844 1.402 Abidjan
## Country Latitude Longitude
## 1 Côte D'Ivoire 5.63N 3.23W
## 2 Côte D'Ivoire 5.63N 3.23W
## 3 Côte D'Ivoire 5.63N 3.23W
## 4 Côte D'Ivoire 5.63N 3.23W
## 5 Côte D'Ivoire 5.63N 3.23W
## 6 Côte D'Ivoire 5.63N 3.23W

Given the scientific consensus that the planet is warming, it is interesting to
look at this data, limited though it is, to see how different cities are affected.

Here, we plot the data with smoothScatter, as well as plotting just some specific
cities
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This is a very uninformative plot, despite our best efforts.

Question: Why was it uninformative?

We can consider for different cities or different months how average temperatures
have changed. We use the function scatter.smooth that both plots the points
and places a loess curve on top.
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Loess Prediction Intervals

We can even calculate (parametric) confidence intervals around these curves
(based on a type of t-statistic for kernel smoothers), with a bit more lines of
code. They are called prediction intervals, because they are confidence intervals
for the prediction at each point.

In fact, since it’s a bit annoying, I’m going to write a little function to do it.
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Question: Look at the code above. In what way does it look like t-
statistic intervals?

Comparing Many Cities

Smooth scatter plots can be useful to compare the time trends of many groups.
It’s difficult to plot each city, but we can plot their loess curve. I will write a
function to automate this. For ease of comparison, I will pick just a few cities
in the northern hemisphere.
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Question: What makes these curves so difficult to compare?

Notice that because these cities have a different baseline temperature, that is a
big part of what the plot shows – how the different lines are shifted from each
other. We are interested in instead how they compare when changing over time.
So instead, I’m going to subtract off their temperature in 1849 before we plot,
so that we plot not the temperature, but the change in temperature since 1849,
i.e. change relative to that temperature.

That still didn’t accomplish my goal of having a similar baseline. Why not? Con-
sider the following plots of the data from each of the 8 cities, where I highlight
the 1849 temperature in blue.
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We see that in fact, the temperature in any particular year is variable around
the overall “trend” we see in the data. So by subtracting off 1849, we are also
subtracting off that noise. We would do better to find, using loess, the value of
the function that predicts that trend in 1849 (in green below):

Notice how much better that green point is as a reference point. Now we can
subtract off that value instead, and use that as our baseline:

Notice how difficult it can be to compare across different cities; what we’ve
shown here is just a start. The smoothed curves make it easier to compare,
but also mask the variability of the original data. Some curves could be better
representations of their cities than others. I could further try to take into
account the scale of the change – maybe some cities temperature historically
vary quite a lot from year to year, so that a difference in a few degrees is less
meaningful. I could also plot confidence intervals around each curve to capture
some of this variability.
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Visualizing Multivariate
Data

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11

We’ve spent a lot of time so far looking at analysis of the relationship of two
variables. When we compared groups, we had 1 continuous variable and 1
categorical variable. In our curve fitting section, we looked at the relationship
between two continuous variables.

The rest of the class is going to be focused on looking at many variables. This
chapter will focus on visualization of the relationship between many variables
and using these tools to explore your data. This is often called exploratory
data analysis (EDA)

5.1 Relationships between Continous Variables

In the previous chapter we looked at college data, and just pulled out two
variables. What about expanding to the rest of the variables?

A useful plot is called a pairs plot. This is a plot that shows the scatter plot
of all pairs of variables in a matrix of plots.
dataDir <- "../finalDataSets"
scorecard <- read.csv(file.path(dataDir, "college.csv"),

stringsAsFactors = FALSE, na.strings = c("NA",
"PrivacySuppressed"))

scorecard <- scorecard[-which(scorecard$CONTROL ==
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3), ]
smallScores <- scorecard[, -c(1:3, 4, 5, 6, 9, 11,

14:17, 18:22, 24:27, 31)]

Let’s first start with a small number of variables, just the first four variables
pairs(smallScores[, 1:5])

Question: What kind of patterns can you see? What is difficult about
this plot? How could we improve this plot?

We’ll skip the issue of the categorical Control variable, for now. But we can
add in some of these features.



5.1. RELATIONSHIPS BETWEEN CONTINOUS VARIABLES 189

panel.hist <- function(x, ...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks
nB <- length(breaks)
y <- h$counts
y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y)

}
pairs(smallScores[, 1:5], lower.panel = panel.smooth,

col = c("red", "black")[smallScores$CONTROL], diag.panel = panel.hist)

In fact double plotting on the upper and lower diagonal is often a waste of space.
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Here is code to plot the sample correlation value instead,

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 ∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2

panel.cor <- function(x, y, digits = 2, prefix = "",
cex.cor, ...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y, use = "pairwise.complete.obs"))
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste0(prefix, txt)
if (missing(cex.cor))

cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)

}
pairs(smallScores[, 1:5], lower.panel = panel.smooth,

upper.panel = panel.cor, col = c("red", "black")[smallScores$CONTROL],
diag.panel = panel.hist)
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This is a pretty reasonable plot, but what if I want to look at more variables?
pairs(smallScores, lower.panel = panel.smooth, upper.panel = panel.cor,

col = c("red", "black")[smallScores$CONTROL], diag.panel = panel.hist)
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Even with 11 variables, this is fairly overwhelming, though still potentially use-
ful. If I want to look at all of the 30 variables this will be daunting. For many
variables, we can make a simpler representation, that simply plots the correla-
tions using colors on the upper diagonal and a summary of the data via loess
smoothing curves on the lower diagonal. This is implemented in the gpairs
function (it also has default options that handle the categorical data better,
which we will get to below).
library(gpairs)
suppressWarnings(corrgram(scorecard[, -c(1:3)]))

The lower panels gives only the loess smoothing curve and the upper panels
indicate the correlation of the variables, with dark colors representing higher
correlation.
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Question: What do you see in this plot?

5.2 Categorical Variable

Let’s consider now how we would visualize categorical variables, starting with
the simplest, a single categorical variable.

5.2.1 Single Categorical Variable

Question: For a single categorical variable, how have you learn how you
might visualize the data?

Barplots

Let’s demonstrate barplots with the following data that is pulled from the Gen-
eral Social Survey (GSS) ((http://gss.norc.org/)). The GSS gathers data on
contemporary American society via personal in-person interviews in order to
monitor and explain trends and constants in attitudes, behaviors, and attributes
over time. Hundreds of trends have been tracked since 1972. Each survey from
1972 to 2004 was an independently drawn sample of English-speaking persons 18
years of age or over, within the United States. Starting in 2006 Spanish-speakers
were added to the target population. The GSS is the single best source for so-
ciological and attitudinal trend data covering the United States.

Here we look at a dataset where we have pulled out variables related to reported
measures of well-being (based on a report about trends in psychological well-
being (https://gssdataexplorer.norc.org/documents/903/display)). Like many
surveys, the variables of interest are categorical.

Then we can compute a table and visualize it with a barplot.
table(wellbeingRecent$General.happiness)

##
## Very happy Pretty happy Not too happy Don't know Not applicable
## 4270 7979 1991 25 4383
## No answer
## 18
barplot(table(wellbeingRecent$General.happiness))

http://gss.norc.org/
https://gssdataexplorer.norc.org/documents/903/display


194 CHAPTER 5. VISUALIZING MULTIVARIATE DATA

Relationship between a categorical and continuous variable?

Recall from previous chapters, we discussed using how to visualize continuous
data from different groups:

• Density plots
• Boxplots
• Violin plots

Numerical data that can be split into groups is just data with two variables, one
continuous and one categorical.

Going back to our pairs plot of college, we can incorporate pairwise plotting of
one continuous and one categorical variable using the function gpairs (in the
package gpairs). This allows for more appropriate plots for our variable that
separated public and private colleges.
library(gpairs)
smallScores$CONTROL <- factor(smallScores$CONTROL,

levels = c(1, 2), labels = c("public", "private"))
gpairs(smallScores, lower.pars = list(scatter = "loess"),

upper.pars = list(scatter = "loess", conditional = "boxplot"),
scatter.pars = list(col = c("red", "black")[smallScores$CONTROL]))
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5.2.2 Relationships between two (or more) categorical
variables

When we get to two categorical variables, then the natural way to summarize
their relationship is to cross-tabulate the values of the levels.

5.2.2.1 Cross-tabulations

You have seen that contingency tables are a table that give the cross-
tabulation of two categorical variables.
tabGeneralJob <- with(wellbeingRecent, table(General.happiness,

Job.or.housework))
tabGeneralJob

## Job.or.housework
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## General.happiness Very satisfied Mod. satisfied A little dissat
## Very happy 2137 843 154
## Pretty happy 2725 2569 562
## Not too happy 436 527 247
## Don't know 11 1 4
## Not applicable 204 134 36
## No answer 8 2 1
## Job.or.housework
## General.happiness Very dissatisfied Don't know Not applicable No answer
## Very happy 61 25 1011 39
## Pretty happy 213 61 1776 73
## Not too happy 161 39 549 32
## Don't know 0 1 8 0
## Not applicable 12 1 3990 6
## No answer 3 0 4 0

We can similarly make barplots to demonstrate these relationships.
barplot(tabGeneralJob, legend = TRUE)

This barplot is not very satisfying. In particular, since the two variables have
the same names for their levels, we don’t know which is which!
colnames(tabGeneralJob) <- paste(colnames(tabGeneralJob),

"(Job)")
rownames(tabGeneralJob) <- paste(rownames(tabGeneralJob),

"(General)")
barplot(tabGeneralJob, legend = TRUE)
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barplot(t(tabGeneralJob), legend = TRUE)

It can also be helpful to separate out the other variables, rather than stacking
them, and to change the colors.
barplot(tabGeneralJob, beside = TRUE, legend = TRUE,

col = palette()[1:6])
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5.2.2.2 Conditional Distributions from Contingency Tables

When we look at the contingency table, a natural question we ask is whether
the distribution of the data changes across the different categories. For ex-
ample, for people answering Very Satisfied' for their job, there is a
distribution of answers for theGeneral Happiness’ question. And simi-
larly for ‘Moderately Satisfied’. We can get these by making the counts into
proportions within each category.
prop.table(tabGeneralJob, margin = 2)

## Job.or.housework
## General.happiness Very satisfied (Job) Mod. satisfied (Job)
## Very happy (General) 0.3870675602 0.2068204122
## Pretty happy (General) 0.4935700054 0.6302747792
## Not too happy (General) 0.0789712009 0.1292934249
## Don't know (General) 0.0019923927 0.0002453386
## Not applicable (General) 0.0369498279 0.0328753680
## No answer (General) 0.0014490129 0.0004906771
## Job.or.housework
## General.happiness A little dissat (Job) Very dissatisfied (Job)
## Very happy (General) 0.1533864542 0.1355555556
## Pretty happy (General) 0.5597609562 0.4733333333
## Not too happy (General) 0.2460159363 0.3577777778
## Don't know (General) 0.0039840637 0.0000000000
## Not applicable (General) 0.0358565737 0.0266666667
## No answer (General) 0.0009960159 0.0066666667
## Job.or.housework
## General.happiness Don't know (Job) Not applicable (Job)
## Very happy (General) 0.1968503937 0.1377759608
## Pretty happy (General) 0.4803149606 0.2420278005
## Not too happy (General) 0.3070866142 0.0748160262
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## Don't know (General) 0.0078740157 0.0010902153
## Not applicable (General) 0.0078740157 0.5437448896
## No answer (General) 0.0000000000 0.0005451077
## Job.or.housework
## General.happiness No answer (Job)
## Very happy (General) 0.2600000000
## Pretty happy (General) 0.4866666667
## Not too happy (General) 0.2133333333
## Don't know (General) 0.0000000000
## Not applicable (General) 0.0400000000
## No answer (General) 0.0000000000
barplot(prop.table(tabGeneralJob, margin = 2), beside = TRUE)

We could ask if these proportions are the same in each column (i.e. each level
of Job Satisfaction'). If so, then the value forJob Satisfaction’ is not
affecting the answer for ‘General Happiness’, and so we would say the variables
are unrelated.

Question: Looking at the barplot, what would you say? Are the variables
related?

We can, of course, flip the variables around.
prop.table(tabGeneralJob, margin = 1)

## Job.or.housework
## General.happiness Very satisfied (Job) Mod. satisfied (Job)
## Very happy (General) 0.5004683841 0.1974238876
## Pretty happy (General) 0.3415214939 0.3219701717
## Not too happy (General) 0.2189854345 0.2646911100
## Don't know (General) 0.4400000000 0.0400000000
## Not applicable (General) 0.0465434634 0.0305726671
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## No answer (General) 0.4444444444 0.1111111111
## Job.or.housework
## General.happiness A little dissat (Job) Very dissatisfied (Job)
## Very happy (General) 0.0360655738 0.0142857143
## Pretty happy (General) 0.0704348916 0.0266950746
## Not too happy (General) 0.1240582622 0.0808638875
## Don't know (General) 0.1600000000 0.0000000000
## Not applicable (General) 0.0082135524 0.0027378508
## No answer (General) 0.0555555556 0.1666666667
## Job.or.housework
## General.happiness Don't know (Job) Not applicable (Job)
## Very happy (General) 0.0058548009 0.2367681499
## Pretty happy (General) 0.0076450683 0.2225842837
## Not too happy (General) 0.0195881467 0.2757408338
## Don't know (General) 0.0400000000 0.3200000000
## Not applicable (General) 0.0002281542 0.9103353867
## No answer (General) 0.0000000000 0.2222222222
## Job.or.housework
## General.happiness No answer (Job)
## Very happy (General) 0.0091334895
## Pretty happy (General) 0.0091490162
## Not too happy (General) 0.0160723255
## Don't know (General) 0.0000000000
## Not applicable (General) 0.0013689254
## No answer (General) 0.0000000000
barplot(t(prop.table(tabGeneralJob, margin = 1)), beside = TRUE,

legend = TRUE)

Notice that flipping this question gives me different proportions. This is be-
cause we are asking different question of the data. These are what we would
call Conditional Distributions, and they depend on the order in which you
condition your variables. The first plots show: conditional on being in a group
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in Job Satisfaction, what is your probability of being in a particular group in
General Happiness? That is different than what is shown in the second plot:
conditional on being in a group in General Happiness, what is your probability
of being in a particular group in Job Satisfaction?

5.2.3 Alluvial Plots

It can be complicated to look beyond two categorical variables. But we can
create cross-tabulations for an arbitrary number of variables.
with(wellbeingRecent, table(General.happiness, Job.or.housework,

Happiness.of.marriage))

This is not the nicest output once you start getting several variables. We can
also use the aggregate command to calculate these same numbers, but not
making them a table, but instead a data.frame where each row is a different
cross-tabulation. This isn’t helpful for looking at, but is an easier way to store
and access the numbers.
wellbeingRecent$Freq <- 1
wellbeingAggregates <- aggregate(Freq ~ General.happiness +

Job.or.housework, data = wellbeingRecent[, -2],
FUN = sum)

head(wellbeingAggregates, 10)

## General.happiness Job.or.housework Freq
## 1 Very happy Very satisfied 2137
## 2 Pretty happy Very satisfied 2725
## 3 Not too happy Very satisfied 436
## 4 Don't know Very satisfied 11
## 5 Not applicable Very satisfied 204
## 6 No answer Very satisfied 8
## 7 Very happy Mod. satisfied 843
## 8 Pretty happy Mod. satisfied 2569
## 9 Not too happy Mod. satisfied 527
## 10 Don't know Mod. satisfied 1

This format extends more easily to more variables:
wellbeingAggregatesBig <- aggregate(Freq ~ General.happiness +

Job.or.housework + Satisfaction.with.financial.situation +
Happiness.of.marriage + Is.life.exciting.or.dull,
data = wellbeingRecent[, -2], FUN = sum)

head(wellbeingAggregatesBig, 5)

## General.happiness Job.or.housework Satisfaction.with.financial.situation
## 1 Very happy Very satisfied Satisfied
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## 2 Pretty happy Very satisfied Satisfied
## 3 Not too happy Very satisfied Satisfied
## 4 Very happy Mod. satisfied Satisfied
## 5 Pretty happy Mod. satisfied Satisfied
## Happiness.of.marriage Is.life.exciting.or.dull Freq
## 1 Very happy Exciting 333
## 2 Very happy Exciting 54
## 3 Very happy Exciting 3
## 4 Very happy Exciting 83
## 5 Very happy Exciting 38

An alluvial plot uses this input to try to track how different observations “flow”
through the different variables. Consider this alluvial plot for the two variables
‘General Happiness’ and ‘Satisfaction with Job or Housework’.
library(alluvial)
alluvial(wellbeingAggregates[, c("General.happiness",

"Job.or.housework")], freq = wellbeingAggregates$Freq,
col = palette()[wellbeingAggregates$General.happiness])

Notice how you can see the relative numbers that go through each category.

We can actually expand this to be many variables, though it gets to be a bit of
a mess when you have many levels in each variable as we do. Moreover, this is
a very slow command when you start adding additional variables, so I’ve run
the following code off line and just saved the result:
alluvial(wellbeingAggregatesBig[, -ncol(wellbeingAggregatesBig)],

freq = wellbeingAggregatesBig$Freq, col = palette()[wellbeingAggregatesBig$General.happiness])
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Putting aside the messiness, we can at least see some big things about the data.
For example, we can see that there are a huge number of ‘Not Applicable’ for all
of the questions. For some questions this makes sense, but for others is unclear
why it’s not applicable (few answer Don't know' orNo answer)

Question: What other things can you see about the data from this plots?

These are obviously self-reported measures of happiness, meaning only what
the respondent says is their state; these are not external, objective measures
like measuring the level of a chemical in someone’s blood (and indeed, with
happiness, an objective, quantifiable measurement is hard!).

Question: What are some possible problems in interpreting these results?

While you are generally stuck with some problems about self-reporting, there
are other questions you could ask that might be more concrete and might suffer
somewhat less from people instinct to say ‘fine’ to every question. For example,
for marital happiness, you could ask questions like whether fighting more with
your partner lately, feeling about partner’s supportiveness, how often you tell
your partner your feelings etc., that would perhaps get more specific responses.
Of course, you would then be in a position of interpreting whether that adds
up to a happy marriage when in fact a happy marriage is quite different for
different couples!

Based on this plot, however, it does seem reasonable to exclude some of
the categories as being unhelpful and adding additional complexity without
being useful for interpretation. We will exclude observations that say Not
applicable' on all of these questions. We will also exclude those
that do not answer or saydon’t know’ on any of these questions (consider-
ing non-response is quite important, as anyone who followed the problems with
2016 polls should know, but these are a small number of observations here).

I’ve also asked the alluvial plot to hide the very small categories, which makes
it faster to plot. Again, this is slow, so I’ve created the plot off-line.
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wh <- with(wellbeingRecent, which(General.happiness ==
"Not applicable" | Job.or.housework == "Not applicable" |
Satisfaction.with.financial.situation == "Not applicable"))

wellbeingCondenseGroups <- wellbeingRecent[-wh, ]
wellbeingCondenseGroups <- subset(wellbeingCondenseGroups,

!General.happiness %in% c("No answer", "Don't know") &
!Job.or.housework %in% c("No answer", "Don't know") &
!Satisfaction.with.financial.situation %in%

c("No answer", "Don't know") & !Happiness.of.marriage %in%
c("No answer", "Don't know") & !Is.life.exciting.or.dull %in%
c("No answer", "Don't know"))

wellbeingCondenseGroups <- droplevels(wellbeingCondenseGroups)
wellbeingCondenseAggregates <- aggregate(Freq ~ General.happiness +

Job.or.housework + Satisfaction.with.financial.situation +
Happiness.of.marriage + Is.life.exciting.or.dull,
data = wellbeingCondenseGroups, FUN = sum)

alluvial(wellbeingCondenseAggregates[, -ncol(wellbeingCondenseAggregates)],
freq = wellbeingCondenseAggregates$Freq, hide = wellbeingCondenseAggregates$Freq <

quantile(wellbeingCondenseAggregates$Freq,
0.5), col = palette()[wellbeingCondenseAggregates$General.happiness])

Very happy

Pretty happy

Not too happy

Very satisfied

Mod. satisfied

A little dissat

Very dissatisfied

Satisfied

More or less

Not at all sat

Very happy

Pretty happy

Not too happy

Not applicable

Exciting

Routine

Dull

Not applicable

General.happiness Job.or.housework Satisfaction.with.financial.situation Happiness.of.marriage Is.life.exciting.or.dull

It’s still rather messy, partly because we have large groups of people for whom
some of the questions aren’t applicable (‘Happiness in marriage’ only applies if
you are married!) We can limit ourselves to just married, working individuals
(including housework).
wh <- with(wellbeingCondenseGroups, which(Marital.status ==

"Married" & Labor.force.status %in% c("Working fulltime",
"Working parttime", "Keeping house")))

wellbeingMarried <- wellbeingCondenseGroups[wh, ]
wellbeingMarried <- droplevels(wellbeingMarried)
wellbeingMarriedAggregates <- aggregate(Freq ~ General.happiness +

Job.or.housework + Satisfaction.with.financial.situation +
Happiness.of.marriage + Is.life.exciting.or.dull,
data = wellbeingMarried, FUN = sum)
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alluvial(wellbeingMarriedAggregates[, -ncol(wellbeingMarriedAggregates)],
freq = wellbeingMarriedAggregates$Freq, hide = wellbeingMarriedAggregates$Freq <

quantile(wellbeingMarriedAggregates$Freq, 0.5),
col = palette()[wellbeingMarriedAggregates$General.happiness])
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Cleaner example

The alluvial package comes with an example that provides a cleaner depiction
of alluvial plots on several categories. They use data from the list of passangers
on the Titantic disaster to demonstrate the demographic composition of those
who survived.
data(Titanic)
tit <- as.data.frame(Titanic)
alluvial(tit[, 1:4], freq = tit$Freq, border = NA,

col = ifelse(tit$Survived == "No", "red", "gray"))
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Like so many visualization tools, the effectiveness of a particular plot depends
on the dataset.

5.2.4 Mosaic Plots

In looking at alluvial plots, we often turn to the question of asking whether
the percentage, say happy in their jobs, is very different depending on whether
they report that they are generally happy. Visualizing these percentages is often
done better by a mosaic plot.

Let’s first look at just 2 variables again.
mosaicplot(~General.happiness + Job.or.housework, data = wellbeingMarried,

las = 1, col = palette())
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How do we interpret this plot? Well first, like the plots above, these are
showing conditional dependencies, so there is an order to these variables, based
on how we put them in. First was General Happiness (x-axis). So the amount
of space on the x-axis for Very Happy' is proportional to the number
of people who respondedVery Happy’ on the general happiness question.
Next is Job Satisfaction' (y-axis). *Within* each group of general
happiness, the length on the y-axis is the proportion within that
group answering each of the categories forJob Satisfaction’. That is
the conditional dependencies that we saw above.

Let’s add a third variable, ‘Satisfaction with financial situation’.
mosaicplot(~General.happiness + Job.or.housework +

Satisfaction.with.financial.situation, data = wellbeingMarried,
las = 1, col = palette())
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This makes another subdivision on the x-axis. This is now subsetting down to
the people, for example, that are very satisfied with both Job and their General
life, and looking at the distribution of ‘Satisfaction with financial situation’ for
just those set of people.

Question: Using this information, how do you interpret this plot? What
does this tell you about people who are ‘Very Happy’ in general happiness?

5.2.5 Pairs plots including categorical data

We can use some of these visualizations of categorical data in our pairs plots in
the gpairs function. Our college data has only 1 categorical variable, and our
well-being data has only categorical variables. So to have a mix of the two, we
are going to return to our flight data, and bring in some variables that we didn’t
consider. We will also create a variable that indicates the cause of the delay
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(there is no such variable, but only the amount of delay time due to different
delay causes so we will use this information to create such a variable).

We will consider only delayed flights, and use gpairs to visualize the data.
gpairs(droplevels(flightSFOSRS[whDelayed, c("AirTime",

"DepDelay", "DayOfWeek", "DelayCause")]), upper.pars = list(conditional = "boxplot"))

Question: How do you interpret the different elements of this pairs plot?

5.3 Heatmaps

Let’s consider another dataset. This will consist of “gene expression” measure-
ments on breast cancer tumors from the Cancer Genome Project. This data
measures for all human genes the amount of each gene that is being used in
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the tumor being measured. There are measurements for 19,000 genes but we
limited ourselves to around 275 genes.
breast <- read.csv(file.path(dataDir, "highVarBreast.csv"),

stringsAsFactors = TRUE)

One common goal of this kind of data is to be able to identify different types of
breast cancers. The idea is that by looking at the genes in the tumor, we can
discover similarities between the tumors, which might lead to discovering that
some patients would respond better to certain kinds of treatment, for example.

We have so many variables, that we might consider simplifying our analysis
and just considering the pairwise correlations of each variable (gene) – like the
upper half of the pairs plot we drew before. Rather than put in numbers, which
we couldn’t easily read, we will put in colors to indicate the strength of the
correlation. Representing a large matrix of data using a color scale is called a
heatmap. Basically for any matrix, we visualize the entire matrix by putting
a color for the value of the matrix.

In this case, our matrix is the matrix of correlations.
library(pheatmap)
corMat <- cor(breast[, -c(1:7)])
pheatmap(corMat, cluster_rows = FALSE, cluster_cols = FALSE)
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Question: Why is the diagonal all dark red?

This is not an informative picture, however – there are so many variables (genes)
that we can’t discover anything here.

However, if we could reorder the genes so that those that are highly correlated
are near each other, we might see blocks of similar genes like we did before.
In fact this is exactly what heatmaps usually do by default. They reorder the
variables so that similar patterns are close to each other.

Here is the same plot of the correlation matrix, only now the rows and columns
have been reordered.
pheatmap(corMat, cluster_rows = TRUE, cluster_cols = TRUE,

treeheight_row = 0, treeheight_col = 0)
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Question: What do we see in this heatmap?

5.3.1 Heatmaps for Data Matrices

Before we get into how that ordering was determined, lets consider heatmaps
more. Heatmaps are general, and in fact can be used for the actual data matrix,
not just the correlation matrix.
pheatmap(breast[, -c(1:7)], cluster_rows = TRUE, cluster_cols = TRUE,

treeheight_row = 0, treeheight_col = 0)
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Question: What do we see in this heatmap?

We can improve upon this heatmap. I prefer different colors for this type of
data, and we can add some information we have about these samples. I am
also going to change how the heatmap assigns colors to the data. Specifically,
heatmap gives a color for data by binning it and all data within a particular
range of values gets a particular color. By default it is based on equally spaced
bins across all of the data in the matrix – sort of like a histogram. However,
this can frequently backfire if you have a few outlying points. One big value will
force the range to cover it. The effect of this can be that most of the data is
only in a small range of colors, so you get a heatmap where everything is mostly
one color, so you don’t see much. I am going to change it so that most of the
bins go from the 1% to the 99% quantile of data, and then there is one end bin
on each end that covers all of the remaining large values.
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typeCol <- c("red", "black", "yellow")
names(typeCol) <- levels(breast$TypeSample)
estCol <- palette()[c(4, 3, 5)]
names(estCol) <- levels(breast$EstReceptor)
proCol <- palette()[5:7]
names(proCol) <- levels(breast$Progesteron)
qnt <- quantile(as.numeric(data.matrix((breast[, -c(1:7)]))),

c(0.01, 0.99))
brks <- seq(qnt[1], qnt[2], length = 20)
head(brks)

## [1] -5.744770 -4.949516 -4.154261 -3.359006 -2.563751 -1.768496
seqPal5 <- colorRampPalette(c("black", "navyblue",

"mediumblue", "dodgerblue3", "aquamarine4", "green4",
"yellowgreen", "yellow"))(length(brks) - 1)

row.names(breast) <- c(1:nrow(breast))
fullHeat <- pheatmap(breast[, -c(1:7)], cluster_rows = TRUE,

cluster_cols = TRUE, treeheight_row = 0, treeheight_col = 0,
color = seqPal5, breaks = brks, annotation_row = breast[,

5:7], annotation_colors = list(TypeSample = typeCol,
EstReceptor = estCol, Progesteron = proCol))
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Question: What does adding this information allow us to see now?

whCancer <- which(breast$Type != "Normal")
pheatmap(breast[whCancer, -c(1:7)], cluster_rows = TRUE,

cluster_cols = TRUE, treeheight_row = 0, treeheight_col = 0,
color = seqPal5, breaks = brks, annotation_row = breast[whCancer,

5:7], annotation_colors = list(TypeSample = typeCol,
EstReceptor = estCol, Progesteron = proCol))
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Centering/Scaling Variables

Some genes have drastic differences in their measurements for different samples.
But we might also can notice that many of the genes are all high, or all low.
They might show similar patterns of differences, but at a lesser scale. It would
be nice to put them on the same basis. A simple way to do this is to subtract
the mean or median of each variable.

Notice our previous breaks don’t make sense for this centered data. Moreover,
now that we’ve centered the data, it makes sense to make the color scale sym-
metric around 0, and also to have a color scale that emphasizes zero.

Question: Why this focus on being centered around zero?
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breastCenteredMean <- scale(breast[, -c(1:7)], center = TRUE,
scale = FALSE)

colMedian <- apply(breast[, -c(1:7)], 2, median)
breastCenteredMed <- sweep(breast[, -c(1:7)], MARGIN = 2,

colMedian, "-")
qnt <- max(abs(quantile(as.numeric(data.matrix((breastCenteredMed[,

-c(1:7)]))), c(0.01, 0.99))))
brksCentered <- seq(-qnt, qnt, length = 50)
seqPal2 <- colorRampPalette(c("orange", "black", "blue"))(length(brksCentered) -

1)
seqPal2 <- (c("yellow", "gold2", seqPal2))
seqPal2 <- rev(seqPal2)
pheatmap(breastCenteredMed[whCancer, -c(1:7)], cluster_rows = TRUE,

cluster_cols = TRUE, treeheight_row = 0, treeheight_col = 0,
color = seqPal2, breaks = brksCentered, annotation_row = breast[whCancer,

6:7], annotation_colors = list(TypeSample = typeCol,
EstReceptor = estCol, Progesteron = proCol))



218 CHAPTER 5. VISUALIZING MULTIVARIATE DATA

We could also make their range similar by scaling them to have a similar variance.
This is helpful when your variables are really on different scales, for example
weights in kg and heights in meters. This helps put them on a comparable scale
for visualizing the patterns with the heatmap. For this gene expression data,
the scale is more roughly similar, though it is common in practice that people
will scale them as well for heatmaps.

5.3.2 Hierarchical Clustering

How do heatmaps find the ordering of the samples and genes? It performs a
form of clustering on the samples. Let’s get an idea of how clustering works
generally, and then we’ll return to heatmaps.

The idea behind clustering is that there is an unknown variable that would tell
you the ‘true’ groups of the samples, and you want to find it. This may not
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actually be true in practice, but it’s a useful abstraction. The basic idea of
clustering relies on examining the distances between samples and putting into
the same cluster samples that are close together. There are countless num-
ber of clustering algorithms, but heatmaps rely on what is called hierarchical
clustering. It is called hiearchical clustering because it not only puts obser-
vations into groups/clusters, but does so by first creating a hierarchical tree or
dendrogram that relates the samples.

Here we show this on a small subset of the samples and genes. We see on the
left the dendrogram that relates the samples (rows).1

smallBreast <- read.csv(file.path(dataDir, "smallVarBreast.csv"),
header = TRUE, stringsAsFactors = TRUE)

row.names(smallBreast) <- 1:nrow(smallBreast)
pheatmap(smallBreast[, -c(1:7)], cluster_rows = TRUE,

cluster_cols = FALSE, treeheight_col = 0, breaks = brks,
col = seqPal5)

1I have also clustered the variables (columns) in this figure because otherwise it is hard to
see anything, but have suppressed the drawing of the dendrogram to focus on the samples –
see the next figure where we draw both.
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We can use the same principle for clustering the variables:
pheatmap(smallBreast[, -c(1:7)], , cluster_rows = TRUE,

cluster_cols = TRUE, breaks = brks, col = seqPal5,
annotation_row = smallBreast[, 5:7], annotation_colors = list(TypeSample = typeCol,

EstReceptor = estCol, Progesteron = proCol))
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Notice that with this small subset of genes and samples, we don’t see the same
discrimination between normal and cancer samples.

Where are the clusters?

If hierarchical clustering is a clustering routine, where are the clusters? The idea
is that the dendrogram is just a first step toward clustering. To get a cluster, you
draw a line across the dendrogram to “cut” the dendrogram into pieces, which
correspond to the clusters. For the purposes of a heatmap, however, what is
interesting is not the clusters, but ordering of the samples that it provides.

5.3.2.1 How Hierarchical Clustering Works

Hierarchical clustering is an iterative process, that builds the dendrogram by
iteratively creating new groups of samples by either

1. joining pairs of individual samples into a group
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2. add an individual samples to an existing group
3. combine two groups into a larger group2

Step 1: Pairwise distance matrix between groups We consider each sam-
ple to be a separate group (i.e. 𝑛 groups), and we calculate the pairwise distances
between all of the 𝑛 groups.

For simplicity, let’s assume we have only one variable, so our data is 𝑦1, … , 𝑦𝑛.
Then the standard distance between samples 𝑖 and 𝑗 could be

𝑑𝑖𝑗 = |𝑦𝑖 − 𝑦𝑗|
or alternatively squared distance,

𝑑𝑖𝑗 = (𝑦𝑖 − 𝑦𝑗)2.
So we can get all of the pairwise distances between all of the samples (a distance
matrix of all the 𝑛 × 𝑛 pairs)

Step 2: Make group by joining together two closest “groups” Your
available choices from the list above are to join together two samples to make a
group. So we choose to join together the two samples that are closest together,
and forming our first real group of samples.

Step 3: Update distance matrix between groups Specifically, say you
have already joined together samples 𝑖 and 𝑗 to make the first true group. To
join update our groups, our options from the list above are:

1. Combine two samples 𝑘 and ℓ to make next group (i.e. do nothing with
the group previously formed by 𝑖 and 𝑗.

2. Combine some sample 𝑘 with your new group

Clearly, if we join together two samples 𝑘 and ℓ it’s the same as above (pick two
closest). But how do you decide to do that versus add sample 𝑘 to my group of
samples 𝑖 and 𝑗? We need to decide whether a sample 𝑘 is closer to the group
consisting of 𝑖 and 𝑗 than it is to any other sample ℓ.
We do this by recalculating the pairwise distances we had before, replacing
these two samples 𝑖 and 𝑗 by the pairwise distance of the new group to the other
samples.

Of course this is easier said than done, because how do we define how close a
group is to other samples or groups? There’s no single way to do that, and in
fact there are a lot of competing methods. The default method in R is to say
that if we have a group 𝒢 consisting of 𝑖 and 𝑗, then the distance of that group
to a sample 𝑘 is the maximum distance of 𝑖 and 𝑗 to 𝑘3 ,

𝑑(𝒢, 𝑘) = max(𝑑𝑖𝑘, 𝑑𝑗𝑘).
2This is called an agglomerative method, where you start at the bottom of the tree and

build up. There are also divisive method for creating a hiearchical tree that starts at the “top”
by continually dividing the samples into two group.

3This is called complete linkage.
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Now we have a updated 𝑛−1×𝑛−1 matrix of distances between all our current
list of “groups” (remember the single samples form their own group).

Step 4: Join closest groups Now we find the closest two groups and join the
samples in the group together to form a new group.

Step 5+: Continue to update distance matrix and join groups Then
you repeat this process of joining together to build up the tree. Once you get
more than two groups, you will consider all of the three different kinds of joins
described above – i.e. you will also consider joining together two existing groups
𝒢1 and 𝒢2 that both consist of multiple samples. Again, you generalize the
definition above to define the distance between the two groups of samples to be
the maximum distance of all the points in 𝒢1 to all the points in 𝒢2,

𝑑(𝒢1, 𝒢2) = max
𝑖∈𝒢1,𝑗∈𝒢2

𝑑𝑖𝑗.

Distances in Higher Dimensions

The same process works if instead of having a single number, your 𝑦𝑖 are now
vectors – i.e. multiple variables. You just need a definition for the distance
between the 𝑦𝑖, and then follow the same algorithm.

What is the equivalent distance when you have more variables? For each variable
ℓ, we observe 𝑦(ℓ)

1 , … , 𝑦(ℓ)
𝑛 . And an observation is now the vector that is the

collection of all the variables for the sample:

𝑦𝑖 = (𝑦(1)
𝑖 , … , 𝑦(𝑝)

𝑖 )

We want to find the distance between observations 𝑖 and 𝑗 which have vectors
of data

(𝑦(1)
𝑖 , … , 𝑦(𝑝)

𝑖 )
and

(𝑦(1)
𝑗 , … , 𝑦(𝑝)

𝑗 )
The standard distance (called Euclidean distance) is

𝑑𝑖𝑗 = 𝑑(𝑦𝑖, 𝑦𝑗) =
√√√
⎷

𝑝
∑
ℓ=1

(𝑦(ℓ)
𝑖 − 𝑦(ℓ)

𝑗 )2

So its the cummulative (i.e. sum) amount of the individual (squared) distance
of each variable. You don’t have to use this distance – there are other choices
that can be better depending on the data – but it is the default.

We generally work with squared distances, which would be

𝑑2
𝑖𝑗 =

𝑝
∑
ℓ=1

(𝑦(ℓ)
𝑖 − 𝑦(ℓ)

𝑗 )2
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5.4 Principal Components Analysis

In looking at both the college data and the gene expression data, it is clear that
there is a lot of redundancy in our variables, meaning that several variables are
often giving us the same information about the patterns in our observations.
We could see this by looking at their correlations, or by seeing their values in a
heatmap.

For the purposes of illustration, let’s consider a hypothetical situation. Say that
you are teaching a course, and there are two exams:

These are clearly pretty redundant information, in the sense that if I know a
student has a high score in exam 1, I know they are a top student, and exam 2
gives me that same information.

Consider another simulated example. Say the first value is the midterm score
of a student, and the next value is the percentage of class and labs the student
skipped. These are negatively correlated, but still quite redundant.

The goal of principal components analysis is to reduce your set of variables into
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the most informative. One way is of course to just manually pick a subset.
But which ones? And don’t we do better with more information – we’ve seen
that averaging together multiple noisy sources of information gives us a better
estimate of the truth than a single one. The same principle should hold for our
variables; if the variables are measuring the same underlying principle, then we
should do better to use all of the variables.

Therefore, rather than picking a subset of the variables, principal components
analysis creates new variables from the existing variables.

There are two equivalent ways to think about how principal components analysis
does this.

5.4.1 Linear combinations of existing variables

You want to find a single score for each observation that is a summary of your
variables. We will first consider as a running example the simple setting of
finding a summary for a student with two grades, but the power is really when
you want to find a summary for a lot of variables, like with the college data or
the breast cancer data.

Question: What is the problem with taking the mean of our two exam
scores?

Let’s assume we make them have the same mean:

Question: What problem remains?
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If we are taking the mean, we are treating our two variables 𝑥(1) and 𝑥(2) equally,
so that we have a new variable 𝑧 that is given by

𝑧𝑖 = 1
2𝑥(1)

𝑖 + 1
2𝑥(2)

𝑖

The idea with principal components, then, is that we want to weight them
differently to take into account the scale and whether they are negatively or
positively correlated.

𝑧𝑖 = 𝑎1𝑥(1)
𝑖 + 𝑎2𝑥(2)

𝑖

So the idea of principal components is to find the “best” constants (or coeffi-
cients), 𝑎1 and 𝑎2. This is a little bit like regression, only in regression I had
a response 𝑦𝑖, and so my best coefficients were the best predictors of 𝑦𝑖. Here
I don’t have a response. I only have the variables, and I want to get the best
summary of them, so we will need a new definition of ”best”.

So how do we pick the best set of coefficients? Similar to regression, we need a
criteria for what is the best set of coefficients. Once we choose the criteria, the
computer can run an optimization technique to find the coefficients. So what is
a reasonable criteria?

If I consider the question of exam scores, what is my goal? Well, I would like
a final score that separates out the students so that the students that do much
better than the other students are further apart, etc. %Score 2 scrunches most
of the students up, so the vertical line doesn’t meet that criteria.

The criteria in principal components is to find the line so that the new variable
values have the most variance – so we can spread out the observations the most.
So the criteria we choose is to maximize the sample variance of the resulting 𝑧.
In other words, for every set of coefficients 𝑎1, 𝑎2, we will get a set of 𝑛 new
values for my observations, 𝑧1, … , 𝑧𝑛. We can think of this new 𝑧 as a new
variable.

Then for any set of cofficients, I can calculate the sample variance of my resulting
𝑧 as

̂𝑣𝑎𝑟(𝑧) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑧𝑖 − ̄𝑧)2

Of course, 𝑧𝑖 = 𝑎1𝑥(1)
𝑖 + 𝑎2𝑥(2)

𝑖 , this is actually

̂𝑣𝑎𝑟(𝑧) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑎1𝑥(1)
𝑖 + 𝑎2𝑥(2)

𝑖 − ̄𝑧)2

(I haven’t written out ̄𝑧 in terms of the coefficients, but you get the idea.) Now
that I have this criteria, I can use optimization routines implemented in the
computer to find the coefficients that maximize this quantity.

Here is a histogram of the PCA variable 𝑧 and that of the mean.
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Why maximize variance – isn’t that wrong?

We often talk about PCA as “preserving” the variance in our data. But in many
settings we say we want low variability, so it frequently seems wrong to students
to maximize the variance. But this is because frequently we think of variability
as the same thing as noise. But variability among samples should only be con-
sidered noise among homogeneous samples, i.e. samples there are no interesting
reasons for why they should be different. Otherwise we can have variability in
our variables due to important differences between our observations, like what
job title our employees have in the SF data in Chapter 2. We can see this in our
data examples above, where we see different meaningful groups are separated
from each other, such as cancer and normal patients. Genes that have a lot of
differences between cancer and normal will have a large amount of spread. The
difference in the groups is creating a large spread in our observations. Capturing
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the variance in PCA is capturing these meaningful differences, as we can see in
our above examples.

5.4.1.1 More than 2 variables

This procedure expands easily to more than 2 variables. Specifically assume
that our observation 𝑖 is a vector of values, (𝑥(1)

𝑖 , … , 𝑥(𝑝)
𝑖 ) where 𝑝 is the number

of variables. With PCA, I am looking for a linear combination of these
𝑝 variables. As before, this means we want to multiply each variable by a
coefficient and add them together (or subtract if the coefficient is negative) to
get a new variable 𝑧 for each observation,

𝑧𝑖 = 𝑎1𝑥(1)
𝑖 + … + 𝑎𝑝𝑥(𝑝)

𝑖

So finding a linear combination is equivalent to finding a set of the 𝑝 constants
that I will multiply my variables by.

Question: If I take the mean of my 𝑝 variables, what are my choices of
𝑎𝑘 for each of my variables?

I can similarly find the coefficients 𝑎𝑘 so that my resulting 𝑧𝑖 have maximum
variance.

PCA is really most powerful when considering many variables.

Unique only up to a sign change

Notice that if I multiplied all of the coefficients 𝑎𝑘 by −1, then 𝑧𝑖 will become
−𝑧𝑖. However, the variance of −𝑧𝑖 will be the same as the variance of 𝑧𝑖, so
either answer is equivalent. In general, PCA will only give a unique score 𝑧𝑖 up
to a sign change.

Question: You do NOT get the same answer if you multiply only some
𝑎𝑘 by −1, why?

Example: Scorecard Data

Consider, for example, our scorecard of colleges data, where we previously only
considered the pairwise scatterplots. There are 30 variables collected on each
institution – too many to easily visualize. We will consider a PCA summary
of all of this data that will incorporate all of these variables. Notice that PCA
only makes sense for continuous variables, so we will remove variables (like
the private/public split) that are not continuous. PCA also doesn’t handle NA
values, so I have removed samples that have NA values in any of the observations.
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I can plot a histogram of the scores that each observation received:

We can see that some observations have quite outlying scores. When I manually
look at their original data, I see that these scores have very large (or very small)
values for most of the variables, so it makes sense that they have outlying scores.

I can also compare whether public and private colleges seem to be given different
scores:
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We can see some division between the two, with public seeming to have lower
scores than the private. Notice that I only care about relative values here – if
I multiplied all of my coefficients 𝑎𝑘 by −1, then I would flip which is lower or
higher, but it would be equivalent in terms of the variance of my new scores 𝑧𝑖.
So it does not mean that public schools are more likely to have lower values on
any particular variables; it does mean that public schools tend to have values
that are in a different direction than private schools on some variables.

Example: Breast Cancer Data

Similarly we can see a big difference between cancer and normal observations in
the first two principal components.

We can see that, at least based on the PC score, there might be multiple groups
in this data, because there are multiple modes. We could explore the scores of
normal versus cancer samples, for example:
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We can also see that cancer samples are really spread out; we have other variables
that are particularly relevant for separating cancer samples, so we could see how
they differ. For example, by separating estrogen receptor status, we see quite
different distributions:
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In summary, based on our PCA score, I can visually explore important patterns
in my data, even with very large numbers of variables. Because I know that
this is the linear combination that most spreads out my observations, hopefully
large shared differences between our samples (like normal vs cancer, or outly-
ing observations) will be detected, particularly if they are reiterated in many
variables.

5.4.1.2 Multiple principal components

So far we have found a single score to summarize our data. But we might con-
sider that a single score is not going to capture the complexity in the data. For
example, for the breast cancer data, we know that the normal and cancer sam-
ples are quite distinct. But we also know that within the cancer patients, those
negative on the Estrogen Receptor or Progesteron are themselves a subgroup
within cancer patients, in terms of their gene measurements. Capturing these
distinctions with a single score might be to difficult.

Specifically, for each observation 𝑖, we have previously calculated a single score,

𝑧 = 𝑎1𝑥(1) + … + 𝑎𝑝𝑥(𝑝)

What if instead we want two scores for each observation 𝑖, i.e. (𝑧(1)
𝑖 , 𝑧(2)

𝑖 ). Again,
we want each score to be linear combinations of our original 𝑝 variables. This
gives us

𝑧(1) = 𝑎(1)
1 𝑥(1) + … + 𝑎(1)

𝑝 𝑥(𝑝)

𝑧(2) = 𝑏(2)
1 𝑥(1) + … + 𝑏(2)

𝑝 𝑥(𝑝)
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Notice that the coefficients 𝑎(1)
1 , … , 𝑎(1)

𝑝 belong to our first PC score, 𝑧(1), and the
second set of coefficients 𝑏(2)

1 , … , 𝑏(2)
𝑝 are entirely different numbers and belong

to our second PC score, 𝑧(2).

We can think of this as going from each observation having data (𝑥(1), … , 𝑥(𝑝)) to
now having (𝑧(1), 𝑧(2)) as their summarized data. This is often called a reduced
dimensionality representation of our data, because we are going from 𝑝
variables to a reduced number of summary variables (in this case 2 variables).
More generally, if we have many variables, we can use the principal components
to go from many variables to a smaller number.

How are we going to choose (𝑧(1), 𝑧(2))? Previously we chose the coefficients
𝑎𝑘 so that the result is that 𝑧(1) has maximal variance. Now that we have
two variables, what properties do we want them to have? They clearly cannot
both maximimize the variance, since there’s only one way to do that – we’d get
𝑧(1) = 𝑧(2) which doesn’t give us any more information about our data!

So we need to say something about how the new variables 𝑧(1), 𝑧(2) relate to each
other so that jointly they maximally preserve information about our original
data.

How can we quantify this idea? There are ways of measuring the total variance
between multiple variables 𝑧(1) and 𝑧(2) variables, which we won’t go into in
detail. But we’ve seen that when variables are highly correlated with each
other, they don’t give a lot more information about our observations since we
can predict one from the other with high confidence (and if perfectly correlated
we get back to 𝑧(1) = 𝑧(2)). So this indicates that we would want to choose our
coefficients 𝑎(1)

1 , … , 𝑎(1)
𝑝 and 𝑏(2)

1 , … , 𝑏(2)
𝑝 so that the resulting 𝑧(1) and 𝑧(2) are

completely uncorrelated.

How PCA does this is the following:

1) Choose 𝑎(1)
1 … 𝑎(1)

𝑝 so that the resulting 𝑧(1)
𝑖 has maximal variance. This

means it will be exactly the same as our PC that we found previously.

2) Choose 𝑏(2)
1 , … , 𝑏(2)

𝑝 so that the resulting 𝑧(2)
𝑖 is uncorrelated with the 𝑧(1)

𝑖
we have already found. That does not create a unique score 𝑧(2)

𝑖 (there will
be many that satisfy this property). So we have the further requirement

3) Among all 𝑏(2)
1 , … , 𝑏(2)

𝑝 that result in 𝑧(2)
𝑖 uncorrelated with 𝑧(1)

𝑖 , we choose
𝑏(2)

1 , … , 𝑏(2)
𝑝 so that the resulting 𝑧(2)

𝑖 have maximal variance.

This sounds like a hard problem to find 𝑏(2)
1 , … , 𝑏(2)

𝑝 that satisfies both of these
properties, but it is actually equivalent to a straightforward problem in linear
algebra (related to SVD or eigen decompositions of matrices).

The end result is that we wind up with two new variables for each observation
and these new variables have correlation equal to zero and jointly “preserve” the
maximal amount of variance in our data.
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Example: College Data

Let’s consider what going to two PC components does for our previous data
examples. Previously in the college data, with one principal component we saw
that there was a difference in the distribution of scores, but that was also a
great deal of overlap.

Individually, we can consider each PC, and see that there is a bit more separation
in PC2 than PC1

But even more importantly, we can consider these variables jointly in a scatter
plot:
plot(pcaCollegeDf[, c("PC1", "PC2")], col = c("red",

"black")[pcaCollegeDf$type], asp = 1)
legend("topright", c("public", "private"), fill = c("red",

"black"))
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We see that now the public and private are only minimally overlapping; we’ve
gained a lot of information about this particular distinction (public/private) by
adding in PC2 in addition to PC1.

Remember, we didn’t use the public or private variable in our PCA; and there
is no guarantee that the first PCs will capture the differences you are interested
in. But when these differences create large distinctions in the variables (like the
public/private difference does), then PCA is likely to capture this difference,
enabling you to use it effectively as a visualization tool.

Example: Breast Cancer Data

We now turn to the breast cancer data. We can see that PC2 is probably slightly
worse at separating normal from cancer compared to PC1 (and particularly
doesn’t give similar scores to metastases):
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It does a arguably a better job of separating our negative estrogen receptor
patients:
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When we consider these variables jointly in a scatter plot we see much greater
separation:
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Question: What differences do you see when you use both principal
components rather than either one singly?

5.4.2 Geometric Interpretation

Another way to consider our redundancy is geometrically. If this was a regression
problem we would “summarize” the relationship betweeen our variables by the
regression line:

This is a summary of how the x-axis variable predicts the y-axis variable. But
note that if we had flipped which was the response and which was the predictor,
we would give a different line.

The problem here is that our definition of what is the best line summarizing
this relationship is not symmetric in regression. Our best line minimizes error
in the y direction. Specifically, for every observation 𝑖, we project our data onto
the line so that the error in the 𝑦 direction is minimized.
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However, if we want to summarize both variables symmetrically, we could in-
stead consider picking a line to minimize the distance from each point to the
line.

By distance of a point to a line, we mean the minimimum distance of any point
to the line. This is found by drawing another line that goes through the point
and is orthogonal to the line. Then the length of that line segment from the
point to the line is the distance of a point to the line.

Just like for regression, we can consider all lines, and for each line, calculate the
average distance of the points to the line.

So to pick a line, we now find the line that minimizes the average distance to
the line across all of the points. This is the PCA line:
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Compare this to our regression line:

Creating a new variable from the PCA line

Drawing lines through our data is all very well, but what happened to creating
a new variable, that is the best summary of our two variables? In regression, we
could view that our regression line gave us the “best” prediction of the average
𝑦 for an 𝑥 (we called it our predicted value, or ̂𝑦). This best value was where
our error line drawn from 𝑦𝑖 to the regression line (vertically) intersected.

Similarly, we used lines drawn from our data point to our PCA line to define
the best line summary, only we’ve seen that for PCA we are interested in the
line orthogonal to our point so as to be symmetric between our two variables –
i.e. not just in the 𝑦 direction. In a similar way, we can say that the point on
the line where our perpendicular line hits the PCA line is our best summary of
the value of our point. This is called the orthogonal projection of our point
onto the line. We could call this new point ( ̂𝑥(1), ̂𝑥(2).
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This doesn’t actually give us a single variable in place of our original two vari-
ables, since this point is defined by 2 coordinates as well. Specifically, for any
line 𝑥(2) = 𝑎+𝑏𝑥(1), we have that the coordinates of the projection onto the line
are given by4

̂𝑥(1) = 𝑏
𝑏2 + 1(𝑥(1)

𝑏 + 𝑥(2) − 𝑎)

̂𝑥(2) = 1
𝑏2 + 1(𝑏𝑥(1) + 𝑏2𝑥(2) + 𝑎)

(and since we’ve centered our data, we want our line to go through (0, 0), so
𝑎 = 0)

But geometrically, if we consider the points ( ̂𝑥(1)
𝑖 , ̂𝑥(2)

𝑖 ) as a summary of our data,
then we don’t actually need two dimensions to describe these summaries. From
a geometric point of view, our coordinate system is arbitrary for describing the
relationship of our points. We could instead make a coordinate system where
one of the coordiantes was the line we found, and the other coordinate the
orthogonal projection of that. We’d see that we would only need 1 coordinate
(𝑧𝑖) to describe ( ̂𝑥(1)

𝑖 , ̂𝑥(2)
𝑖 ) – the other coordinate would be 0.

4See, for example, (https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line),
on Wikipedia, where they give a proof of these statements

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
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That coordiante, 𝑧𝑖, would equivalently, from a geometric perspective, describe
our projected points. And the value 𝑧𝑖 is found as the distance of the projected
point along the line (from (0, 0)).5 So we can consider 𝑧𝑖 as our new variable.

Relationship to linear combinations

Is 𝑧𝑖 a linear combination of our original 𝑥(1) and 𝑥(2)? Yes. In fact, as a general
rule, if a line going through (0, 0) is given by 𝑥(2) = 𝑏𝑥(1), then the distance
along the line of the projection is given by6

𝑧𝑖 = 1√
1 + 𝑏2(𝑥(1) + 𝑏𝑥(2))

Relationship to variance interpretation

Finding 𝑧𝑖 from the geometric procedure described above (finding line with
minimimum orthogonal distance to points, then getting 𝑧𝑖 from the projection
of the points on to the line) is actually mathematically equivalent to finding
the linear combination 𝑧𝑖 = 𝑎1𝑥(1) + 𝑎2𝑥(2) that results in the greatest variance
of our points. In other words, finding 𝑎1, 𝑎2 to minimize ̂𝑣𝑎𝑟(𝑧𝑖) is the same
as finding the slope 𝑏 that minimizes the average distance of (𝑥(1)

𝑖 , 𝑥(2)
𝑖 ) to its

projected point ( ̂𝑥(1)
𝑖 , ̂𝑥(2)

𝑖 ).

To think why this is true, notice that if I assume I’ve centered my data, as
I’ve done above, then the total variance in my two variables (i.e. sum of the

5From (0, 0), because I centered the data, so the center of the points is at (0, 0).
6You can see this by using the coordinates of �̂� = (�̂�(1), �̂�(2)) given above, and using the

pythagorean theorem, since the points (0, 0), �̂� = (�̂�(1), �̂�(2)), and (𝑥(1), 𝑥(2)) form a right
angled triangle. Note that it is important that our line has 𝑎 = 0 for this calculation.
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variances of each variable) is given by

1
𝑛 − 1 ∑

𝑖
(𝑥(1)

𝑖 )2 + 1
𝑛 − 1 ∑

𝑖
(𝑥(2)

𝑖 )2

1
𝑛 − 1 ∑

𝑖
[(𝑥(1)

𝑖 )2 + (𝑥(2)
𝑖 )2]

So that variance is a geometrical idea once you’ve centered the variables – the
sum of the squared length of the vector ((𝑥(1)

𝑖 , 𝑥(2)
𝑖 ). Under the geometric inter-

pretation your new point ( ̂𝑥(1)
𝑖 , ̂𝑥(2)

𝑖 ), or equivalently 𝑧𝑖, has mean zero too, so
the total variance of the new points is given by

1
𝑛 − 1 ∑

𝑖
𝑧2

𝑖

Since we know that we have an orthogonal projection then we know that the
distance 𝑑𝑖 from the point (𝑥(1)

𝑖 , 𝑥(2)
𝑖 ) to ( ̂𝑥(1)

𝑖 , ̂𝑥(2)
𝑖 ) satisfies the Pythagorean

theorem,
𝑧𝑖(𝑏)2 + 𝑑𝑖(𝑏)2 = [𝑥(1)

𝑖 ]2 + [𝑥(2)
𝑖 ]2.

That means that finding 𝑏 that minimizes ∑𝑖 𝑑𝑖(𝑏)2 will also maximize ∑𝑖 𝑧𝑖(𝑏)2

because
∑

𝑖
𝑑𝑖(𝑏)2 = constant − ∑

𝑖
𝑧𝑖(𝑏)2

so minimizing the left hand size will maximize the right hand side.

Therefore since every 𝑧𝑖(𝑏) found by projecting the data to a line through the
origin is a linear combination of 𝑥(1)

𝑖 , 𝑥(2)
𝑖 AND minimizing the squared distance

results in the 𝑧𝑖(𝑏) having maximum variance across all such 𝑧2
𝑖 (𝑏), then it MUST

be the same 𝑧𝑖 we get under the variance-maximizing procedure.

The above explanation is to help give understanding of the mathematical under-
pinnings of why they are equivalent. But the important take-home fact is that
both of these procedures are the same: if we minimize the distance to the line,
we also find the linear combination so that the projected points have the most
variance (i.e. we can spread out the points the most).

Compare to Mean

We can use the geometric interpretation to consider what is the line correspond-
ing to the linear combination defined by the mean,

1
2𝑥(1) + 1

2𝑥(2)

It is the line 𝑦 = 𝑥,
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We could see geometrically how the mean is not a good summary of our cloud
of data points.

Note on Standardizing the Variables

You might say, “Why not standardize your scores by the standard deviation
so they are on the same scale?” For the case of combining 2 scores, if I nor-
malized my variables, I would get essentially the same 𝑧 from the PCA linear
combination and the mean.7 However, as we will see, we can extend PCA
summarization to an arbitrary number of variables, and then the scaling of the
variables does not have this equivalency with the mean. This is just a freak
thing about combining 2 variables.

Why maximize variance – isn’t that wrong?

This geometric interpretation allows us to go back to this question we addressed
before – why maximize variance? Consider this simple simulated example where
there are two groups that distinguish our observations. Then the difference in
the groups is creating a large spread in our observations. Capturing the variance
is capturing these differences.

7If the data is scaled so the two variances have the same st.deviation, then they are exactly
the same up to a constant; PCA uses 1√

2 rather than 1
2 for the constant. But they both give

equal weight to the two variables.
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Example on real data

We will look at data on scores of students taking AP statistics. First we will
draw a heatmap of the pair-wise correlation of the variables.

Not surprisingly, many of these measures are highly correlated.

Let’s look at 2 scores, the midterm score (MT) and the pre-class evaluation
(Locus.Aug) and consider how to summarize them using PCA.
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5.4.2.1 More than 2 variables

We could similarly combine three measurements. Here is some simulated test
scores in 3 dimensions.

Now a good summary of our data would be a line that goes through the cloud
of points. Just as in 2 dimensions, this line corresponds to a linear combination
of the three variables. A line in 3 dimensions is written in it’s standard form as:

𝑐 = 𝑏1𝑥(1)
𝑖 + 𝑏2𝑥(2)

𝑖 + 𝑏3𝑥(3)
𝑖

Since again, we will center our data first, the line will be with 𝑐 = 0.8

The exact same principles hold. Namely, that we look for the line with the
smallest average distance to the line from the points. Once we find that line

8This is the standard way to write the equation for a line in higher dimensions and is
symmetric in the treatment of the variables. Note the standard way you were probably taught
to write a line in 2-dimensions, 𝑦 = 𝑎 + 𝑏𝑥 can also be written in this form with 𝑐 = 𝑏, 𝑏1 = 𝑏,
and 𝑏2 = −1.
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(drawn in the picture above), our 𝑧𝑖 is again the distance from 0 of our point
projected onto the line. The only difference is that now distance is in 3 dimen-
sions, rather than 2. This is given by the Euclidean distance, that we discussed
earlier.

Just like before, this is exactly equivalent to setting 𝑧𝑖 = 𝑎1𝑥(1)
𝑖 + 𝑎2𝑥(2)

𝑖 + 𝑎3𝑥(3)
𝑖

and searching for the 𝑎𝑖 that maximize ̂𝑣𝑎𝑟(𝑧𝑖).

Many variables

We can of course expand this to as many variables as we want, but it gets hard to
visualize the geometric version of it. The variance-maximizing version is easier
to write out.

5.4.2.2 Adding another principal component

What if instead my three scores look like this (i.e. line closer to a plane than a
line)?

I can get one line through the cloud of points, corresponding to my best linear
combination of the three variables. But I might worry whether this really rep-
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resented my data, since as we rotate the plot around we can see that my points
appear to be closer to a lying near a plane than a single line.

Question: For example, can you find a single line so that if you projected
your data onto that line, you could separate the three groups shown?

So there’s some redundancy, in the sense that I don’t need three dimensions
to geometrically represent this data, but it’s not clear that with only 1 new
variable (i.e. line) we can summarize this cloud of data geometrically.

5.4.2.3 The geometric idea

I might ask whether I could better summarize these three variables by two
variables, i.e. as a plane. I can use the same geometric argument – find the
best plane, so that the orthogonal projection of the points to the plane is the
smallest. This is equivalent to finding two lines, rather than one, since a plane
can be defined by any two lines that lie on it.

I could just search for the plane that is closest to the points, just like previously
I searched for a line that is closest to the points – i.e. any two lines on the plane
will do, so long as I get the right plane. But that just gives me the plane. It
doesn’t give me new data points. To do that, I need coordiantes of each point
projected onto the plane, like previously we projected onto the line.

I need to set up an orthogonal coordinate axis so I can define (𝑧(1)
𝑖 , 𝑧(2)

𝑖 ) for each
point.

Thus the new points (𝑧(1)
𝑖 , 𝑧(2)

𝑖 ) represent the points after being projected on to
that plane in 3d. So we can summarize the 3 dimensional cloud of points by
this two dimensional cloud. This is now a summary of the 3D data. Which is
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nice, since it’s hard to plot in 3D. Notice, I can still see the differences between
my groups, so I have preserved that important variability (unlike using just a
single line):

5.4.2.4 Finding the Best Plane

I want to be smarter than just finding any coordinate system for my “best”
plane – there is an infinite number of equivalent choices. So I would like the
new coordinates (𝑧(1)

𝑖 , 𝑧(2)
𝑖 ) to be useful in the following way: I want my first

coordinate 𝑧(1)
𝑖 to correspond to the coordinates I would get if I just did just 1

principal component, and then pick the next coordinates to be the orthogonal
direction from the 1st principal component that also lies on the plane.9

This reduces the problem of finding the plane to 1) finding the 1st principal
component, as described above, then 2) finding the “next best” direction.

So we need to consider how we find the next best direction.

Consider 2-dimensions

Let’s return to our 2-dim example to consider how we can “add” another di-
mension to our summary. If I have my best line, and then draw another line
very similar to it, but slightly different slope, then it will have very low average
distance of the points to the line. And indeed, we wouldn’t be able to find “next
best” in this way, because the closest to the best line would be choosen – closer
and closer until in fact it is the same as the best line.

Moreover, such a line that is close to the best doesn’t give me very different
information from my best line. So I need to force “next best” to be separated
and distinct from my best line. How do we do that? We make the requirement

9The first principal component direction will by definition fall on the “best” plane.
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that the next best line be orthogonal from the best line – this matches our idea
above that we want an orthogonal set of lines so that we set up a new coordinate
axes.

In two dimensions that’s a pretty strict constraint – there’s only 1 such line! (at
least that goes through the center of the points).

Return to 3 dimensions

In three dimensions, however, there are a whole space of lines to pick from that
are orthogonal to the 1st PC and go through the center of the points.

Not all of these lines will be as close to the data as others lines. So there is
actually a choice to be made here. We can use the same criterion as before.
Of all of these lines, which minimize the distance of the points to the line? Or
(equivalently) which result in a linear combination with maximum variance?

To recap: we find the first principal component based on minimizing the points’
distance to line. To find the second principal component, we similarly find
the line that minimize the points’ distance to the line but only consider lines
orthogonal to the the first component.

If we follow this procedure, we will get two orthogonal lines that define a plane,
and this plane is the closest to the points as well (in terms of the orthogonal
distance of the points to the plane). In otherwords, we found the two lines
without thinking about finding the “best” plane, but in the end the plane they
create will be the closest.

5.4.2.5 Projecting onto Two Principal Components

Just like before, we want to be able to not just describe the best plane, but to
summarize the data. Namely, we want to project our data onto the plane. We
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do this again, by projecting each point to the point on the plane that has the
shortest distance, namely it’s orthogonal projection.

We could describe this project point in our original coordinate space (i.e. with
respect to the 3 original variables), but in fact these projected points lie on a
plane and so we only need two dimensions to describe these projected points.
So we want to create a new coordinate system for this plane based on the two
(orthogonal) principal component directions we found.

Finding the coordiantes in 2Dim

Let’s consider the simple 2-d case again. Since we are in only 2D, our two princi-
pal component directions are equivalent to defining a new orthogonal coordinate
system.

Then the new coordinates of our points we will call (𝑧(1)
𝑖 , 𝑧(2)

𝑖 ). To figure out
their values coordiantes of the points on this new coordinate system, we do what
we did before:

1. Project the points onto the first direction. The distance of the point along
the first direction is 𝑧(1)

𝑖
2. Project the points onto the second direction. The distance of the point

along the second direction is 𝑧(2)
𝑖

You can now consider them as new coordinates of the points. It is common to
plot them as a scatter plot themselves, where now the PC1 and PC2 are the
variables.
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Preserving distances in 2D

In two dimensions, we completely recapture the pattern of the data with 2
principal components – we’ve just rotated the picture, but the relationship of
the points to each other (i.e. their distances to each other), are exactly the
same. So plotting the 2 PC variables instead of the 2 original variables doesn’t
tell us anything new about our data, but we can see that the relationship of our
variables to each other is quite different.

Of course this distance preserving wasn’t true if I projected only onto one prin-
cipal component; the distances in the 1st PC variable are not the same as the
distances in the whole dimension space.

3-dimensions and beyond

For our points in 3 dimensions, we will do the same thing: project the data
points to each of our two PC directions separately, and make 𝑧(1)

𝑖 and 𝑧(2)
𝑖 the

distance of the projection along each PC line. These values will define a set of
coordinates for our points after being projected to the best plane.
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But unlike our 2D example, the projection of these points to the plane don’t
preserve the entire dataset, so the plot of the data based on these two coordi-
nates is not equivalent to their position in the 3-dimensional space. We are not
representing the noise around the plane (just like in 2D, where the projection
of points to the line misses any noise of the points around the line). In general,
if we have less principal components than the number of original variables, we
will not have a perfect recapitulation of the data.

But that’s okay, because what such a plot does is summarize the 3 dimensional
cloud of points by this two dimensional cloud, which captures most of the vari-
ablity of the data. Which is nice, since it’s hard to plot in 3D.

5.4.3 Interpreting PCA

5.4.3.1 Loadings

The scatterplots doen’t tell us how the original variables relate to our new
variables, i.e. the coefficients 𝑎𝑗 which tell us how much of each of the original
variables we used. These 𝑎𝑗 are sometimes called the loadings. We can go back
to what their coefficients are in our linear combination
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We can see that the first PC is a combination of variables related to the cost
of the university (TUITFTE, TUITIONFEE_IN, TUITIONFEE_OUT are re-
lated to the tuition fees, and mn_earn_wne_p10/md_earn_wne_p10 are re-
lated to the total of amount financial aid students earn by working in aggregate
across the whole school, so presumably related to cost of university); so it makes
sense that in aggregate the public universities had lower PC1 scores than private
in our 2-D scatter plot. Note all the coefficients in PC1 are positive, so we can
think of this as roughly mean of these variables.

PC2, however, has negative values for the tuition related variables, and positive
values for the financial aid earnings variables; and UGDS is the number of
Undergraduate Students, which has also positive coefficients. So university with
high tuition relative to the aggregate amount of financial aid they give and
student size, for example, will have low PC2 values. This makes sense: PC2 is
the variable that pretty cleanly divided private and public schools, with private
schools having low PC2 values.

5.4.3.2 Correlations

It’s often interesting to look at the correlation between the new variables and
the old variables. Below, I plot the heatmap of the correlation matrix consisting
of all the pair-wise correlations of the original variables with the new PCs
corPCACollege <- cor(pcaCollege$x, scale(scorecard[-whNACollege,

-c(1:3, 12)], center = TRUE, scale = FALSE))
pheatmap(corPCACollege[1:2, ], cluster_cols = FALSE,

col = seqPal2)
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Notice this is not the same thing as which variables contributed to PC1/PC2.
For example, suppose a variable was highly correlated with tuition, but wasn’t
used in PC1. It would still be likely to be highly correlated with PC1. This is
the case, for example, for variables like SAT scores.

5.4.3.3 Biplot

We can put information regarding the variables together in what is called a
biplot. We plot the observations as points based on their value of the 2 principal
components. Then we plot the original variables as vectors (i.e. arrows).
par(mfrow = c(1, 2))
plot(pcaCollege$x[, 1:2], col = c("red", "black")[scorecard$CONTROL[-whNACollege]],

asp = 1)
legend("topright", c("public", "private"), fill = c("red",

"black"))
suppressWarnings(biplot(pcaCollege, pch = 19, main = "Biplot"))
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Notice that the axes values are not the same as the basic scatterplot on the left.
This is because biplot is scaling the PC variables.

Interpretation of the Biplot

The arrow for a variable points in the direction that is most like that variable.10

So points that are in the direction of that vector tend to have large values of that
variable, while points in the opposite direction of that vector have large negative
values of that variable. Vectors that point in the same direction correspond to
variables where the observations show similar patterns.

The length of the vector corresponds to how well that vector in this 2-dim
plot actually represents the variable.11 So long vectors tell you that the above
interpretation I gave regarding the direction of the vector is a good one, while
short vectors indicate that the above interpretation is not very accurate.

If we see vectors that point in the direction of one of the axes, this means that
the variable is highly correlated with the principal component in that axes. I.e.
the resulting new variable 𝑧 that we get from the linear combination for that
principal component is highly correlated with that original variable.

So the variables around tuition fee, we see that it points in the direction of
large PC1 scores meaning observations with large PC1 scores will have higher
values on those variables (and they tend to be private schools). We can see that
the number of undergraduates (UGDS) and the aggregate amount of financial
aid go in positive directions on PC2, and tuition are on negative directions on
PC2. So we can see that some of the same conclusions we got in looking at the
loadings show up here.

Example: AP Scores
10Specifically, if you projected the points in the biplot onto the line designated for that line,

the values of the points on that line would be most correlated with the original variable.
11Specifically the size of the correlation of the points projected onto that vector and the

actual variable.
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We can perform PCA on the full set of AP scores variables and make the same
plots for the AP scores. There are many NA values if I look at all the variables,
so I am going to remove Locus.Aug' (the score on the diagnostic taken
at beginning of year) andAP.Ave’ (average on other AP tests) which are
two variables that have many NAs, as well as removing categorical variables.

Not surprisingly, this PCA used all the variables in this first 2 PCs and there’s
no clear dominating set of variables in either the biplot or the heatmap of the
loadings for the first two components. This matches the nature of the data,
where all of the scores are measuring similar qualities of a student, and many
are on similar scales.

5.4.3.4 Scaling

Even after centering our data, our variables are on different scales. If we want
to look at the importance of variables and how to combine variables that are
redundant, it is more helpful to scale each variable by its standard deviation.
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Otherwise, the coefficients 𝑎𝑘 represent a lot of differences in scale of the vari-
ables, and not the redundancy in the variables. Doing so can change the PCA
coordinates a lot.

There is still a slight preference for public schools to be lower on the 1st principal
component, but its quite slight.

We see that many more variables contribute to the first 2 PCs after scaling
them.
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5.4.4 More than 2 PC coordinates

In fact, we can find more than 2 PC variables. We can continue to search for
more components in the same way, i.e. the next best line, orthogonal to both of
the lines that came before. The number of possible such principal components
is equal to the number of variables (or the number of observations, whichever is
smaller; but in all our datasets so far we have more observations than variables).

We can plot a scatter plot of the resulting third and 4th PC variables from the
college data just like before.

This is a very different set of coordinates for the points in 2 PCs. However, some
of the same set of variables are still dominating, they are just different linear
combinations of them (the two PCs lines are orthogonal to each other, but they
can still just involve these variables because its such a high dimensional space).

In these higher dimensions the geometry becomes less intuitive, and it can be
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helpful to go back to the interpretation of linear combinations of the original
variables, because it is easy to scale that up in our minds.

We can see this by a heatmap of all the coefficients. It’s also common to scale
each set of PC coefficients by the standard deviation of the final variable 𝑧 that
the coefficients create. This makes later PCs not stand out so much. 12

Breast data

We can also look at the higher PCs from the breast data (with the normal
samples).

12We haven’t discussed this, but in fact the coefficients are scaled so the sum of the square
of the coefficients equal 1 (norm is one). Otherwise there’s not a unique set of coefficients,
since you could always just multiply all the coefficients by a number and get larger and larger
variance. So the coefficients are all on the similar scale, regardless of the original variability
or importance of the PC in explaining the data.
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Question: If there are 500 genes and 878 observations, how many PCs
are there?

We can see that there are distinct patterns in what genes/variables contribute
to the final PCs (we plot only the top 25 PCs). However, it’s rather hard to see,
because there are large values in later PCs that mask the pattern.

This is an example of why it is useful to scale the variables by their variance
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5.4.5 How many dimensions?

If I can draw my data in 3d, then I can guess what is the right number of
coordinates – not 1 but 2 in our toy example case were needed. When I have a
lot of coordinates, like the college data, how can I possibly know? One technique
is to look at how much variability there is in each of the coordinates – how
much variance is there in the new variable created by each linear combination.
If there’s not a lot of variability, then it indicates that when the points are
projected onto that PC, they are huddled on top of each other, and its more
likely to be noise than signal.

Consider our simple simulation example, where there was more or less a plane
describing the data. If we look at the variance in each set of linear combinations
we create, there is practically 0 left in the last variable, meaning that most of the
representation of the points is captured in two dimensions. This is a measure
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of how much we are “missing” by ignoring a coordinate.

For the college data, we similarly see that the first two dimensions both have
much larger amounts compared to other dimensions. The AP Statistics data is
strongly in just the first dimension.

We can also plot this a percentage
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2 dimensions is not always the answer

It is just a happenstance of this data that 1-2 dimensions is summarizing the
data. There is nothing magical about two dimensions, other than the fact that
they are easy to plot! Looking at the top two dimensions can be misleading if
there is a lot of additional variability in the other dimensions (in this case, it can
be helpful to look at visualizations like pairs plots on the principal components
to get an idea of what you might be missing.)

We can do a similar plot for the breast cancer data.

Question: What does this tell you about the PCA?
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Multiple Regression

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11

This chapter deals with the regression problem where the goal is to understand
the relationship between a specific variable called the response or dependent
variable (𝑦) and several other related variables called explanatory or inde-
pendent variables or more generally covariates. This is an extension of our
previous discussion of simple regression, where we only had a single covariate
(𝑥).

6.1 Examples

We will go through some specific examples to demonstrate the range of the types
of problems we might consider in this chapter.

1. Prospective buyers and sellers might want to understand how the price of
a house depends on various characteristics of the house such as the total
above ground living space, total basement square footage, lot area, number
of cars that can be parked in the garage, construction year and presence
or absence of a fireplace. This is an instance of a regression problem where
the response variable is the house price and the other characteristics of
the house listed above are the explanatory variables.

This dataset contains information on sales of houses in Ames, Iowa from 2006
to 2010. The full dataset can be obtained by following links given in the
paper: (https://ww2.amstat.org/publications/jse/v19n3/decock.pdf)). I have
shortened the dataset slightly to make life easier for us.

265
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dataDir <- "../finalDataSets"
dd = read.csv(file.path(dataDir, "Ames_Short.csv"),

header = T, stringsAsFactors = TRUE)
pairs(dd)

2. A bike rental company wants to understand how the number of bike rentals
in a given hour depends on environmental and seasonal variables (such as
temperature, humidity, presence of rain etc.) and various other factors
such as weekend or weekday, holiday etc. This is also an instance of a
regression problems where the response variable is the number of bike
rentals and all other variables mentioned are explanatory variables.

bike <- read.csv(file.path(dataDir, "DailyBikeSharingDataset.csv"),
stringsAsFactors = TRUE)

bike$yr <- factor(bike$yr)
bike$mnth <- factor(bike$mnth)
pairs(bike[, 11:16])
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3. We might want to understand how the retention rates of colleges depend
on various aspects such as tuition fees, faculty salaries, number of faculty
members that are full time, number of undergraduates enrolled, number of
students on federal loans etc. using our college data from before. This is
again a regression problem with the response variable being the retention
rate and other variables being the explanatory variables.

4. We might be interested in understanding the proportion of my body weight
that is fat (body fat percentage). Directly measuring this quantity is
probably hard but I can easily obtain various body measurements such
as height, weight, age, chest circumeference, abdomen circumference, hip
circumference and thigh circumference. Can we predict my body fat per-
centage based on these measurements? This is again a regression problem
with the response variable being body fat percentage and all the measure-
ments are explanatory variables.

Body fat percentage (computed by a complicated underwater weighing tech-
nique) along with various body measurements are given for 252 adult men.
body = read.csv(file.path(dataDir, "bodyfat_short.csv"),

header = T, stringsAsFactors = TRUE)
pairs(body)
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There are outliers in the data and they make it hard to look at the relationships
between the variables. We can try to look at the pairs plots after deleting some
outlying observations.
ou1 = which(body$HEIGHT < 30)
ou2 = which(body$WEIGHT > 300)
ou3 = which(body$HIP > 120)
ou = c(ou1, ou2, ou3)
pairs(body[-ou, ])

6.2 The nature of the ‘relationship’

Notice that in these examples, the goals of the analysis shift depending on
the example from truly wanting to just be able to predict future observations
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(e.g. body-fat), wanting to have insight into how to the variables are related
to the response (e.g. college data), and a combination of the two (e.g. housing
prices and bike sharing).

What do we mean by the relationship of a explanatory variable to a response?
There are multiple valid interpretations that are used in regression that are
important to distinguish.

• The explanatory variable is a good predictor of the response.

• The explanatory variable is necessary for good prediction of the response
(among the set of variables we are considering).

• Changes in the explanatory variable cause the response to change (causal-
ity).

We can visualize the difference in the first and second with plots. Being a good
predictor is like the pairwise scatter plots from before, in which case both thigh
and abdominal circumference are good predictors of percentage of body fat.
pairs(body[, c("BODYFAT", "THIGH", "ABDOMEN")])

But in fact if we know the abdominal circumference, the thigh circumference
does not tell us much more. A coplot visualizes this relationship, by plotting
the relationship between two variables, conditional on the value of another. In
otherwords, it plots the scatter plot of percent body fat against thigh, but only
for those points for abdomen in a certain range (with the ranges indicated at
the top).
coplot(BODYFAT ~ THIGH | ABDOMEN, data = body)
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We see there is no longer a strong relationship between percentage body fat and
thigh circumference for specific values of abdomen circumference

The same is not true, however, for the reverse,
coplot(BODYFAT ~ ABDOMEN | THIGH, data = body)

We will see later in the course when we have many variables the answers to
these three questions are not always the same (and that we can’t always answer
all of them). We will almost always be able to say something about the first
two, but the last is often not possible.
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6.2.1 Causality

Often a (unspoken) goal of linear regression can be to determine whether some-
thing ‘caused’ something else. It is critical to remember that whether you can
attribute causality to a variable depends on how your data was collected. Specif-
ically, most people often have observational data, i.e. they sample subjects or
units from the population and then measure the variables that naturally occur
on the units they happen to sample. In general, you cannot determine causality
by just collecting observations on existing subjects. You can only observe what
is likely to naturally occur jointly in your population, often due to other causes.
Consider the following data on the relationship between the murder rate and
the life expectancy of different states or that of Illiteracy and Frost:
st <- as.data.frame(state.x77)
colnames(st)[4] = "Life.Exp"
colnames(st)[6] = "HS.Grad"
par(mfrow = c(1, 2))
with(st, plot(Murder, Life.Exp))
with(st, plot(Frost, Illiteracy))

Question: What do you observe in the plotted relationship between the
murder rate and the life expectancy ? What about between frost levels and
illiteracy? What would it mean to (wrongly) assume causality here?

It is a common mistake in regression to to jump to the conclusion that one
variable causes the other, but all you can really say is that there is a strong
relationship in the population, i.e. when you observe one value of the variable
you are highly likely to observed a particular value of the other.

Can you ever claim causality? Yes, if you run an experiment; this is where you
assign what the value of the predictors are for every observation independently
from any other variable. An example is a clinical trial, where patients are
randomly assigned a treatment.

It’s often not possible to run an experiment, especially in the social sciences or
working with humans (you can’t assign a murder rate in a state and sit back and
see what the effect is on life expectancy!). In the absence of an experiment, it is
common to collect a lot of other variables that might also explain the response,
and ask our second question – “how necessary is it (in addition to these other
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variables)?” with the idea that this is a proxy for causality. This is sometime
called “controlling” for the effect of the other variables, but it is important to
remember that this is not the same as causality.

Regardless, the analysis of observational and experimental data often both use
linear regression.1 It’s what conclusions you can draw that differ.

6.3 Multiple Linear Regression

The body fat dataset is a useful one to use to explain linear regression because
all of the variables are continuous and the relationships are reasonably linear.

Let us look at the plots between the response variable (bodyfat) and all the
explanatory variables (we’ll remove the outliers for this plot).
par(mfrow = c(3, 3))
for (i in 2:8) {

plot(body[-ou, i], body[-ou, 1], xlab = names(body)[i],
ylab = "BODYFAT")

}
par(mfrow = c(1, 1))

Most pairwise relationships seem to be linear. The clearest relationship is be-
tween bodyfat and abdomen. The next clearest is between bodyfat and chest.

We can expand the simple regression we used earlier to include more variables.

𝑦 = 𝛽0 + 𝛽1𝑥(1) + 𝛽2𝑥(2) + …
1Note that there can be problems with using linear regression in experiments when only

some of the explanatory variables are randomly assigned. Similarly, there are other methods
that you can use in observational studies that can, within some strict limitations, get closer
to answering questions of causality.
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6.3.1 Regression Line vs Regression Plane

In simple linear regression (when there is only one explanatory variable), the
fitted regression equation describes a line. If we have two variables, it defines a
plane. This plane can be plotted in a 3D plot when there are two explanatory
variables. When the number of explanatory variables is 3 or more, we have a
general linear combination2 and we cannot plot this relationship.

To illustrate this, let us fit a regression equation to bodyfat percentage in terms
of age and chest circumference:
ft2 = lm(BODYFAT ~ AGE + CHEST, data = body)

We can visualize this 3D plot:
library(scatterplot3d)
sp = scatterplot3d(body$AGE, body$CHEST, body$BODYFAT)
sp$plane3d(ft2, lty.box = "solid", draw_lines = TRUE,

draw_polygon = TRUE, col = "red")

6.3.2 How to estimate the coefficients?

We can use the same principle as before. Specifically, for any selection of our 𝛽𝑗
coefficients, we get a predicted or fitted value ̂𝑦. Then we can look for the 𝛽𝑗
which minimize our loss

𝑛
∑
𝑖=1

ℓ(𝑦𝑖, ̂𝑦𝑖)

Again, standard regression uses squared-error loss,

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2.

2so defines a linear subspace
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We again can fit this by using lm in R, with similar syntax as before:
ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)
summary(ft)

##
## Call:
## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +
## HIP + THIGH, data = body)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.0729 -3.2387 -0.0782 3.0623 10.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *
## AGE 1.202e-02 2.934e-02 0.410 0.68246
## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **
## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438
## CHEST -8.312e-04 9.989e-02 -0.008 0.99337
## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***
## HIP -1.834e-01 1.448e-01 -1.267 0.20648
## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.438 on 244 degrees of freedom
## Multiple R-squared: 0.7266, Adjusted R-squared: 0.7187
## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

In fact, if we want to use all the variables in a data.frame we can use a simpler
notation:
ft = lm(BODYFAT ~ ., data = body)

Notice how similar the output to the function above is to the case of simple
linear regression. R has fit a linear equation for the variable BODYFAT in
terms of the variables AGE, WEIGHT, HEIGHT, CHEST, ABDOMEN, HIP
and THIGH. Again, the summary of the output gives each variable and its
estimated coefficient,

𝐵𝑂𝐷𝑌 𝐹𝐴𝑇 = −37.48 + 0.012 ∗ 𝐴𝐺𝐸 − 0.139 ∗ 𝑊𝐸𝐼𝐺𝐻𝑇 − 0.102 ∗ 𝐻𝐸𝐼𝐺𝐻𝑇
− 0.0008 ∗ 𝐶𝐻𝐸𝑆𝑇 + 0.968 ∗ 𝐴𝐵𝐷𝑂𝑀𝐸𝑁 − 0.183 ∗ 𝐻𝐼𝑃 + 0.286 ∗ 𝑇 𝐻𝐼𝐺𝐻
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We can also write down explicit equations for the estimates of the ̂𝛽𝑗 when we
use squared-error loss, though we won’t give them here (they are usually given
in matrix notation).

6.3.3 Interpretation of the regression equation

Here the coefficient ̂𝛽1 is interpreted as the average increase in 𝑦 for unit increase
in 𝑥(1), provided all other explanatory variables 𝑥(2), … , 𝑥(𝑝) are kept constant.
More generally for 𝑗 ≥ 1, the coefficient ̂𝛽𝑗 is interpreted as the average increase
in 𝑦 for unit increase in 𝑥(𝑗) provided all other explanatory variables 𝑥(𝑘) for
𝑘 ≠ 𝑗 are kept constant. The intercept ̂𝛽0 is interpreted as the average value of
𝑦 when all the explanatory variables are equal to zero.

In the body fat example, the fitted regression equation as we have seen is:

𝐵𝑂𝐷𝑌 𝐹𝐴𝑇 = −37.48 + 0.012 ∗ 𝐴𝐺𝐸 − 0.139 ∗ 𝑊𝐸𝐼𝐺𝐻𝑇 − 0.102 ∗ 𝐻𝐸𝐼𝐺𝐻𝑇
− 0.0008 ∗ 𝐶𝐻𝐸𝑆𝑇 + 0.968 ∗ 𝐴𝐵𝐷𝑂𝑀𝐸𝑁 − 0.183 ∗ 𝐻𝐼𝑃 + 0.286 ∗ 𝑇 𝐻𝐼𝐺𝐻

The coefficient of 0.968 can be interpreted as the average percentage increase
in bodyfat percentage per unit (i.e., 1 cm) increase in Abdomen circumference
provided all the other explanatory variables age, weight, height, chest circum-
ference, hip circumference and thigh circumference are kept unchanged.

Question: Do the signs of the fitted regression coefficients make sense?

6.3.3.1 Scaling and the size of the coefficient

It’s often tempting to look at the size of the 𝛽𝑗 as a measure of how “impor-
tant” the variable 𝑗 is in predicting the response 𝑦. However, it’s important to
remember that 𝛽𝑗 is relative to the scale of the input 𝑥(𝑗) – it is the change in 𝑦
for one unit change in 𝑥(𝑗). So, for example, if we change from measurements in
cm to mm (i.e. multiply 𝑥(𝑗) by 10) then we will get a ̂𝛽𝑗 that is divided by 10:
tempBody <- body
tempBody$ABDOMEN <- tempBody$ABDOMEN * 10
ftScale = lm(BODYFAT ~ ., data = tempBody)
cat("Coefficients with Abdomen in mm:\n")

## Coefficients with Abdomen in mm:
coef(ftScale)

## (Intercept) AGE WEIGHT HEIGHT CHEST
## -3.747573e+01 1.201695e-02 -1.392006e-01 -1.028485e-01 -8.311678e-04
## ABDOMEN HIP THIGH
## 9.684620e-02 -1.833599e-01 2.857227e-01
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cat("Coefficients with Abdomen in cm:\n")

## Coefficients with Abdomen in cm:
coef(ft)

## (Intercept) AGE WEIGHT HEIGHT CHEST
## -3.747573e+01 1.201695e-02 -1.392006e-01 -1.028485e-01 -8.311678e-04
## ABDOMEN HIP THIGH
## 9.684620e-01 -1.833599e-01 2.857227e-01

For this reason, it is not uncommon to scale the explanatory variables – i.e. di-
vide each variable by its standard deviation – before running the regression:
tempBody <- body
tempBody[, -1] <- scale(tempBody[, -1])
ftScale = lm(BODYFAT ~ ., data = tempBody)
cat("Coefficients with variables scaled:\n")

## Coefficients with variables scaled:
coef(ftScale)

## (Intercept) AGE WEIGHT HEIGHT CHEST ABDOMEN
## 19.15079365 0.15143812 -4.09098792 -0.37671913 -0.00700714 10.44300051
## HIP THIGH
## -1.31360120 1.50003073
cat("Coefficients on original scale:\n")

## Coefficients on original scale:
coef(ft)

## (Intercept) AGE WEIGHT HEIGHT CHEST
## -3.747573e+01 1.201695e-02 -1.392006e-01 -1.028485e-01 -8.311678e-04
## ABDOMEN HIP THIGH
## 9.684620e-01 -1.833599e-01 2.857227e-01
sdVar <- apply(body[, -1], 2, sd)
cat("Sd per variable:\n")

## Sd per variable:
sdVar

## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 12.602040 29.389160 3.662856 8.430476 10.783077 7.164058 5.249952
cat("Ratio of scaled lm coefficient to original lm coefficient\n")

## Ratio of scaled lm coefficient to original lm coefficient
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coef(ftScale)[-1]/coef(ft)[-1]

## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 12.602040 29.389160 3.662856 8.430476 10.783077 7.164058 5.249952

Now the interpretation of the 𝛽𝑗 is that per standard deviation change in the
variable 𝑥𝑗, what is the change in 𝑦, again all other variables remaining constant.

6.3.3.2 Correlated Variables

The interpretation of the coefficient ̂𝛽𝑗 depends crucially on the other explana-
tory variables 𝑥(𝑘), 𝑘 ≠ 𝑗 that are present in the equation (this is because of the
phrase “all other explanatory variables kept constant”).

For the bodyfat data, we have seen that the variables chest thigh and hip and
abdomen circumference are highly correlated:
cor(body[, c("HIP", "THIGH", "ABDOMEN", "CHEST")])

## HIP THIGH ABDOMEN CHEST
## HIP 1.0000000 0.8964098 0.8740662 0.8294199
## THIGH 0.8964098 1.0000000 0.7666239 0.7298586
## ABDOMEN 0.8740662 0.7666239 1.0000000 0.9158277
## CHEST 0.8294199 0.7298586 0.9158277 1.0000000

Notice that both CHEST and ABDOMEN are linearly related to BODYFAT
pairs(body[, c("BODYFAT", "ABDOMEN", "CHEST")])

Individual linear regressions would show very significant values for both CHEST
and ABDOMEN:
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summary(lm(BODYFAT ~ CHEST, data = body))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -51.1715853 4.51985295 -11.32152 2.916303e-24
## CHEST 0.6974752 0.04467377 15.61263 8.085369e-39
summary(lm(BODYFAT ~ ABDOMEN, data = body))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -39.2801847 2.66033696 -14.76512 6.717944e-36
## ABDOMEN 0.6313044 0.02855067 22.11172 9.090067e-61

But when we look at the multiple regression, we see ABDOMEN is significant and
not CHEST:
round(summary(ft)$coef, digits = 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37.476 14.495 -2.585 0.010
## AGE 0.012 0.029 0.410 0.682
## WEIGHT -0.139 0.045 -3.087 0.002
## HEIGHT -0.103 0.098 -1.051 0.294
## CHEST -0.001 0.100 -0.008 0.993
## ABDOMEN 0.968 0.085 11.352 0.000
## HIP -0.183 0.145 -1.267 0.206
## THIGH 0.286 0.136 2.098 0.037

This is because coefficient assigned to ABDOMEN and CHEST tells us how the
response changes as the other variables stay the same. This interpretation of
𝛽𝑗 ties directly back to our coplots and can help us understand how this is
different from an individual regression on each variable. A coplot plots the
response (BODYFAT) against a variable for a “fixed” value of another variable
(i.e. a small range of values). When we do this with ABDOMEN for fixed values of
CHEST we still see a strong relationship between ABDOMEN and BODYFAT
coplot(BODYFAT ~ ABDOMEN | CHEST, data = body)
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But the other way around shows us for a “fixed” value of ABDOMEN, CHEST doesn’t
have much relationship with BODYFAT
coplot(BODYFAT ~ CHEST | ABDOMEN, data = body)

This is the basic idea behind the interpretation of the coefficient 𝛽𝑗 in a multiple
regression, only for regression it is holding all of the other variables fixed, not
just one.

What if we didn’t include ABDOMEN and THIGH in our regression? (ie. a model
based on age, weight, height, chest and hip):
ft1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

HIP, data = body)
round(coef(ft), 4)
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## (Intercept) AGE WEIGHT HEIGHT CHEST ABDOMEN
## -37.4757 0.0120 -0.1392 -0.1028 -0.0008 0.9685
## HIP THIGH
## -0.1834 0.2857
round(coef(ft1), 4)

## (Intercept) AGE WEIGHT HEIGHT CHEST HIP
## -53.9871 0.1290 -0.0526 -0.3146 0.5148 0.4697

See now that the actually coefficient values are quite different from the previous
one – and they have different interpretations as well. In this model, CHEST is
now very significant.
round(summary(ft1)$coeff, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -53.9871 17.1362 -3.1505 0.0018
## AGE 0.1290 0.0308 4.1901 0.0000
## WEIGHT -0.0526 0.0534 -0.9841 0.3260
## HEIGHT -0.3146 0.1176 -2.6743 0.0080
## CHEST 0.5148 0.1080 4.7662 0.0000
## HIP 0.4697 0.1604 2.9286 0.0037

It’s important to remember that the 𝛽𝑗 are not a fixed, immutable property of
the variable, but are only interpretable in the context of the other variables. So
the interpretation of ̂𝛽𝑗 (and it’s significance) is a function of the 𝑥 data you have.
If you only observe 𝑥𝑗 large when 𝑥(𝑘) is also large (i.e. strong and large positive
correlation), then you have little data where 𝑥(𝑗) is changing over a range of
values while 𝑥(𝑘) is basically constant. For example, if you fix ABDOMEN to be
100in, the range of values of CHEST is tightly constrained to roughly 95-112in,
i.e. CHEST doesn’t actually change much in the population if you fix ABDOMEN.

Here’s some simulated data demonstrating this. Notice both variables are pretty
correlated with the response 𝑦
set.seed(275382)
n <- 300
trueQuality <- rnorm(n)
score2 <- (trueQuality + 100) * 0.5 + rnorm(n, sd = 0.1)
score1 <- (trueQuality + 80) * 0.5 + rnorm(n, sd = 0.1)
y <- 8 + 10 * score1 + 10 * score2 + rnorm(n, sd = 15)
x <- data.frame(y, score1, score2)
pairs(x)
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But if I look at the regression summary, I don’t get any significance.
summary(lm(y ~ ., data = x))

##
## Call:
## lm(formula = y ~ ., data = x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -46.067 -10.909 0.208 9.918 38.138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 110.246 97.344 1.133 0.258
## score1 8.543 6.301 1.356 0.176
## score2 9.113 6.225 1.464 0.144
##
## Residual standard error: 15.09 on 297 degrees of freedom
## Multiple R-squared: 0.2607, Adjusted R-squared: 0.2557
## F-statistic: 52.37 on 2 and 297 DF, p-value: < 2.2e-16

However, individually, each score is highly significant in predicting 𝑦
summary(lm(y ~ score1, data = x))

##
## Call:
## lm(formula = y ~ score1, data = x)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -47.462 -10.471 0.189 10.378 38.868
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 211.072 68.916 3.063 0.00239 **
## score1 17.416 1.723 10.109 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.12 on 298 degrees of freedom
## Multiple R-squared: 0.2554, Adjusted R-squared: 0.2529
## F-statistic: 102.2 on 1 and 298 DF, p-value: < 2.2e-16
summary(lm(y ~ score2, data = x))

##
## Call:
## lm(formula = y ~ score2, data = x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.483 -11.339 0.195 11.060 40.327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.844 85.090 0.539 0.59
## score2 17.234 1.701 10.130 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.11 on 298 degrees of freedom
## Multiple R-squared: 0.2561, Adjusted R-squared: 0.2536
## F-statistic: 102.6 on 1 and 298 DF, p-value: < 2.2e-16

They just don’t add further information when added to the existing variable
already included. Looking at the coplot, we can visualize this – for each bin
of score 2 (i.e. as close as we can get to constant), we have very little further
change in 𝑦.
coplot(y ~ score1 | score2, number = 10, data = x)
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We will continually return the effect of correlation in understanding multiple
regression.

What kind of relationship with 𝑦 does 𝛽𝑗 measure?

If we go back to our possible questions we could ask about the relationship be-
tween a single variable 𝑗 and the response, then ̂𝛽𝑗 answers the second question:
how necessary is variable 𝑗 to the predition of 𝑦 above and beyond the other
variables? We can see this in our above description of “being held constant” –
if when the other variables aren’t changing, ̂𝛽𝑗 tells us how much 𝑦 moves on
average as only 𝑥(𝑗) changes. If ̂𝛽𝑗 is close to 0, then changes in 𝑥(𝑗) aren’t
affecting 𝑦 much for fixed values of the other coordinates.

Why the 𝛽𝑗 does not measure causality

Correlation in our variables is one important reason why the value of 𝛽𝑗 does
not measure causality, i.e whether a change in 𝑥(𝑗) caused 𝑦 to change. If 𝑥(𝑗) is
always large when 𝑥(𝑘) is large, there is no (or little) data to evaluate whether
a large 𝑥(𝑗) in the presence of a small 𝑥(𝑘) would result in a large 𝑦. 3

Again, it can be helpful to compare what you would expect if you could create a
randomized experiment. You would choose individuals with a particular value
of ABDOMEN circumference, say 100cm. Then for some individuals you would
change their CHEST size to be 80cm and for others 120cm, and then measure the
resulting BODYFAT. Just writing it down makes it clear why such an experiment
is impossible – and also why circumference on its own is a poor candidate for
causing anything. Rather internal bodily mechanisms result in all three variables
(ABDOMEN, CHEST, and BODYFAT) to be larger, without one causing another.

3Issues with making causal statements go beyond just whether variables are correlated, but
correlation among the variables is a major issue.
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6.4 Important measurements of the regression
estimate

6.4.1 Fitted Values and Multiple 𝑅2

Any regression equation can be used to predict the value of the response variable
given values of the explanatory variables, which we call ̂𝑦(𝑥). We can get a
fitted value for any value 𝑥. For example, consider our original fitted regression
equation obtained by applying lm with bodyfat percentage against all of the
variables as explanatory variables:

𝐵𝑂𝐷𝑌 𝐹𝐴𝑇 = −37.48 + 0.01202 ∗ 𝐴𝐺𝐸 − 0.1392 ∗ 𝑊𝐸𝐼𝐺𝐻𝑇 − 0.1028 ∗ 𝐻𝐸𝐼𝐺𝐻𝑇
− 0.0008312 ∗ 𝐶𝐻𝐸𝑆𝑇 + 0.9685 ∗ 𝐴𝐵𝐷𝑂𝑀𝐸𝑁 − 0.1834 ∗ 𝐻𝐼𝑃 + 0.2857 ∗ 𝑇 𝐻𝐼𝐺𝐻

Suppose a person X (who is of 30 years of age, weighs 180 pounds and is 70
inches tall) wants to find out his bodyfat percentage. Let us say that he is able
to measure his chest circumference as 90 cm, abdomen circumference as 86 cm,
hip circumference as 97 cm and thigh circumference as 60 cm. Then he can
simply use the regression equation to predict his bodyfat percentage as:
bf.pred = -37.48 + 0.01202 * 30 - 0.1392 * 180 - 0.1028 *

70 - 0.0008312 * 90 + 0.9685 * 86 - 0.1834 * 97 +
0.2857 * 60

bf.pred

## [1] 13.19699

The predictions given by the fitted regression equation *for each of the obser-
vations} are known as fitted values, ̂𝑦𝑖 = ̂𝑦(𝑥𝑖). For example, in the bodyfat
dataset, the first observation (first row) is given by:
obs1 = body[1, ]
obs1

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 1 12.3 23 154.25 67.75 93.1 85.2 94.5 59

The observed value of the response (bodyfat percentage) for this individual
is 12.3 %. The prediction for this person’s response given by the regression
equation (??) is
-37.48 + 0.01202 * body[1, "AGE"] - 0.1392 * body[1,

"WEIGHT"] - 0.1028 * body[1, "HEIGHT"] - 0.0008312 *
body[1, "CHEST"] + 0.9685 * body[1, "ABDOMEN"] -
0.1834 * body[1, "HIP"] + 0.2857 * body[1, "THIGH"]

## [1] 16.32398
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Therefore the fitted value for the first observation is 16.424%. R directly calcu-
lates all fitted values and they are stored in the 𝑙𝑚() object. You can obtain
these via:
head(fitted(ft))

## 1 2 3 4 5 6
## 16.32670 10.22019 18.42600 11.89502 25.97564 16.28529

If the regression equation fits the data well, we would expect the fitted values
to be close to the observed responses. We can check this by just plotting the
fitted values against the observed response values.
plot(fitted(ft), body$BODYFAT, xlab = "Fitted Values",

ylab = "Bodyfat Percentage")

We can quantify how good of a fit our model is by taking the correlation between
these two values. Specifically, the square of the correlation of 𝑦 and ̂𝑦 is known
as the Coefficient of Determination or Multiple 𝑅2 or simply 𝑅2:

𝑅2 = (𝑐𝑜𝑟(𝑦𝑖, ̂𝑦𝑖))
2 .

This is an important and widely used measure of the effectiveness of the regres-
sion equation and given in our summary the lm fit.
cor(body$BODYFAT, fitted(ft))^2

## [1] 0.7265596
summary(ft)

##
## Call:
## lm(formula = BODYFAT ~ ., data = body)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -11.0729 -3.2387 -0.0782 3.0623 10.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *
## AGE 1.202e-02 2.934e-02 0.410 0.68246
## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **
## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438
## CHEST -8.312e-04 9.989e-02 -0.008 0.99337
## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***
## HIP -1.834e-01 1.448e-01 -1.267 0.20648
## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.438 on 244 degrees of freedom
## Multiple R-squared: 0.7266, Adjusted R-squared: 0.7187
## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

A high value of 𝑅2 means that the fitted values (given by the fitted regression
equation) are close to the observed values and hence indicates that the regression
equation fits the data well. A low value, on the other hand, means that the fitted
values are far from the observed values and hence the regression line does not
fit the data well.

Note that 𝑅2 has no units (because its a correlation). In other words, it is
scale-free.

6.4.2 Residuals and Residual Sum of Squares (RSS)

For every point in the scatter the error we make in our prediction on a specific
observation is the residual and is defined as

𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖

Residuals are again so important that 𝑙𝑚() automatically calculates them for
us and they are contained in the lm object created.
head(residuals(ft))

## 1 2 3 4 5 6
## -4.026695 -4.120189 6.874004 -1.495017 2.724355 4.614712

A common way of looking at the residuals is to plot them against the fitted
values.
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plot(fitted(ft), residuals(ft), xlab = "Fitted Values",
ylab = "Residuals")

One can also plot the residuals against each of the explanatory variables (note
we didn’t remove the outliers in our regression so we include them in our plots).
par(mfrow = c(3, 3))
for (i in 2:8) {

plot(body[, i], ft$residuals, xlab = names(body)[i],
ylab = "Residuals")

}
par(mfrow = c(1, 1))

The residuals represent what is left in the response (𝑦) after all the linear effects
of the explanatory variables are taken out.

One consequence of this is that the residuals are uncorrelated with every ex-
planatory variable. We can check this in easily in the body fat example.
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for (i in 2:8) {
cat("Correlation with", names(body)[i], ":\t")
cat(cor(body[, i], residuals(ft)), "\n")

}

## Correlation with AGE : -1.754044e-17
## Correlation with WEIGHT : 4.71057e-17
## Correlation with HEIGHT : -1.720483e-15
## Correlation with CHEST : -4.672628e-16
## Correlation with ABDOMEN : -7.012368e-16
## Correlation with HIP : -8.493675e-16
## Correlation with THIGH : -5.509094e-16

Moreover, as we discussed in simple regression, the residuals always have mean
zero:
mean(ft$residuals)

## [1] 2.467747e-16

Again, these are automatic properties of any least-squares regression. This is
not evidence that you have a good fit or that model makes sense!

Also, if one were to fit a regression equation to the residuals in terms of the
same explanatory variables, then the fitted regression equation will have all
coefficients exactly equal to zero:
m.res = lm(ft$residuals ~ body$AGE + body$WEIGHT +

body$HEIGHT + body$CHEST + body$ABDOMEN + body$HIP +
body$THIGH)

summary(m.res)

##
## Call:
## lm(formula = ft$residuals ~ body$AGE + body$WEIGHT + body$HEIGHT +
## body$CHEST + body$ABDOMEN + body$HIP + body$THIGH)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.0729 -3.2387 -0.0782 3.0623 10.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.154e-14 1.449e+01 0 1
## body$AGE 1.282e-17 2.934e-02 0 1
## body$WEIGHT 1.057e-16 4.509e-02 0 1
## body$HEIGHT -1.509e-16 9.787e-02 0 1
## body$CHEST 1.180e-16 9.989e-02 0 1
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## body$ABDOMEN -2.452e-16 8.531e-02 0 1
## body$HIP -1.284e-16 1.448e-01 0 1
## body$THIGH -1.090e-16 1.362e-01 0 1
##
## Residual standard error: 4.438 on 244 degrees of freedom
## Multiple R-squared: 6.384e-32, Adjusted R-squared: -0.02869
## F-statistic: 2.225e-30 on 7 and 244 DF, p-value: 1

If the regression equation fits the data well, the residuals are supposed to be
small. One popular way of assessing the size of the residuals is to compute their
sum of squares. This quantity is called the Residual Sum of Squares (RSS).
rss.ft = sum((ft$residuals)^2)
rss.ft

## [1] 4806.806

Note that RSS depends on the units in which the response variable is measured.

Relationship to 𝑅2

There is a very simple relationship between RSS and 𝑅2 (recall that 𝑅2 is the
square of the correlation between the response values and the fitted values):

𝑅2 = 1 − 𝑅𝑆𝑆
𝑇 𝑆𝑆

where TSS stands for Total Sum of Squares and is defined as

𝑇 𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 .

TSS is just the variance of y without the 1/(𝑛 − 1) term.

It is easy to verify this formula in R.
rss.ft = sum((ft$residuals)^2)
rss.ft

## [1] 4806.806
tss = sum(((body$BODYFAT) - mean(body$BODYFAT))^2)
1 - (rss.ft/tss)

## [1] 0.7265596
summary(ft)

##
## Call:
## lm(formula = BODYFAT ~ ., data = body)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -11.0729 -3.2387 -0.0782 3.0623 10.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *
## AGE 1.202e-02 2.934e-02 0.410 0.68246
## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **
## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438
## CHEST -8.312e-04 9.989e-02 -0.008 0.99337
## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***
## HIP -1.834e-01 1.448e-01 -1.267 0.20648
## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.438 on 244 degrees of freedom
## Multiple R-squared: 0.7266, Adjusted R-squared: 0.7187
## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

If we did not have any explanatory variables, then we would predict the value of
bodyfat percentage for any individual by simply the mean of the bodyfat values
in our sample. The total squared error for this prediction is given by TSS. On
the other hand, the total squared error for the prediction using linear regression
based on the explanatory variables is given by RSS. Therefore 1−𝑅2 represents
the reduction in the squared error because of the explanatory variables.

6.4.3 Behaviour of RSS (and 𝑅2) when variables are added
or removed from the regression equation

The value of RSS always increases when one or more explanatory variables are
removed from the regression equation. For example, suppose that we remove
the variable abdomen circumference from the regression equation. The new RSS
will then be:
ft.1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

HIP + THIGH, data = body)
rss.ft1 = summary(ft.1)$r.squared
rss.ft1

## [1] 0.5821305
summary(ft$r.squared)

## Length Class Mode
## 0 NULL NULL
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Notice that there is a quite a lot of increase in the RSS. What if we had kept
ABDOMEN in the model but dropped the variable CHEST?
ft.2 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + ABDOMEN +

HIP + THIGH, data = body)
rss.ft2 = summary(ft.2)$r.squared
rss.ft2

## [1] 0.7265595
rss.ft

## [1] 4806.806

The RSS again increases but by a very very small amount. This therefore sug-
gests that Abdomen circumference is a more important variable in this regression
compared to Chest circumference.

The moral of this exercise is the following. The RSS always increases when
variables are dropped from the regression equation. However the amount of
increase varies for different variables. We can understand the importance of
variables in a multiple regression equation by noting the amount by which the
RSS increases when the individual variables are dropped. We will come back to
this point while studying inference in the multiple regression model.

Because RSS has a direct relation to 𝑅2 via 𝑅2 = 1 − (𝑅𝑆𝑆/𝑇 𝑆𝑆), one can see
𝑅2 decreases when variables are removed from the model. However the amount
of decrease will be different for different variables. For example, in the body fat
dataset, after removing the abdomen circumference variable, 𝑅2 changes to:
ft.1 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

HIP + THIGH, data = body)
R2.ft1 = summary(ft.1)$r.squared
R2.ft1

## [1] 0.5821305
R2.ft = summary(ft)$r.squared
R2.ft

## [1] 0.7265596

Notice that there is a lot of decrease in 𝑅2. What happens if the variable Chest
circumference is dropped.
ft.2 = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + ABDOMEN +

HIP + THIGH, data = body)
R2.ft2 = summary(ft.2)$r.squared
R2.ft2

## [1] 0.7265595
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R2.ft

## [1] 0.7265596

There is now a very very small decrease.

6.4.4 Residual Degrees of Freedom and Residual Standard
Error

In a regression with 𝑝 explanatory variables, the residual degrees of freedom
is given by 𝑛 − 𝑝 − 1 (recall that 𝑛 is the number of observations). This can
be thought of as the effective number of residuals. Even though there are 𝑛
residuals, they are supposed to satisfy 𝑝 + 1 exact equations (they sum to zero
and they have zero correlation with each of the 𝑝 explanatory variables).

The Residual Standard Error is defined as:

√ Residual Sum of Squares
Residual Degrees of Freedom

This can be interpreted as the average magnitude of an individual residual and
can be used to assess the sizes of residuals (in particular, to find and identify
large residual values).

For illustration,
ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)
n = nrow(body)
p = 7
rs.df = n - p - 1
rs.df

## [1] 244
ft = lm(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +

HIP + THIGH, data = body)
rss = sum((ft$residuals)^2)
rse = sqrt(rss/rs.df)
rse

## [1] 4.438471

Both of these are printed in the summary function in R:
summary(ft)

##
## Call:
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## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +
## HIP + THIGH, data = body)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.0729 -3.2387 -0.0782 3.0623 10.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *
## AGE 1.202e-02 2.934e-02 0.410 0.68246
## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **
## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438
## CHEST -8.312e-04 9.989e-02 -0.008 0.99337
## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***
## HIP -1.834e-01 1.448e-01 -1.267 0.20648
## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.438 on 244 degrees of freedom
## Multiple R-squared: 0.7266, Adjusted R-squared: 0.7187
## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

6.5 Multiple Regression With Categorical Ex-
planatory Variables

In many instances of regression, some of the explanatory variables are categorical
(note that the response variable is always continuous). For example, consider
the (short version of the) college dataset that you have already encountered.
scorecard <- read.csv(file.path(dataDir, "college.csv"),

stringsAsFactors = TRUE)

We can do a regression here with the retention rate (variable name RET-FT4)
as the response and all other variables as the explanatory variables. Note that
one of the explanatory variables (variable name CONTROL) is categorical. This
variable represents whether the college is public (1), private non-profit (2) or
private for profit (3). Dealing with such categorical variables is a little tricky. To
illustrate the ideas here, let us focus on a regression for the retention rate based
on just two explanatory variables: the out-of-state tuition and the categorical
variable CONTROL.

The important thing to note about the variable CONTROL is that its levels 1, 2
and 3 are completely arbitrary and have no particular meaning. For example,
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we could have called its levels 𝐴, 𝐵, 𝐶 or 𝑃𝑢, 𝑃𝑟 − 𝑛𝑝, 𝑃𝑟 − 𝑓𝑝 as well. If we
use the 𝑙𝑚() function in the usual way with TUITIONFEE and CONTROL as the
explanatory variables, then R will treat CONTROL as a continuous variable which
does not make sense:
req.bad = lm(RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)
summary(req.bad)

##
## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.69041 -0.04915 0.00516 0.05554 0.33165
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.661e-01 9.265e-03 71.90 <2e-16 ***
## TUITIONFEE_OUT 9.405e-06 3.022e-07 31.12 <2e-16 ***
## CONTROL -8.898e-02 5.741e-03 -15.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08741 on 1238 degrees of freedom
## Multiple R-squared: 0.4391, Adjusted R-squared: 0.4382
## F-statistic: 484.5 on 2 and 1238 DF, p-value: < 2.2e-16

The regression coefficient for CONTROL has the usual interpretation (if CONTROL
increases by one unit, …) which does not make much sense because CONTROL is
categorical and so increasing it by one unit is nonsensical. So everything about
this regression is wrong (and we shouldn’t interpret anything from the inference
here).

You can check that R is treating CONTROL as a numeric variable by:
is.numeric(scorecard$CONTROL)

## [1] TRUE

The correct way to deal with categorical variables in R is to treat them as
factors:
req = lm(RET_FT4 ~ TUITIONFEE_OUT + as.factor(CONTROL),

data = scorecard)
summary(req)

##
## Call:
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## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + as.factor(CONTROL), data = scorecard)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68856 -0.04910 0.00505 0.05568 0.33150
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.765e-01 7.257e-03 79.434 < 2e-16 ***
## TUITIONFEE_OUT 9.494e-06 3.054e-07 31.090 < 2e-16 ***
## as.factor(CONTROL)2 -9.204e-02 5.948e-03 -15.474 < 2e-16 ***
## as.factor(CONTROL)3 -1.218e-01 3.116e-02 -3.909 9.75e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08732 on 1237 degrees of freedom
## Multiple R-squared: 0.4408, Adjusted R-squared: 0.4394
## F-statistic: 325 on 3 and 1237 DF, p-value: < 2.2e-16

We can make this output a little better by fixing up the factor, rather than
having R make it a factor on the fly:
scorecard$CONTROL <- factor(scorecard$CONTROL, levels = c(1,

2, 3), labels = c("public", "private", "private for-profit"))
req = lm(RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)
summary(req)

##
## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + CONTROL, data = scorecard)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68856 -0.04910 0.00505 0.05568 0.33150
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.765e-01 7.257e-03 79.434 < 2e-16 ***
## TUITIONFEE_OUT 9.494e-06 3.054e-07 31.090 < 2e-16 ***
## CONTROLprivate -9.204e-02 5.948e-03 -15.474 < 2e-16 ***
## CONTROLprivate for-profit -1.218e-01 3.116e-02 -3.909 9.75e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08732 on 1237 degrees of freedom
## Multiple R-squared: 0.4408, Adjusted R-squared: 0.4394
## F-statistic: 325 on 3 and 1237 DF, p-value: < 2.2e-16
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Question: What do you notice that is different than our wrong output
when the CONTROL variable was treated as numeric?

Question: Why is the coefficient of TUITIONFEE so small?

6.5.1 Separate Intercepts: The coefficients of Categori-
cal/Factor variables

What do the multiple coefficients mean for the variable CONTROL?

This equation can be written in full as:

𝑅𝐸𝑇 = 0.5765+9.4×10−6∗𝑇 𝑈𝐼𝑇 𝐼𝑂𝑁𝐹𝐸𝐸−0.0092∗𝐼 (𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 = 2)−0.1218∗𝐼 (𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 = 3) .

The variable 𝐼 (𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 = 2) is the indicator function, which takes the value
1 if the college has CONTROL equal to 2 (i.e., if the college is private non-profit)
and 0 otherwise. Similarly the variable 𝐼 (𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 = 3) takes the value 1 if
the college has CONTROL equal to 3 (i.e., if the college is private for profit) and 0
otherwise. Variables which take only the two values 0 and 1 are called indicator
variables.

Note that the variable 𝐼 (𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 = 1) does not appear in the regression
equation (??). This means that the level 1 (i.e., the college is public) is the
baseline level here and the effects of −0.0092 and 0.1218 for private for-profit
and private non-profit colleges respectively should be interpreted relative to
public colleges.

The regression equation (??) can effectively be broken down into three equations.
For public colleges, the two indicator variables in (??) are zero and the equation
becomes:

𝑅𝐸𝑇 = 0.5765 + 9.4 × 10−6 ∗ 𝑇 𝑈𝐼𝑇 𝐼𝑂𝑁𝐹𝐸𝐸.
For private non-profit colleges, the equation becomes

𝑅𝐸𝑇 = 0.5673 + 9.4 × 10−6 ∗ 𝑇 𝑈𝐼𝑇 𝐼𝑂𝑁𝐹𝐸𝐸.

and for private for-profit colleges,

𝑅𝐸𝑇 = 0.4547 + 9.4 × 10−6 ∗ 𝑇 𝑈𝐼𝑇 𝐼𝑂𝑁𝐹𝐸𝐸.

Note that the coefficient of TUITIONFEE is the same in each of these equations
(only the intercept changes). We can plot a scatterplot together with all these
lines.
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cols <- c("blue", "red", "black")
plot(RET_FT4 ~ TUITIONFEE_OUT, data = scorecard, xlab = "Tuition Fee (out of state)",

ylab = "Retention Rate", col = cols[scorecard$CONTROL])
baseline <- coef(req)[["(Intercept)"]]
slope <- coef(req)[["TUITIONFEE_OUT"]]
for (ii in 1:nlevels(scorecard$CONTROL)) {

lev <- levels(scorecard$CONTROL)[[ii]]
if (ii == 1) {

abline(a = baseline, b = slope, col = cols[[ii]])
}
else {

abline(a = baseline + coef(req)[[ii + 1]],
b = slope, col = cols[[ii]])

}
}
legend("bottomright", levels(scorecard$CONTROL), fill = cols)

6.5.2 Separate Slopes: Interactions

What if we want these regression equations to have different slopes as well as
different intercepts for each of the types of colleges?

Intuitively, we can do separate regressions for each of the three groups given by
the CONTROL variable.

Alternatively, we can do this in multiple regression by adding an interaction
variable between CONTROL and TUITIONFEE as follows:
req.1 = lm(RET_FT4 ~ TUITIONFEE_OUT + CONTROL + TUITIONFEE_OUT:CONTROL,

data = scorecard)
summary(req.1)
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##
## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT + CONTROL + TUITIONFEE_OUT:CONTROL,
## data = scorecard)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68822 -0.04982 0.00491 0.05555 0.32900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.814e-01 1.405e-02 41.372 < 2e-16
## TUITIONFEE_OUT 9.240e-06 6.874e-07 13.441 < 2e-16
## CONTROLprivate -9.830e-02 1.750e-02 -5.617 2.4e-08
## CONTROLprivate for-profit -2.863e-01 1.568e-01 -1.826 0.0681
## TUITIONFEE_OUT:CONTROLprivate 2.988e-07 7.676e-07 0.389 0.6971
## TUITIONFEE_OUT:CONTROLprivate for-profit 7.215e-06 6.716e-06 1.074 0.2829
##
## (Intercept) ***
## TUITIONFEE_OUT ***
## CONTROLprivate ***
## CONTROLprivate for-profit .
## TUITIONFEE_OUT:CONTROLprivate
## TUITIONFEE_OUT:CONTROLprivate for-profit
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08734 on 1235 degrees of freedom
## Multiple R-squared: 0.4413, Adjusted R-squared: 0.4391
## F-statistic: 195.1 on 5 and 1235 DF, p-value: < 2.2e-16

Note that this regression equation has two more coefficients compared to the
previous regression (which did not have the interaction term). The two ad-
ditional variables are the product of the terms of each of the previous terms:
𝑇 𝑈𝐼𝑇 𝐼𝑂𝑁𝐹𝐸𝐸 ∗ 𝐼(𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 = 2) and 𝑇 𝑈𝐼𝑇 𝐼𝑂𝑁𝐹𝐸𝐸 ∗ 𝐼(𝐶𝑂𝑁𝑇 𝑅𝑂𝐿 =
3).

Question: The presence of these product terms means that three separate
slopes per each level of the factor are being fit here, why?

Alternatively, this regression with interaction can also be done in R via:
summary(lm(RET_FT4 ~ TUITIONFEE_OUT * CONTROL, data = scorecard))

##
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## Call:
## lm(formula = RET_FT4 ~ TUITIONFEE_OUT * CONTROL, data = scorecard)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68822 -0.04982 0.00491 0.05555 0.32900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.814e-01 1.405e-02 41.372 < 2e-16
## TUITIONFEE_OUT 9.240e-06 6.874e-07 13.441 < 2e-16
## CONTROLprivate -9.830e-02 1.750e-02 -5.617 2.4e-08
## CONTROLprivate for-profit -2.863e-01 1.568e-01 -1.826 0.0681
## TUITIONFEE_OUT:CONTROLprivate 2.988e-07 7.676e-07 0.389 0.6971
## TUITIONFEE_OUT:CONTROLprivate for-profit 7.215e-06 6.716e-06 1.074 0.2829
##
## (Intercept) ***
## TUITIONFEE_OUT ***
## CONTROLprivate ***
## CONTROLprivate for-profit .
## TUITIONFEE_OUT:CONTROLprivate
## TUITIONFEE_OUT:CONTROLprivate for-profit
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08734 on 1235 degrees of freedom
## Multiple R-squared: 0.4413, Adjusted R-squared: 0.4391
## F-statistic: 195.1 on 5 and 1235 DF, p-value: < 2.2e-16

The three separate regressions can be plotted in one plot as before.
cols <- c("blue", "red", "black")
plot(RET_FT4 ~ TUITIONFEE_OUT, data = scorecard, xlab = "Tuition Fee (out of state)",

ylab = "Retention Rate", col = cols[scorecard$CONTROL])
baseline <- coef(req.1)[["(Intercept)"]]
slope <- coef(req.1)[["TUITIONFEE_OUT"]]
for (ii in 1:nlevels(scorecard$CONTROL)) {

lev <- levels(scorecard$CONTROL)[[ii]]
if (ii == 1) {

abline(a = baseline, b = slope, col = cols[[ii]])
}
else {

abline(a = baseline + coef(req.1)[[ii + 1]],
b = slope + coef(req.1)[[ii + 3]], col = cols[[ii]])

}
}
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legend("bottomright", levels(scorecard$CONTROL), fill = cols)

Interaction terms make regression equations complicated (have more variables)
and also slightly harder to interpret although, in some situations, they really
improve predictive power. In this particular example, note that the multiple 𝑅2

only increased from 0.4408 to 0.4413 after adding the interaction terms. This
small increase means that the interaction terms are not really adding much to
the regression equation so we are better off using the previous model with no
interaction terms.

To get more practice with regressions having categorical variables, let us consider
the bike sharing dataset discussed above.

Let us fit a basic regression equation with casual (number of bikes rented
by casual users hourly) as the response variable and the explanatory variables
being atemp (normalized feeling temperature), workingday. For this dataset,
I’ve already encoded the categorical variables as factors.
summary(bike$atemp)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.07907 0.33784 0.48673 0.47435 0.60860 0.84090
summary(bike$workingday)

## No Yes
## 231 500
summary(bike$weathersit)

## Clear/Partly Cloudy Light Rain/Snow Misty
## 463 21 247

We fit the regression equation with a different shift in the mean for each level:
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md1 = lm(casual ~ atemp + workingday + weathersit,
data = bike)

summary(md1)

##
## Call:
## lm(formula = casual ~ atemp + workingday + weathersit, data = bike)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1456.76 -243.97 -22.93 166.81 1907.20
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 350.31 55.11 6.357 3.63e-10 ***
## atemp 2333.77 97.48 23.942 < 2e-16 ***
## workingdayYes -794.11 33.95 -23.388 < 2e-16 ***
## weathersitLight Rain/Snow -523.79 95.23 -5.500 5.26e-08 ***
## weathersitMisty -150.79 33.75 -4.468 9.14e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 425.2 on 726 degrees of freedom
## Multiple R-squared: 0.6186, Adjusted R-squared: 0.6165
## F-statistic: 294.3 on 4 and 726 DF, p-value: < 2.2e-16

Question: How are the coefficients in the above regression interpreted?

There are interactons that one can add here too. For example, I can add an
interaction between workingday and atemp:
md3 = lm(casual ~ atemp + workingday + weathersit +

workingday:atemp, data = bike)
summary(md3)

##
## Call:
## lm(formula = casual ~ atemp + workingday + weathersit + workingday:atemp,
## data = bike)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1709.76 -198.09 -55.12 152.88 1953.07
##



302 CHAPTER 6. MULTIPLE REGRESSION

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -276.22 77.48 -3.565 0.000388 ***
## atemp 3696.41 155.56 23.762 < 2e-16 ***
## workingdayYes 166.71 94.60 1.762 0.078450 .
## weathersitLight Rain/Snow -520.78 88.48 -5.886 6.05e-09 ***
## weathersitMisty -160.28 31.36 -5.110 4.12e-07 ***
## atemp:workingdayYes -2052.09 190.48 -10.773 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 395.1 on 725 degrees of freedom
## Multiple R-squared: 0.6712, Adjusted R-squared: 0.6689
## F-statistic: 296 on 5 and 725 DF, p-value: < 2.2e-16

Question: What is the interpretation of the coefficients now?

6.6 Inference in Multiple Regression

So far, we have learned how to fit multiple regression equations to observed
data and interpret the coefficient. Inference is necessary for answering questions
such as: “Is the observed relationship between the response and the explanatory
variables real or is it merely caused by sampling variability?”

We will again consider both parametric models and resampling techniques for
inference.

6.6.1 Parametric Models for Inference

There is a response variable 𝑦 and 𝑝 explanatory variables 𝑥(1), … , 𝑥(𝑝). The
data generation model is similar to that of simple regression:

𝑦 = 𝛽0 + 𝛽1𝑥(1) + ⋯ + 𝛽𝑝𝑥(𝑝) + 𝑒.
The numbers 𝛽0, … , 𝛽𝑝 are the parameters of the model and unknown.

The error 𝑒 is the only random part of the model, and we make the same
assumptions as in simple regression:

1. 𝑒𝑖 are independent for each observation 𝑖
2. 𝑒𝑖 all have the same distribution with mean 0 and variance 𝜎2

3. 𝑒𝑖 follow a normal distribution

We could write this more succinctly as

𝑒𝑖 are i.i.d 𝑁(0, 𝜎2)
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but it’s helpful to remember that these are separate assumptions, so we can talk
about which are the most important.

This means that under this model,

𝑦 ∼ 𝑁(𝛽0 + 𝛽1𝑥(1) + ⋯ + 𝛽𝑝𝑥(𝑝), 𝜎2)

i.e. the observed 𝑦𝑖 are normal and independent from each other, but each with
a different mean, which depends on 𝑥𝑖 (so the 𝑦𝑖 are NOT i.i.d. because not
identically distributed).

Estimates

The numbers 𝛽0, … , 𝛽𝑝 capture the true relationship between 𝑦 and 𝑥1, … , 𝑥𝑝.
Also unknown is the quantity 𝜎2 which is the variance of the unknown 𝑒𝑖. When
we fit a regression equation to a dataset via 𝑙𝑚() in R, we obtain estimates ̂𝛽𝑗
of the unknown 𝛽𝑗.

The residual 𝑟𝑖 serve as natural proxies for the unknown random errors 𝑒𝑖. There-
fore a natural estimate for the error standard deviation 𝜎 is the Residual Stan-
dard Error,

�̂�2 = 1
𝑛 − 𝑝 − 1 ∑ 𝑟2

𝑖 = 1
𝑛 − 𝑝 − 1𝑅𝑆𝑆

Notice this is the same as our previous equation from simple regression, only
now we are using 𝑛 − 𝑝 − 1 as our correction to make the estimate unbiased.

6.6.2 Global Fit

The most obvious question is the global question: are these variables cummu-
latively any good in predicting 𝑦? This can be restated as, whether you could
predict 𝑦 just as well if didn’t use any of the 𝑥(𝑗) variables.

Question: If we didn’t use any of the variables, what is our best “predic-
tion” of 𝑦?

So our question can be phrased as whether our prediction that we estimated,
̂𝑦(𝑥), is better than just ̄𝑦 in predicting 𝑦.

Equivalently, we can think that our null hypothesis is

𝐻0 ∶ 𝛽𝑗 = 0, for all 𝑗
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6.6.2.1 Parametric Test of Global Fit

The parametric test that is commonly used for assessing the global fit is a F-test.
A common way to assess the fit, we have just said is either large 𝑅2 or small
𝑅𝑆𝑆 = ∑𝑛

𝑖=1 𝑟2
𝑖 .

We can also think our global test is an implicit test for comparing two possible
prediction models

Model 0: No variables, just predict ̄𝑦 for all observations

Model 1: Our linear model with all the variables

Then we could also say that we could test the global fit by comparing the RSS
from model 0 (the null model), versus model 1 (the one with the variables), e.g.

𝑅𝑆𝑆0 − 𝑅𝑆𝑆1

Question: This will always be positive, why?

We will actually instead change this to be a proportional increase, i.e. relative to
the full model, how much increase in RSS do I get when I take out the variables:

𝑅𝑆𝑆0 − 𝑅𝑆𝑆1
𝑅𝑆𝑆1

To make this quantity more comparable across many datasets, we are going to
normalize this quantity by the number of variables in the data,

𝐹 = (𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑝
𝑅𝑆𝑆1/(𝑛 − 𝑝 − 1)

Notice that the 𝑅𝑆𝑆0 of our 0 model is actually the TSS. This is because

̂𝑦Model 0 = ̄𝑦

so
𝑅𝑆𝑆0 =

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦Model 0)2 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2

Further,
𝑅𝑆𝑆1/(𝑛 − 𝑝 − 1) = �̂�2

So we have
𝐹 = (𝑇 𝑆𝑆 − 𝑅𝑆𝑆)/𝑝

�̂�2

All of this we can verify on our data:
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n <- nrow(body)
p <- ncol(body) - 1
tss <- (n - 1) * var(body$BODYFAT)
rss <- sum(residuals(ft)^2)
sigma <- summary(ft)$sigma
(tss - rss)/p/sigma^2

## [1] 92.61904
summary(ft)$fstatistic

## value numdf dendf
## 92.61904 7.00000 244.00000

We do all this normalization, because under our assumptions of the parametric
model, the 𝐹 statistic above follows a 𝐹 -distribution. The 𝐹 distribution you
have seen in a HW when you were simulating data, and has two parameters,
the degrees of freedom of the numerator (𝑑𝑓1) and the degrees of freedom of
the denominator (𝑑𝑓2); they are those constants we divide the numerator and
denominator by in the definition of the 𝐹 statistic. Then the 𝐹 statistic we
described above follows a 𝐹(𝑝, 𝑛 − 𝑝 − 1) distribution under our parametric
model.

Here is the null distribution for our 𝐹 statistic for the bodyfat:
curve(df(x, df1 = p, df2 = n - p - 1), xlim = c(0,

5), main = paste("F(", p, ",", n - p - 1, ") distribution"),
sub = paste("Observed:", round(summary(ft)$fstatistic["value"],

2)))

This is a highly significant result, and indeed most tests of general fit are highly
significant. It is rare that the entire set of variables collected have zero predictive
value to the response!
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6.6.2.2 Permutation test for global fit

Our null hypothesis to assess the global fit is that the 𝑥𝑖 do not give us any
information regarding the 𝑦. We had a similar situation previously when we
considered comparing two groups. There, we measured a response 𝑦 on two
groups, and wanted to know whether the group assignment of the observation
made a difference in the 𝑦 response. To answer that question with permutation
tests, we permuted the assignment of the 𝑦𝑖 variables into the two groups.

Then we can think of the global fit of the regression similarly, since under the
null knowing 𝑥𝑖 doesn’t give us any information about 𝑦𝑖, so I can permute the
assignment of the 𝑦𝑖 to 𝑥𝑖 and it shouldn’t change the fit of our data.

Specifically, we have a statistic, 𝑅2, for how well our predictions fit the data. We
observe pairs (𝑦𝑖, 𝑥𝑖) (𝑥𝑖 here is a vector of all the variables for the observation
𝑖). Then

1. Permute the order of the 𝑦𝑖 values, so that the 𝑦𝑖 are paired up with
different 𝑥𝑖.

2. Fit the regression model on the permuted data
3. Calculate 𝑅2

𝑏
4. Repeat 𝐵 times to get 𝑅2

1, … , 𝑅2
𝐵.

5. Determine the p-value of the observed 𝑅2 as compared to the compute
null distribution

We can do this with the body fat dataset:
set.seed(147980)
permutationLM <- function(y, data, n.repetitions, STAT = function(lmFit) {

summary(lmFit)$r.squared
}) {

stat.obs <- STAT(lm(y ~ ., data = data))
makePermutedStats <- function() {

sampled <- sample(y)
fit <- lm(sampled ~ ., data = data)
return(STAT(fit))

}
stat.permute <- replicate(n.repetitions, makePermutedStats())
p.value <- sum(stat.permute >= stat.obs)/n.repetitions
return(list(p.value = p.value, observedStat = stat.obs,

permutedStats = stat.permute))
}
permOut <- permutationLM(body$BODYFAT, data = body[,

-1], n.repetitions = 1000)
hist(permOut$permutedStats, breaks = 50)
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permOut[1:2]

## $p.value
## [1] 0
##
## $observedStat
## [1] 0.7265596

Notice that we could also use the 𝐹 statistic from before too (here we overlay the
null distribution of the 𝐹 statistic from the parametric model for comparison),
n <- nrow(body)
p <- ncol(body) - 1
permOutF <- permutationLM(body$BODYFAT, data = body[,

-1], n.repetitions = 1000, STAT = function(lmFit) {
summary(lmFit)$fstatistic["value"]

})
hist(permOutF$permutedStats, freq = FALSE, breaks = 50)
curve(df(x, df1 = p, df2 = n - p - 1), add = TRUE,

main = paste("F(", p, ",", n - p - 1, ") distribution"))
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permOutF[1:2]

## $p.value
## [1] 0
##
## $observedStat
## value
## 92.61904

6.6.3 Individual Variable Importance

We can also ask about individual variable, 𝛽𝑗. This is a problem that we have
discussed in the setting of simple regression, where we are interested in inference
regarding the parameter 𝛽𝑗, either with confidence intervals of 𝛽𝑗 or the null
hypothesis:

𝐻0 ∶ 𝛽𝑗 = 0

In order to perform inference for 𝛽𝑗, we have two possibilities of how to perform
inference, like in simple regression: bootstrap CI and the parametric model.

6.6.3.1 Bootstrap for CI of ̂𝛽𝑗

Performing the bootstrap to get CI for ̂𝛽𝑗 in multiple regression is the exact
same procedure as in simple regression.

Specifically, we still bootstrap pairs (𝑦𝑖, 𝑥𝑖) and each time recalculate the linear
model. For each 𝛽𝑗, we will have a distribution of ̂𝛽∗

𝑗 for which we can perform
confidence intervals.
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We can even use the same function as we used in the simple regression setting
with little changed.
bootstrapLM <- function(y, x, repetitions, confidence.level = 0.95) {

stat.obs <- coef(lm(y ~ ., data = x))
bootFun <- function() {

sampled <- sample(1:length(y), size = length(y),
replace = TRUE)

coef(lm(y[sampled] ~ ., data = x[sampled, ]))
}
stat.boot <- replicate(repetitions, bootFun())
level <- 1 - confidence.level
confidence.interval <- apply(stat.boot, 1, quantile,

probs = c(level/2, 1 - level/2))
return(list(confidence.interval = cbind(lower = confidence.interval[1,

], estimate = stat.obs, upper = confidence.interval[2,
]), bootStats = stat.boot))

}

bodyBoot <- with(body, bootstrapLM(y = BODYFAT, x = body[,
-1], repetitions = 10000))

bodyBoot$conf

## lower estimate upper
## (Intercept) -75.68776383 -3.747573e+01 -3.84419402
## AGE -0.03722018 1.201695e-02 0.06645578
## WEIGHT -0.24629552 -1.392006e-01 -0.02076377
## HEIGHT -0.41327145 -1.028485e-01 0.28042319
## CHEST -0.25876131 -8.311678e-04 0.20995486
## ABDOMEN 0.81115069 9.684620e-01 1.13081481
## HIP -0.46808557 -1.833599e-01 0.10637834
## THIGH 0.02272414 2.857227e-01 0.56054626
require(gplots)
with(bodyBoot, plotCI(confidence.interval[-1, "estimate"],

ui = confidence.interval[-1, "upper"], li = confidence.interval[-1,
"lower"], xaxt = "n"))

axis(side = 1, at = 1:(nrow(bodyBoot$conf) - 1), rownames(bodyBoot$conf)[-1])
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Note, that unless I scale the variables, I can’t directly interpret the size of the
𝛽𝑗 as its importance (see commentary above under interpretation).

Assumptions of the Bootstrap

Recall that the bootstrap has assumptions, two important ones being that we
have independent observations and the other being that we can reasonably es-
timate 𝐹 with ̂𝐹 . However, the distribution 𝐹 we need to estimate is not the
distribution of an individual a single variable, but the entire joint distributions
of all the variables. This gets to be a harder and harder task for larger numbers
of variables (i.e. for larger 𝑝).
In particular, when using the bootstrap in multiple regression, it will not perform
well if 𝑝 is large relative to 𝑛.4 In general you want the ratio 𝑝/𝑛 to be small
(like less than 0.1); otherwise the bootstrap can give very poor CI.5

cat("Ratio of p/n in body fat: ", ncol(body)/nrow(body),
"\n")

## Ratio of p/n in body fat: 0.03174603

6.6.3.2 Parametric models

Again, our inference on 𝛽𝑗 will look very similar to simple regression. Using our
parametric assumptions about the distribution of the errors will mean that each

̂𝛽𝑗 is normally distributed 6

̂𝛽𝑗 ∼ 𝑁(𝛽𝑗, 𝜈2
𝑗 )

where
𝜈2

𝑗 = ℓ(𝑋)𝜎2

4Of course, you cannot do regression at all unless 𝑛 > 𝑝.
5The CI will tend to be very conservative…too wide to give meaningful inference
6again, the equation for ̂𝛽𝑗 will be a linear combination of the 𝑦𝑖, and linear combinations

of normal R.V. are normal, even if the R.V. are not independent.
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(ℓ(𝑋) is a linear combination of all of the observed explanatory variables, given
in the matrix 𝑋).7

Using this, we create t-statistics for each 𝛽𝑗 by standardizing ̂𝛽𝑗

𝑇𝑗 =
̂𝛽𝑗

√ ̂𝑣𝑎𝑟( ̂𝛽𝑗)

Just like the t-test, 𝑇𝑗 should be normally distributed8 This is exactly what lm
gives us:
summary(ft)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.747573e+01 14.49480190 -2.585460204 1.030609e-02
## AGE 1.201695e-02 0.02933802 0.409603415 6.824562e-01
## WEIGHT -1.392006e-01 0.04508534 -3.087490946 2.251838e-03
## HEIGHT -1.028485e-01 0.09787473 -1.050817489 2.943820e-01
## CHEST -8.311678e-04 0.09988554 -0.008321202 9.933675e-01
## ABDOMEN 9.684620e-01 0.08530838 11.352484708 2.920768e-24
## HIP -1.833599e-01 0.14475772 -1.266667813 2.064819e-01
## THIGH 2.857227e-01 0.13618546 2.098041564 3.693019e-02

Correlation of estimates

The estimated ̂𝛽𝑗 are themselves correlated with each other, unless the 𝑥𝑗 and
𝑥𝑘 variables are uncorrelated.
library(pheatmap)
pheatmap(summary(ft, correlation = TRUE)$corr[-1, -1],

breaks = seq(-1, 1, length = 100), main = "Correlation of the estimated coefficients")

7Specifically, the vector of estimates of the 𝛽𝑗 is given by ̂𝛽 = (𝑋′𝑋)−1𝑋𝑦 (a 𝑝 + 1 length
vector) and the covariance matrix of the estimates ̂𝛽 is given by (𝑋′𝑋)−1𝜎2

8with the same caveat, that when you estimate the variance, you affect the distribution of
𝑇𝑗, which matters in small sample sizes.
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pheatmap(cor(body[, -1]), breaks = seq(-1, 1, length = 100),
main = "Correlation of the variables")

6.6.4 Inference on ̂𝑦(𝑥)

We can also create confidence intervals on the prediction given by the model,
̂𝑦(𝑥). For example, suppose now that we are asked to predict the bodyfat

percentage of an individual who has a particular set of variables 𝑥0. Then the
same logic in simple regression follows here.

There are two intervals associated with prediction:

1. Confidence intervals for the average response, i.e. bodyfat percentage for
all individuals who have the values 𝑥0. The average (or expected values)
at 𝑥0 is

𝐸(𝑦(𝑥0)) = 𝛽0 + 𝛽1𝑥(1)
0 + … + 𝛽𝑝𝑥(𝑝)

0 .
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and so we estimate it using our estimates of 𝛽𝑗, getting ̂𝑦(𝑥0).
Then our 1 − 𝛼 confidence interval will be9

̂𝑦(𝑥0) ± 𝑡𝛼2
√ ̂𝑣𝑎𝑟( ̂𝑦(𝑥0))

2. Confidence intervals for a particular individual (prediction interval). If
we knew 𝛽 completely, we still wouldn’t know the value of the particular
individual. But if we knew 𝛽, we know that our parametric model says
that all individuals with the same 𝑥0 values are normally distributed as

𝑁(𝛽0 + 𝛽1𝑥(1)
0 + … + 𝛽𝑝𝑥(𝑝)

0 , 𝜎2)

Question: So we could give an interval that we would expect 95% confi-
dence that such an individual would be in, how?

We don’t know 𝛽, so actually we have to estimate both parts of this,

̂𝑦(𝑥0) + ±1.96√�̂�2 + ̂𝑣𝑎𝑟( ̂𝑦(𝑥0))

Both of these intervals are obtained in R via the predict function.
x0 = data.frame(AGE = 30, WEIGHT = 180, HEIGHT = 70,

CHEST = 95, ABDOMEN = 90, HIP = 100, THIGH = 60)
predict(ft, x0, interval = "confidence")

## fit lwr upr
## 1 16.51927 15.20692 17.83162
predict(ft, x0, interval = "prediction")

## fit lwr upr
## 1 16.51927 7.678715 25.35983

Note that the prediction interval is much wider compared to the confidence
interval for average response.

% % ## Regression Diagnostics

Our next topic in multiple regression is regression diagnostics. The inference
procedures that we talked about work under the assumptions of the linear re-
gression model. If these assumptions are violated, then our hypothesis tests,
standard errors and confidence intervals will be violated. Regression diagnos-
tics enable us to diagnose if the model assumptions are violated or not.

The key assumptions we can check for in the regression model are:
9For those familiar with linear algebra, ̂𝑣𝑎𝑟( ̂𝑦(𝑥0) = 𝑥𝑇

0 (𝑋𝑇 𝑋)−1𝑥0𝜎2
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1. Linearity: the mean of the 𝑦 is linearly related to the explanatory variables.
2. Homoscedasticity: the errors have the same variance.
3. Normality: the errors have the normal distribution.
4. All the observations obey the same model (i.e., there are no outliers or

exceptional observations).

These are particularly problems for the parametric model; the bootstrap will be
relatively robust to these assumptions, but violations of these assumptions can
cause the inference to be less powerful – i.e. harder to detect interesting signal.

These above assumptions can be checked by essentially looking at the residuals:

1. Linearity: The residuals represent what is left in the response variable
after the linear effects of the explanatory variables are taken out. So if
there is a non-linear relationship between the response and one or more
of the explanatory variables, the residuals will be related non-linearly to
the explanatory variables. This can be detected by plotting the residuals
against the explanatory variables. It is also common to plot the residuals
against the fitted values. Note that one can also detect non-linearity by
simply plotting the response against each of the explanatory variables.

2. Homoscedasticity: Heteroscedasticity can be checked again by plotting
the residuals against the explanatory variables and the fitted values. It
is common here to plot the absolute values of the residuals or the square
root of the absolute values of the residuals.

3. Normality: Detected by the normal Q-Q plot of the residuals.
4. Outliers: The concern with outliers is that they could be effecting the fit.

There are three measurements we could use to consider whether a point
is an outlier
• Size of the residuals (𝑟𝑖) – diagnostics often use standardized residuals

to make them more comparable between different observations10

• Leverage – a measure of how far the vector of explanatory variables
of an observation are from the rest, and on average are expected to
be about 𝑝/𝑛.

• Cook’s Distance – how much the coefficients ̂𝛽 will change if you
leave out observation 𝑖, which basically combines the residual and
the leverage of a point.

Outliers typically will have either large (in absolute value) residuals and/or large
leverage.

Consider the bodyfat dataset. A simple way for doing some of the standard
regression diagnostics is to use the plot command as applied to the linear
model fit:
par(mfrow = c(2, 2))
plot(ft)

10in fact 𝑟𝑖 is not a good estimate of 𝑒𝑖, in terms of not having constant variance and being
correlated. Standardized residuals are still correlated, but at least have the same variance
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par(mfrow = c(1, 1))

Let’s go through these plots and what we can look for in these plots. There can
sometimes be multiple issues that we can detect in a single plot.

Independence

Note that the most important assumption is independence. Violations of in-
dependence will cause problems for every inference procedure we have looked
at, including the resampling procedures, and the problems such a violation will
cause for your inference will be even worse than the problems listed above. Un-
fortunately, violations of independence are difficult to check for in a generic
problem. If you suspect a certain kind of dependence, e.g. due to time or geo-
graphical proximity, there are special tools that can be used to check for that.
But if you don’t have a candidate for what might be the source of the depen-
dence, the only way to know there is no dependence is to have close control over
how the data was collected.

6.6.5 Residuals vs. Fitted Plot

The first plot is the residuals plotted against the fitted values. The points should
look like a random scatter with no discernible pattern. We are often looking for
two possible violations:

1. Non-linear relationship to response, detected by a pattern in the mean of
the residuals. Recall that the correlation between ̂𝑦 and the residuals must
be numerically zero – but that doesn’t mean that there can’t be non-linear
relationships.

2. Heteroscedasticity – a pattern in the variability of the residuals, for exam-
ple higher variance in observations with large fitted values.

Let us now look at some simulation examples in the simple setting of a single
predictor to demonstrate these phenomena.
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Example: Non-linearity

In the next example, the response is related non-linearly to 𝑥.
n = 200
xx1 = 3 + 4 * abs(rnorm(n))
yy1 = -2 + 0.5 * xx1^(1.85) + rnorm(n)
m1 = lm(yy1 ~ xx1)
par(mfrow = c(1, 2))
plot(yy1 ~ xx1)
plot(m1, which = 1)

Non-linearity is fixed by adding non-linear functions of explanatory variables as
additional explanatory variables. In this example, for instance, we can add 𝑥2

as an additional explanatory variable.
par(mfrow = c(1, 1))
m1.2 = lm(yy1 ~ xx1 + I(xx1^2))
plot(m1.2, which = 1)
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Example: Heteroscedasticity

Next let us consider an example involving heterscedasticity (unequal variance).
set.seed(478912)
n = 200
xx2 = 3 + 4 * abs(rnorm(n))
yy2 = -2 + 5 * xx2 + 0.5 * (xx2^(1.5)) * rnorm(n)
m2 = lm(yy2 ~ xx2)
par(mfrow = c(1, 2))
plot(yy2 ~ xx2)
plot(m2, which = 1)

Notice that even with a single variable, it is easier to see the difference in
variability with the residuals than in plotting 𝑦 versus 𝑥 (in the plot of 𝑦 versus
𝑥, the fact that 𝑦 is growing with 𝑥 makes it harder to be sure).

Heteroscedasticity is a little tricky to handle in general. Heteroscedasiticity can
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sometimes be fixed by applying a transformation to the response variable (𝑦)
before fitting the regression. For example, if all the response values are posi-
tive, taking the logarithm or square root of the response variable is a common
solution.

The Scale-Location plot (which is one of the default plots of plot) is also useful
for detecting heteroscedasiticity. It plots the square root of the absolute value
of the residuals (actually standardized residuals but these are similar to the
residuals) against the fitted values. Any increasing or decreasing pattern in this
plot indicates heteroscedasticity. Here is that plot on the simulated data that
has increasing variance:
par(mfrow = c(1, 2))
plot(m2, which = c(1, 3))

Back to data

We don’t see any obvious pattern in the fitted versus residual plot.
par(mfrow = c(1, 2))
plot(ft, which = c(1, 3))
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We do the same plot from our bike regression from above:
md1 = lm(casual ~ atemp + workingday + weathersit,

data = bike)
par(mfrow = c(1, 2))
plot(md1, which = c(1, 3))

Here we see serious heteroskedasticity, where there is more variability in our
residuals for larger fitted values than for smaller ones. There’s also possibly
signs that our residuals have a pattern to them (not centered at zero), possibly
indicating that our linear fit is not appropriate.

The response here is counts (number of casual users) and it is common to trans-
form such data. Here we show the fitted/residual plot after transforming the
response by the log and square-root:
mdLog = lm(log(casual) ~ atemp + workingday + weathersit,

data = bike)
mdSqrt = lm(sqrt(casual) ~ atemp + workingday + weathersit,



320 CHAPTER 6. MULTIPLE REGRESSION

data = bike)
par(mfrow = c(2, 2))
plot(mdLog, which = 1, main = "Log")
plot(mdSqrt, which = 1, main = "Sqrt")
plot(mdLog, which = 3, main = "Log")
plot(mdSqrt, which = 3, main = "Sqrt")

Why plot against ̂𝑦?

If we think there is a non linear relationship, shouldn’t we plot against the
individual 𝑥(𝑗) variables? We certainly can! Just like with ̂𝑦, each 𝑥(𝑗) is uncor-
related with the residuals, but there can be non-linear relationships that show
up. Basically any plot we do of the residuals should look like a random cloud
of points with no pattern, including against the explanatory variables.

Plotting against the individual 𝑥(𝑗) can help to determine which variables have
a non-linear relationship, and can help in determining an alternative model. Of
course this is only feasible with a relatively small number of variables.

One reason that ̂𝑦 is our default plot is that 1) there are often too many variables
to plot against easily; and 2) there are many common examples where the
variance changes as a function of the size of the response, e.g. more variance for
larger 𝑦 values.

6.6.6 QQ-Plot

The second plot is the normal Q-Q plot of the standardized residuals. If the
normal assumption holds, then the points should be along the line here.
library(MASS)
par(mfrow = c(1, 2))
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hist(stdres(ft), freq = FALSE, breaks = 10, xlim = c(-3.5,
3.5))

curve(dnorm, add = TRUE)
plot(ft, which = 2)

A QQ-plot is based on the idea that every point in your dataset is a quantile.
Specifically, if you have data 𝑥1, … , 𝑥𝑛 and you assume they are all in order,
then the probability of finding a data point less than or equal to 𝑥1 is 1/𝑛
(assuming there are no ties). So 𝑥1 is the 1/𝑛 quantile of the observed data
distribution. 𝑥2 is the 2/𝑛 quantile, and so forth.11

quantile(stdres(ft), 1/nrow(body))

## 0.3968254%
## -2.453687

Under our assumption of normality, then we also know what the 1/𝑛 quantile
should be based on qnorm (the standardized residuals are such that we expect
them to be 𝑁(0, 1))
qnorm(1/nrow(body))

## [1] -2.654759

The idea with QQ-plots is that we can do this for all of the data, and compare
whether our data has quantiles that match what we would expect for a normal
distribution.

Here are some examples of QQ-plots for some simulated data, to give you a
sense of how QQ-plots correspond to distributional properties:

11Actually, we estimate quantiles from data (called empirical quantiles), in a slightly
more complex way that performs better, but this is the idea.
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par(mfrow = c(4, 2), cex = 2)
n <- 500
qqlim <- c(-4, 4)
set.seed(302)
x <- rnorm(n)
x <- scale(x, scale = TRUE)
hist(x, freq = FALSE, breaks = 10, xlim = c(-4, 4),

main = "Normal Data")
curve(dnorm, add = TRUE)
qqnorm(x, xlim = qqlim, ylim = qqlim)
qqline(x)
x <- rt(n, df = 3)
x <- scale(x, scale = TRUE)
hist(x, freq = FALSE, breaks = 30, xlim = c(-4, 4),

main = "Heavy Tailed")
curve(dnorm, add = TRUE)
qqnorm(x, xlim = qqlim, ylim = qqlim)
qqline(x)
x <- rnorm(n, 0, 1)
x <- scale(sign(x) * abs(x)^{

3/4
}, scale = TRUE)
hist(x, freq = FALSE, breaks = 10, xlim = c(-4, 4),

main = "Light Tailed")
curve(dnorm, add = TRUE)
qqnorm(x, xlim = qqlim, ylim = qqlim)
qqline(x)
x <- rgamma(n, 5, 1)
x <- scale(x, scale = TRUE)
hist(x, freq = FALSE, breaks = 10, xlim = c(-4, 4),

main = "Skewed")
curve(dnorm, add = TRUE)
qqnorm(x, xlim = qqlim, ylim = qqlim)
qqline(x)
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Back to body fat data

There are some signs in the right tail that the residuals are a little off normal.

Question: Would you say that they are heavy or light tailed?

par(mfrow = c(1, 1))
plot(ft, which = 2)
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Looking at the bike model, we see the QQ plot shows serious problems in the
residuals as well. We see that taking a transformation of the response not only
helped with the heteroskedasticity, but also makes the residuals look closer to
normal. This is not uncommon, that what helps create more constant variance
can help the distributional assumptions as well.
par(mfrow = c(2, 2))
plot(md1, which = 2, main = "Original (counts)")
plot(mdLog, which = 2, main = "Log")
plot(mdSqrt, which = 2, main = "Sqrt")

6.6.7 Detecting outliers

The final plots are used for detecting outliers and other exceptional observations.
Large leverage or large residuals can indicate potential outliers, as does cooks
distance, which is a combination of the two. The default plots give the index of
potential outliers to help identify them.
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Three points flagged here are observations 𝑖 = 39, 42, 36. Let us look at these
observations separately, as well as plot some our visualizations highlighting these
points:

## High leverage points:

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 39 35.2 46 363.15 72.25 136.2 148.1 147.7 87.3
## 42 32.9 44 205.00 29.50 106.0 104.3 115.5 70.6
## 36 40.1 49 191.75 65.00 118.5 113.1 113.8 61.9

## Mean of each variables:

## BODYFAT AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 19.15079 44.88492 178.92440 70.14881 100.82421 92.55595 99.90476 59.40595

pairs(body, panel = function(x, y) {
points(x[-whOut], y[-whOut])
text(x[whOut], y[whOut], labels = whOut)

})
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The observation 39 is certainly an outlier in many variables. Observation 42
seems to have an erroneous height recording. Observation 36 seems to have a
high value for the response (percent bodyfat).

When outliers are detected, one can perform the regression analysis after drop-
ping the outlying observations and evaluate their impact. After this, one needs
to decide whether to report the analysis with the outliers or without them.

## Coefficients without outliers:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -22.902 20.297 -1.128 0.260
## AGE 0.021 0.029 0.717 0.474
## WEIGHT -0.074 0.059 -1.271 0.205
## HEIGHT -0.241 0.187 -1.288 0.199
## CHEST -0.121 0.113 -1.065 0.288
## ABDOMEN 0.945 0.088 10.709 0.000
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## HIP -0.171 0.152 -1.124 0.262
## THIGH 0.223 0.141 1.584 0.114

##
## Coefficients in Original Model:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37.476 14.495 -2.585 0.010
## AGE 0.012 0.029 0.410 0.682
## WEIGHT -0.139 0.045 -3.087 0.002
## HEIGHT -0.103 0.098 -1.051 0.294
## CHEST -0.001 0.100 -0.008 0.993
## ABDOMEN 0.968 0.085 11.352 0.000
## HIP -0.183 0.145 -1.267 0.206
## THIGH 0.286 0.136 2.098 0.037

We can see that WEIGHT and THIGH are no longer significant after removing
these outlying points. We should note that removing observations reduces the
power of all tests, so you may often see less significance if you remove many
points (three is not really many!). But we can compare to removing three
random points, and see that we don’t have major changes in our results:

## Coefficients without three random points:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.732 14.620 -2.513 0.013
## AGE 0.008 0.030 0.287 0.774
## WEIGHT -0.139 0.045 -3.070 0.002
## HEIGHT -0.108 0.098 -1.094 0.275
## CHEST 0.002 0.100 0.016 0.987
## ABDOMEN 0.972 0.086 11.351 0.000
## HIP -0.182 0.145 -1.249 0.213
## THIGH 0.266 0.136 1.953 0.052

6.7 Variable Selection

Consider a regression problem with a response variable 𝑦 and 𝑝 explanatory vari-
ables 𝑥1, … , 𝑥𝑝. Should we just go ahead and fit a linear model to 𝑦 with all the
𝑝 explanatory variables or should we throw out some unnecessary explanatory
variables and then fit a linear model for 𝑦 based on the remaining variables?
One often does the latter in practice. The process of selecting important ex-
planatory variables to include in a regression model is called variable selection.
The following are reasons for performing variable selection:

1. Removing unnecessary variables results in a simpler model. Simpler mod-
els are always preferred to complicated models.
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2. Unnecessary explanatory variables will add noise to the estimation of quan-
tities that we are interested in.

3. Collinearity (i.e. strong linear relationships in the variables) is a problem
with having too many variables trying to do the same job.

4. We can save time and/or money by not measuring redundant explanatory
variables.

Several common, interrelated strategies for asking this question

1. Hypothesis testing on variables or submodels
2. Stepwise regression based on 𝑝-values
3. Criteria based Variable Selection

We shall illustrate variable selection procedures using the following dataset
(which is available in R from the faraway package). This small dataset gives
information about drivers and the seat position that they choose, with the idea
of trying to predict a seat position from information regarding the driver (age,
weight, height,…).

We can see that the variables are highly correlated with each other, and no
variables are significant. However, the overall 𝑝-value reported for the 𝐹 -statistic
in the summary is almost zero (this is an example of how you might actually
find the 𝐹 statistic useful, in that it provides a check that even though no single
variable is significant, the variables jointly do fit the data well )
library(faraway)
data(seatpos)
pairs(seatpos)
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lmSeat = lm(hipcenter ~ ., seatpos)
summary(lmSeat)

##
## Call:
## lm(formula = hipcenter ~ ., data = seatpos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -73.827 -22.833 -3.678 25.017 62.337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 436.43213 166.57162 2.620 0.0138 *
## Age 0.77572 0.57033 1.360 0.1843
## Weight 0.02631 0.33097 0.080 0.9372
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## HtShoes -2.69241 9.75304 -0.276 0.7845
## Ht 0.60134 10.12987 0.059 0.9531
## Seated 0.53375 3.76189 0.142 0.8882
## Arm -1.32807 3.90020 -0.341 0.7359
## Thigh -1.14312 2.66002 -0.430 0.6706
## Leg -6.43905 4.71386 -1.366 0.1824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 37.72 on 29 degrees of freedom
## Multiple R-squared: 0.6866, Adjusted R-squared: 0.6001
## F-statistic: 7.94 on 8 and 29 DF, p-value: 1.306e-05

6.7.1 Submodels and Hypothesis testing

We already saw that we can evaluate if we need any of the variables by setting
up two models

Model 0: No variables, just predict ̄𝑦 for all observations

Model 1: Our linear model with all the variables

Then we compare the RSS from these two models with the F-statistic,

𝐹 = (𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑝
𝑅𝑆𝑆1/(𝑛 − 𝑝 − 1)

which the null hypothesis that these two models are equivalent (and assuming
our parametric model) has a 𝐹 distribution

𝐻0 ∶ 𝐹 ∼ 𝐹(𝑝, 𝑛 − 𝑝 − 1)

We can expand this framework to compare any submodel to the full model,
where a submodel means using only a specific subset of the 𝑝 parameters. For
example, can we use a model with only ABDOMEN, AGE, and WEIGHT?

For convenience lets say we number our variables so we have the first 𝑞 variables
are our submodel (𝑞 = 3 in our example). Then we now have two models:

Model 0: Just the first 𝑞 variables (and the intercept) Model 1: Our linear
model with all the 𝑝 variables

We can do the same as before and calculate our 𝑅𝑆𝑆 for each model and compare
them. We can get a 𝐹 statistic,

𝐹 = (𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/(𝑝 − 𝑞)
𝑅𝑆𝑆1/(𝑛 − 𝑝 − 1)

and under the null hypothesis that the two models are equivalent,
𝐻0 ∶ 𝐹 ∼ 𝐹(𝑝 − 𝑞, 𝑛 − 𝑝 − 1)
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Question: What does it mean if I get a non-significant result?

We can do this in R by fitting our two models, and running on the function
anova on both models:
mod0 <- lm(BODYFAT ~ ABDOMEN + AGE + WEIGHT, data = body)
anova(mod0, ft)

## Analysis of Variance Table
##
## Model 1: BODYFAT ~ ABDOMEN + AGE + WEIGHT
## Model 2: BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN + HIP + THIGH
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 248 4941.3
## 2 244 4806.8 4 134.5 1.7069 0.1491

Question: What conclusion do we draw?

F-test is only valid for comparing submodels It is important to realize
that the 𝐹 test described here is only valid for comparing submodels, i.e. the
smaller model has to be a set of variables that are a subset of the full model.
You can’t compare disjoint sets of variables with an 𝐹 -test.

Single variable: test for 𝛽𝑗:

We could set up the following two models:

Model 0: All of the variables except for 𝛽𝑗 Model 1: Our linear model with all
the 𝑝 variables

This is equivalent to
𝐻0 ∶ 𝛽𝑗 = 0

Question: How would you calculate the 𝐹 statistic and null distribution
of the 𝐹 Statistic?

Here we run that leaving out just HEIGHT:
modNoHEIGHT <- lm(BODYFAT ~ ABDOMEN + AGE + WEIGHT +

CHEST + HIP + THIGH, data = body)
anova(modNoHEIGHT, ft)

## Analysis of Variance Table
##



332 CHAPTER 6. MULTIPLE REGRESSION

## Model 1: BODYFAT ~ ABDOMEN + AGE + WEIGHT + CHEST + HIP + THIGH
## Model 2: BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN + HIP + THIGH
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 245 4828.6
## 2 244 4806.8 1 21.753 1.1042 0.2944

In fact if we compare that with the inference from our standard t-test of 𝛽𝑗 = 0,
we see we get the same answer
summary(ft)

##
## Call:
## lm(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +
## HIP + THIGH, data = body)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.0729 -3.2387 -0.0782 3.0623 10.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.748e+01 1.449e+01 -2.585 0.01031 *
## AGE 1.202e-02 2.934e-02 0.410 0.68246
## WEIGHT -1.392e-01 4.509e-02 -3.087 0.00225 **
## HEIGHT -1.028e-01 9.787e-02 -1.051 0.29438
## CHEST -8.312e-04 9.989e-02 -0.008 0.99337
## ABDOMEN 9.685e-01 8.531e-02 11.352 < 2e-16 ***
## HIP -1.834e-01 1.448e-01 -1.267 0.20648
## THIGH 2.857e-01 1.362e-01 2.098 0.03693 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.438 on 244 degrees of freedom
## Multiple R-squared: 0.7266, Adjusted R-squared: 0.7187
## F-statistic: 92.62 on 7 and 244 DF, p-value: < 2.2e-16

In fact, in this case the 𝐹 statistic is the square of the 𝑡 statistic and the two
tests are exactly identical
cat("F: \n")

## F:
print(anova(modNoHEIGHT, ft)$F[2])

## [1] 1.104217
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cat("Square of t-statistic: \n")

## Square of t-statistic:
print(summary(ft)$coef["HEIGHT", "t value"]^2)

## [1] 1.104217

This again shows us that our inference on 𝛽𝑗 is equivalent to asking if adding
in this variable significantly improves the fit of our model – i.e. on top of the
existing variables.

6.7.2 Finding the best submodel

The above method compares a specific defined submodel to the full model. But
we might instead want to find the best submodel for prediction. Conceptually
we could imagine that we would just fit all of possible subsets of variables for
the model and pick the best. That creates two problems

1. How to compare all of these models to each other? What measure should
we use to compare models? For example, we’ve seen that the measures
of fit we’ve discussed so far (e.g. 𝑅2 and 𝑅𝑆𝑆) can’t be directly com-
pared between different sized models, so we have to determine how much
improvement we would expect simply due to adding another variable.

2. There often way too many possible submodels. Specifically, there are 2𝑝

different possible submodels. That’s 256 models for 8 variables, which is
actually manageable, in the sense that you can run 256 regressions on a
computer. But the number grows rapidly as you increase the number of
variables. You quickly can’t even enumerate all the possible submodels in
large datasets with a lot of variables.

6.7.3 Criterion for comparing models

We are going to quickly go over different types of statistics for comparing models.
By a model 𝑀 , we mean a linear model using a subset of our 𝑝 variables. We
will find the ̂𝛽(𝑀), which gives us a prediction model, and we will calculate a
statistic based on our observed data that measures how well the model predicts
𝑦. Once we have such a statistic, say 𝑇 (𝑀), we want to compare across models
𝑀𝑗 and pick the model with the smallest 𝑇 (𝑀𝑗) (or largest depending on the
statistic).

Notice that this strategy as described is not inferential – we are not generally
taking into account the variability of the 𝑇 (𝑀𝑗), i.e. how 𝑇 (𝑀𝑗) might vary for
different random samples of the data. There might be other models 𝑀𝑘 that
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have slightly larger 𝑇 (𝑀𝑘) on this data than the “best” 𝑇 (𝑀𝑗), but in a different
dataset 𝑇 (𝑀𝑘) might be slightly smaller.

6.7.3.1 RSS: Comparing models with same number of predictors
(RSS)

We’ve seen that the RSS (Residual Sum of Squares) is a commonly used mea-
sure of the performance of a regression model, but will always decrease as you
increase the number of variables. However, RSS is a natural criterion to use
when comparing models having the same number of explanatory variables.

A function in R that is useful for variable selection is regsubsets in the R
package leaps. For each value of 𝑘 = 1, … , 𝑝, this function gives the best model
with 𝑘 variables according to the residual sum of squares.

For the body fat dataset, we can see what variables are chosen for each size:
library(leaps)
bFat = regsubsets(BODYFAT ~ ., body)
summary(bFat)

## Subset selection object
## Call: eval(expr, envir, enclos)
## 7 Variables (and intercept)
## Forced in Forced out
## AGE FALSE FALSE
## WEIGHT FALSE FALSE
## HEIGHT FALSE FALSE
## CHEST FALSE FALSE
## ABDOMEN FALSE FALSE
## HIP FALSE FALSE
## THIGH FALSE FALSE
## 1 subsets of each size up to 7
## Selection Algorithm: exhaustive
## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 1 ( 1 ) " " " " " " " " "*" " " " "
## 2 ( 1 ) " " "*" " " " " "*" " " " "
## 3 ( 1 ) " " "*" " " " " "*" " " "*"
## 4 ( 1 ) " " "*" " " " " "*" "*" "*"
## 5 ( 1 ) " " "*" "*" " " "*" "*" "*"
## 6 ( 1 ) "*" "*" "*" " " "*" "*" "*"
## 7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"

This output should be interpreted in the following way. The best model with
one explanatory variable (let us denote this by 𝑀1) is the model with AB-
DOMEN. The best model with two explanatory variables (denoted by 𝑀2) is
the one involving ABDOMEN and WEIGHT. And so forth. Here “best” means



6.7. VARIABLE SELECTION 335

in terms of RSS. This gives us 7 regression models, one for each choice of 𝑘:
𝑀1, 𝑀2, … , 𝑀7. The model 𝑀7 is the full regression model involving all the
explanatory variables.

For the body fat dataset, there’s a natural hierarchy in the results, in that for
each time 𝑘 is increased, the best model 𝑀𝑘 is found by adding another variable
to the set variables in 𝑀𝑘−1. However, consider the car seat position data:
bSeat = regsubsets(hipcenter ~ ., seatpos)
summary(bSeat)

## Subset selection object
## Call: eval(expr, envir, enclos)
## 8 Variables (and intercept)
## Forced in Forced out
## Age FALSE FALSE
## Weight FALSE FALSE
## HtShoes FALSE FALSE
## Ht FALSE FALSE
## Seated FALSE FALSE
## Arm FALSE FALSE
## Thigh FALSE FALSE
## Leg FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
## Age Weight HtShoes Ht Seated Arm Thigh Leg
## 1 ( 1 ) " " " " " " "*" " " " " " " " "
## 2 ( 1 ) " " " " " " "*" " " " " " " "*"
## 3 ( 1 ) "*" " " " " "*" " " " " " " "*"
## 4 ( 1 ) "*" " " "*" " " " " " " "*" "*"
## 5 ( 1 ) "*" " " "*" " " " " "*" "*" "*"
## 6 ( 1 ) "*" " " "*" " " "*" "*" "*" "*"
## 7 ( 1 ) "*" "*" "*" " " "*" "*" "*" "*"
## 8 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"

Question: Does the carseat data have this hiearchy?

Note though, that we cannot compare the models 𝑀1, … , 𝑀7 with RSS because
they have different number of variables. Moreover, for the car seat position
dataset, we also cannot use the 𝐹 statistic to compare the models because the
sets of variables in the different models are not subsets of each other.
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6.7.3.2 Expected Prediction Error and Cross-Validation

The best criterion for comparing models are based on trying to minimize the
predictive performance of the model, meaning for a new observation (𝑦0, 𝑥0),
how accurate is our prediction ̂𝑦(𝑥0) in predicting 𝑦0? In other words, how small
is

𝑦0 − ̂𝑦(𝑥0).
This is basically like the residual, only with data we haven’t seen. Of course
there is an entire population of unobserved (𝑦0, 𝑥0), so we can say that we
would like to minimize the average error across the entire population of unseen
observations

𝑚𝑖𝑛𝐸(𝑦0 − ̂𝑦(𝑥0))2.
This quantity is the expected prediction error.

This seems very much like our RSS

𝑅𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦(𝑥𝑖))2,

specifically, 𝑅𝑆𝑆/𝑛 seems like it should be a estimate of the prediction error.

The problem is that when you use the same data to estimate both the ̂𝛽 and the
prediction error, the estimate of the prediction error will underestimate the true
prediction error (i.e. it’s a biased estimate). Moreover, the more variables you
add (the larger 𝑝) the more it underestimates the true prediction error of that
model. That doesn’t mean smaller models are always better than larger models
– the larger model’s true prediction error may be less than the true prediction
error of the smaller model – but that comparing the fit (i.e. RSS) as measured
on the data used to estimate the model gets to be a worse and worse estimate
of the prediction error for larger and larger models. Moreover, the larger the
underlying noise (𝜎) for the model, the more bias there is as well; you can think
that the extra variables are being used to try to fit to the noise seen in the data,
which will not match the noise that will come with new data points. This is
often why larger models are considered to overfit the data.

Instead we could imagine estimating the error by not using all of our data to
fit the model, and saving some of it to evaluate which model is better. We
divide our data into training and test data. We can then fit the models on the
training data, and then estimate the prediction error of each on the test data.
set.seed(1249)
nTest <- 0.1 * nrow(body)
whTest <- sample(1:nrow(body), size = nTest)
bodyTest <- body[whTest, ]
bodyTrain <- body[-whTest, ]
predError <- apply(summary(bFat)$which[, -1], 1, function(x) {

lmObj <- lm(bodyTrain$BODYFAT ~ ., data = bodyTrain[,
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-1][, x, drop = FALSE])
testPred <- predict(lmObj, newdata = bodyTest[,

-1])
mean((bodyTest$BODYFAT - testPred)^2)

})
cat("Predicted error on random 10% of data:\n")

## Predicted error on random 10% of data:
predError

## 1 2 3 4 5 6 7
## 25.29712 28.86460 27.17047 28.65131 28.96773 28.92292 29.01328

Question: What does this suggest is the model with the smallest predic-
tion error?

Of course this is just one random subset, and 10% of the data is only 25 obser-
vations, so there is a lot of possible noise in our estimate of the prediction error.
If we take a different random subset it will be different:
set.seed(19085)
nTest <- 0.1 * nrow(body)
whTest <- sample(1:nrow(body), size = nTest)
bodyTest <- body[whTest, ]
bodyTrain <- body[-whTest, ]
predError <- apply(summary(bFat)$which[, -1], 1, function(x) {

lmObj <- lm(bodyTrain$BODYFAT ~ ., data = bodyTrain[,
-1][, x, drop = FALSE])

testPred <- predict(lmObj, newdata = bodyTest[,
-1])

mean((bodyTest$BODYFAT - testPred)^2)
})
cat("Predicted error on random 10% of data:\n")

## Predicted error on random 10% of data:
predError

## 1 2 3 4 5 6 7
## 22.36633 22.58908 22.21784 21.90046 21.99034 21.94618 22.80151

Question: What about this random subset, which is the best size model?

So a natural idea is to average over a lot of random training sets. For various
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reasons, we do something slightly different. We divide the data into 10 parts
(i.e. each 10%), and use 9 of the parts to fit the model and 1 part to estimate pre-
diction error, and repeat over all 10 partitions. This is called cross-validation.
set.seed(78912)
permutation <- sample(1:nrow(body))
folds <- cut(1:nrow(body), breaks = 10, labels = FALSE)
predErrorMat <- matrix(nrow = 10, ncol = nrow(summary(bFat)$which))
for (i in 1:10) {

testIndexes <- which(folds == i, arr.ind = TRUE)
testData <- body[permutation, ][testIndexes, ]
trainData <- body[permutation, ][-testIndexes,

]
predError <- apply(summary(bFat)$which[, -1], 1,

function(x) {
lmObj <- lm(trainData$BODYFAT ~ ., data = trainData[,

-1][, x, drop = FALSE])
testPred <- predict(lmObj, newdata = testData[,

-1])
mean((testData$BODYFAT - testPred)^2)

})
predErrorMat[i, ] <- predError

}
predErrorMat

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 18.72568 10.95537 11.68551 12.16354 11.83839 11.78985 11.93013
## [2,] 21.41687 21.08760 21.53709 21.06757 21.10223 21.20400 21.62519
## [3,] 32.47863 21.97477 22.48690 22.50871 22.97452 22.92450 24.05130
## [4,] 21.05072 20.22509 19.16631 18.82538 18.90923 18.89133 18.94164
## [5,] 26.47937 22.92690 23.76934 26.13180 26.17794 26.12684 26.28473
## [6,] 26.60945 23.35274 22.06232 22.06825 22.15430 23.10201 25.29325
## [7,] 25.65426 20.48995 19.95947 19.82442 19.53618 19.97744 20.29104
## [8,] 17.54916 18.79081 18.14251 17.67780 17.74409 17.67456 17.71624
## [9,] 33.52443 27.26399 25.83256 26.87850 27.80847 28.32894 28.41455
## [10,] 18.64271 14.11973 14.05815 14.53730 14.42609 14.36767 14.57028

We then average these estimates:
colMeans(predErrorMat)

## [1] 24.21313 20.11870 19.87002 20.16833 20.26714 20.43871 20.91184
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6.7.3.3 Closed-form criterion for comparing models with different
numbers of predictors

There are other theoretically derived measures that estimate the expected pre-
dicted error as well. These can be computationally easier, or when you have
smaller datasets may be more reliable.

The following are all measures for a model 𝑀 , most of which try to measure the
expected prediction error (we’re not going to go into where they come from)

• Leave-One-Out Cross Validation Score This is basically the same
idea as cross-validation, only instead of dividing the data into 10 parts,
we make each single observation take turns being the test data, and all
the other data is the training data. Specifically, for each observation 𝑖, fit
the model 𝑀 to the (𝑛 − 1) observations obtained by excluding the 𝑖𝑡ℎ

observation. This gives us an estimates of 𝛽, ̂𝛽(𝑖). Then we predict the
response for the 𝑖𝑡ℎ observation using ̂𝛽(−𝑖),

̂𝑦(−𝑖) = ̂𝛽(−𝑖)
0 + ̂𝛽(−𝑖)

1 𝑥(1) + … ̂𝛽(−𝑖)
𝑝 𝑥(𝑝)

Then we have the error for predicting 𝑦𝑖 based on a model that didn’t use
the data (𝑦𝑖, 𝑥𝑖). We can do this for each 𝑖 = 1, … , 𝑛 and then get our
estimate of prediction error,

𝐿𝑂𝑂𝐶𝑉 (𝑀) = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦(−𝑖))2

In fact, LOOCV can be computed very quickly in linear regression from
our residuals of the model without a lot of coding using algebraic facts
about regression that we won’t get into.12

• Mallows Cp

𝐶𝑝(𝑀) = 𝑅𝑆𝑆(𝑀)/𝑛 + 2�̂�2(𝑝 + 1)
𝑛

There are other ways of writing 𝐶𝑝 as well. �̂�2 in this equation is the
estimate based on the full model (with all predictors included.)

In fact, 𝐶𝑝(𝑀) becomes equivalent to the LOOCV as 𝑛 gets large
(i.e. asymptotically).

• Akaike Information Criterion (AIC)

𝐴𝐼𝐶(𝑀) = 𝑛𝑙𝑜𝑔(𝑅𝑆𝑆(𝑀)/𝑛) + 2(𝑝 + 1)

In regression, 𝐴𝐼𝐶 is equivalent to using 𝐶𝑝 above, only with �̂�2(𝑀),
i.e. the estimate of 𝜎 based on the model 𝑀 .

12𝐿𝑂𝑂𝐶𝑉 = 1
𝑛 ∑𝑛

𝑖=1 ( 𝑟2
𝑖

1−ℎ𝑖
)

2
where ℎ𝑖 is the diagonal of 𝑋(𝑋′𝑋)−1𝑋
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• Bayes Information Criterion (BIC)

𝐵𝐼𝐶(𝑀) = 𝑛𝑙𝑜𝑔(𝑅𝑆𝑆(𝑀)/𝑛) + (𝑝 + 1)𝑙𝑜𝑔(𝑛)

We would note that all of these measures, except for 𝐶𝑝 can be used for models
that are more complicated than just regression models, though AIC and BIC
are calculated differently depending on the prediction model.

Relationship to comparing models with same size 𝑘 Also, if we are com-
paring only models with the same number of predictors, 𝐶𝑝, AIC and BIC are
simply picking the model with the smallest RSS, like we did before. So we can
imagine using our results from running regsubsets to find the best model, and
then running these criterion on just the best of each one.

Adjusted 𝑅2 Another common measure is the adjusted 𝑅2. Recall that
𝑅2(𝑀) = 1 − 𝑅𝑆𝑆(𝑀)

𝑇 𝑆𝑆 = 1 − 𝑅𝑆𝑆(𝑀)/𝑛
𝑇 𝑆𝑆/𝑛 . The adjusted 𝑅2 is

𝑅2
𝑎𝑑𝑗(𝑀) = 1 − 𝑅𝑆𝑆(𝑀)/(𝑛 − 𝑝 − 1)

𝑇 𝑆𝑆/(𝑛 − 1) = 1 − �̂�2(𝑀)
̂𝑣𝑎𝑟(𝑦) ,

i.e. it uses the “right” values to divide by (i.e. right degrees of freedom), rather
than just 𝑛. You will often see it printed out on standard regression summaries.
It is an improvement over 𝑅2 (𝑅2

𝑎𝑑𝑗(𝑀) doesn’t always get larger when you add
a variable), but is not as good of a measure of comparing models as those listed
above.

Example: Comparing our best 𝑘-sized models

We can compare these criterion on the best 𝑘-sized models we found above:
LOOCV <- function(lm) {

vals <- residuals(lm)/(1 - lm.influence(lm)$hat)
sum(vals^2)/length(vals)

}

calculateCriterion <- function(x = NULL, y, dataset,
lmObj = NULL) {
sigma2 = summary(lm(y ~ ., data = dataset))$sigma^2
if (is.null(lmObj))

lmObj <- lm(y ~ ., data = dataset[, x, drop = FALSE])
sumlmObj <- summary(lmObj)
n <- nrow(dataset)
p <- sum(x)
RSS <- sumlmObj$sigma^2 * (n - p - 1)
c(R2 = sumlmObj$r.squared, R2adj = sumlmObj$adj.r.squared,

`RSS/n` = RSS/n, LOOCV = LOOCV(lmObj), Cp = RSS/n +
2 * sigma2 * (p + 1)/n, CpAlt = RSS/sigma2 -
n + 2 * (p + 1), AIC = AIC(lmObj), BIC = BIC(lmObj))
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}
cat("Criterion for the 8 best k-sized models of car seat position:\n")

## Criterion for the 8 best k-sized models of car seat position:
critSeat <- apply(summary(bSeat)$which[, -1], 1, calculateCriterion,

y = seatpos$hipcenter, dataset = seatpos[, -9])
critSeat <- t(critSeat)
critSeat

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC BIC
## 1 0.6382850 0.6282374 1253.047 1387.644 1402.818 -0.5342143 384.9060 389.8188
## 2 0.6594117 0.6399496 1179.860 1408.696 1404.516 -0.4888531 384.6191 391.1694
## 3 0.6814159 0.6533055 1103.634 1415.652 1403.175 -0.5246725 384.0811 392.2691
## 4 0.6848577 0.6466586 1091.711 1456.233 1466.137 1.1568934 385.6684 395.4939
## 5 0.6861644 0.6371276 1087.184 1548.041 1536.496 3.0359952 387.5105 398.9736
## 6 0.6864310 0.6257403 1086.261 1739.475 1610.457 5.0113282 389.4782 402.5789
## 7 0.6865154 0.6133690 1085.968 1911.701 1685.051 7.0035240 391.4680 406.2062
## 8 0.6865535 0.6000855 1085.836 1975.415 1759.804 9.0000000 393.4634 409.8392
cat("\nCriterion for the 7 best k-sized models of body fat:\n")

##
## Criterion for the 7 best k-sized models of body fat:
critBody <- apply(summary(bFat)$which[, -1], 1, calculateCriterion,

y = body$BODYFAT, dataset = body[, -1])
critBody <- t(critBody)
critBody <- cbind(critBody, CV10 = colMeans(predErrorMat))
critBody

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC BIC
## 1 0.6616721 0.6603188 23.60104 24.30696 23.91374 53.901272 1517.790 1528.379
## 2 0.7187981 0.7165395 19.61605 20.27420 20.08510 4.925819 1473.185 1487.302
## 3 0.7234261 0.7200805 19.29321 20.07151 19.91861 2.796087 1471.003 1488.650
## 4 0.7249518 0.7204976 19.18678 20.13848 19.96853 3.434662 1471.609 1492.785
## 5 0.7263716 0.7208100 19.08774 20.21249 20.02584 4.167779 1472.305 1497.011
## 6 0.7265595 0.7198630 19.07463 20.34676 20.16908 6.000069 1474.132 1502.367
## 7 0.7265596 0.7187150 19.07463 20.62801 20.32542 8.000000 1476.132 1507.896
## CV10
## 1 24.21313
## 2 20.11870
## 3 19.87002
## 4 20.16833
## 5 20.26714
## 6 20.43871
## 7 20.91184
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6.7.4 Stepwise methods

With a large number of predictors, it may not be feasible to compare all 2𝑝

submodels.

A common approach is to not consider all submodels, but compare only certain
submodels using stepwise regression methods. The idea is to iteratively add
or remove a single variable – the one that most improves your model – until you
do not get an improvement in your model criterion score.

For example, we can start with our full model, and iteratively remove the least
necessary variable, until we don’t get an improvement (Backward Elimination).
Alternatively we could imagine starting with no variables and add the best vari-
able, then another, until there’s no more improvement (Forward Elimination).

The choice of which variable to add or remove can be based on either the criterion
given above, or also by comparing p-values (since each step is a submodel), but
the most common usuage is not via p-values.

The most commonly used methods actually combine backward elimination and
forward selection. This deals with the situation where some variables are added
or removed early in the process and we want to change our mind about them
later. For example, in the car seat position data, if you want to add a single
best variable you might at the beginning choose Ht. But having Ht in the model
might keep you from ever adding Ht Shoes, which in combination with Wt might
do better than just Ht – i.e. the best model might be Ht Shoes + Wt rather than
Ht, but you would never get to it because once Ht is in the model, Ht Shoes
never gets added.

The function step in R will perform a stepwise search based on the AIC. The de-
fault version of the step function only removes variables (analogous to backward
elimination). If one wants to add variables as well, you can set the argument
direction.
outBody <- step(ft, trace = 0, direction = "both")
outBody

##
## Call:
## lm(formula = BODYFAT ~ WEIGHT + ABDOMEN + THIGH, data = body)
##
## Coefficients:
## (Intercept) WEIGHT ABDOMEN THIGH
## -52.9631 -0.1828 0.9919 0.2190

We can compare this to the best 𝑘-sized models we got before, and their mea-
sured criterion.
summary(bFat)$out
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## AGE WEIGHT HEIGHT CHEST ABDOMEN HIP THIGH
## 1 ( 1 ) " " " " " " " " "*" " " " "
## 2 ( 1 ) " " "*" " " " " "*" " " " "
## 3 ( 1 ) " " "*" " " " " "*" " " "*"
## 4 ( 1 ) " " "*" " " " " "*" "*" "*"
## 5 ( 1 ) " " "*" "*" " " "*" "*" "*"
## 6 ( 1 ) "*" "*" "*" " " "*" "*" "*"
## 7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
critBody

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC BIC
## 1 0.6616721 0.6603188 23.60104 24.30696 23.91374 53.901272 1517.790 1528.379
## 2 0.7187981 0.7165395 19.61605 20.27420 20.08510 4.925819 1473.185 1487.302
## 3 0.7234261 0.7200805 19.29321 20.07151 19.91861 2.796087 1471.003 1488.650
## 4 0.7249518 0.7204976 19.18678 20.13848 19.96853 3.434662 1471.609 1492.785
## 5 0.7263716 0.7208100 19.08774 20.21249 20.02584 4.167779 1472.305 1497.011
## 6 0.7265595 0.7198630 19.07463 20.34676 20.16908 6.000069 1474.132 1502.367
## 7 0.7265596 0.7187150 19.07463 20.62801 20.32542 8.000000 1476.132 1507.896
## CV10
## 1 24.21313
## 2 20.11870
## 3 19.87002
## 4 20.16833
## 5 20.26714
## 6 20.43871
## 7 20.91184

We see that stepwise picked the same model.

We can do the same for the car seat position data.
outCarseat <- step(lmSeat, trace = 0, direction = "both")
outCarseat

##
## Call:
## lm(formula = hipcenter ~ Age + HtShoes + Leg, data = seatpos)
##
## Coefficients:
## (Intercept) Age HtShoes Leg
## 456.2137 0.5998 -2.3023 -6.8297

We can again compare to the best model we found before.
summary(bSeat)$out

## Age Weight HtShoes Ht Seated Arm Thigh Leg
## 1 ( 1 ) " " " " " " "*" " " " " " " " "
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## 2 ( 1 ) " " " " " " "*" " " " " " " "*"
## 3 ( 1 ) "*" " " " " "*" " " " " " " "*"
## 4 ( 1 ) "*" " " "*" " " " " " " "*" "*"
## 5 ( 1 ) "*" " " "*" " " " " "*" "*" "*"
## 6 ( 1 ) "*" " " "*" " " "*" "*" "*" "*"
## 7 ( 1 ) "*" "*" "*" " " "*" "*" "*" "*"
## 8 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"
critSeat

## R2 R2adj RSS/n LOOCV Cp CpAlt AIC BIC
## 1 0.6382850 0.6282374 1253.047 1387.644 1402.818 -0.5342143 384.9060 389.8188
## 2 0.6594117 0.6399496 1179.860 1408.696 1404.516 -0.4888531 384.6191 391.1694
## 3 0.6814159 0.6533055 1103.634 1415.652 1403.175 -0.5246725 384.0811 392.2691
## 4 0.6848577 0.6466586 1091.711 1456.233 1466.137 1.1568934 385.6684 395.4939
## 5 0.6861644 0.6371276 1087.184 1548.041 1536.496 3.0359952 387.5105 398.9736
## 6 0.6864310 0.6257403 1086.261 1739.475 1610.457 5.0113282 389.4782 402.5789
## 7 0.6865154 0.6133690 1085.968 1911.701 1685.051 7.0035240 391.4680 406.2062
## 8 0.6865535 0.6000855 1085.836 1975.415 1759.804 9.0000000 393.4634 409.8392

Notice that for the carseat dataset, the stepwise procedure doesn’t give us the
same best model as we had when we compared the size-𝑘 best models – it uses
Ht Shoes rather than Ht.

If we calculate all criterion on the model found by the stepwise method, we
see that that the AIC for the model found by the stepwise method is actually
slightly larger than the best AIC found by looking at all submodels.
calculateCriterion(lmObj = outCarseat, y = seatpos$hipcenter,

dataset = seatpos[, -9])

## R2 R2adj RSS/n LOOCV Cp CpAlt
## 0.6812662 0.6531427 1201.5776327 1412.6121485 1276.4629022 -3.9088387
## AIC BIC
## 384.0989931 392.2869239

Drawbacks of Stepwise Regression Stepwise procedures are relatively cheap
computationally but they do have drawbacks because of the one-at-a-time na-
ture of adding/dropping variables, it is possible to miss the optimal model.
We’ve already mentioned that most stepwise methods use a combination of
adding and dropping variables to allow to reach more possible combinations.
But ultimately, there may be a best model that can’t be “found” by adding or
dropping a single variable.

6.7.5 Inference After Selection

After finding the best fitting model, it is tempting to then do inference on this
model, e.g. by looking at the p-values given by summary on the reduced model:
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summary(outBody)

##
## Call:
## lm(formula = BODYFAT ~ WEIGHT + ABDOMEN + THIGH, data = body)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.4832 -3.2651 -0.0695 3.2634 10.1647
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -52.96313 4.30641 -12.299 < 2e-16 ***
## WEIGHT -0.18277 0.02681 -6.817 7.04e-11 ***
## ABDOMEN 0.99191 0.05637 17.595 < 2e-16 ***
## THIGH 0.21897 0.10749 2.037 0.0427 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.428 on 248 degrees of freedom
## Multiple R-squared: 0.7234, Adjusted R-squared: 0.7201
## F-statistic: 216.2 on 3 and 248 DF, p-value: < 2.2e-16

However, these p-values are no-longer valid. Bootstrap inference would also no
longer be valid. Once you start using the data to pick and choose between the
variables, then you no longer have valid p-values. You can think of this as a
multiple testing problem – we’ve implicitly run many tests to find this model,
and so these p-values don’t account for the many tests.

Another way of thinking about it is that every set of variables will have the “best”
possible subset, even if they are just pure random noise. But your hypothesis
testing is not comparing to the distribution you would expect of the best possible
subset from random noise, so you are comparing to the wrong distribution. Note
that this problem with the p-values are present whether you use the formal
methods we described above, or just manually play around with the variables,
taking some in and out based on their p-values.

The first question for doing inference after selection is “why”? You are getting
the best prediction error (at least based on your estimates) with these variables,
and there’s not a better model. One reason you might want to is that there
is noise in our estimates of prediction error that we are not worrying about in
picking the minimum.

Solution 1: Don’t look for submodels!

You should really think about why you are looking for a smaller number of
variables. If you have a large number of variables relative to your sample size,
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a smaller model will often generalize better to future observations (i.e. give
better predictions). If that is the goal (i.e. predictive modeling) then it can
be important to get concise models, but then often inference on the individual
variables is not terribly important.

In practice, often times people look for small models to find only the variables
that “really matter”, which is sort of implicitly trying to infer causality. And
then they want inferential results (p-values, CI) to prove that these particular
variables are significant. This is hedging very close to looking for causality
in your variables. A great deal of meaningful knowledge about causality has
cummulatively been found in observational data (epidemiological studies on
human populations, for example), but it’s really important to keep straight the
interpretation of the coefficients in the model and what they are not telling you.

Generally, if you have a moderate number of variables relative to your sample
size, and you want to do inference on the variables, you will probably do well to
just keep all the variables in. In some fields, researchers are actually required
to state in advance of collecting any data what variables they plan to analyze
precisely so they don’t go “fishing” for important variables.

Solution 2: Use different data for finding model and inference

If you do want to do inference after selection of submodels the simplest solution
is to use a portion of your dataset to find the best model, and then use the
remaining portion of the data to do inference. Since you will have used com-
pletely different data for finding the model than from doing inference, then you
have avoided the problems with the p-values. This requires, however, that you
have a lot of data. Moreover, using smaller amounts of data in each step will
mean both that your choice of submodels might not be as good and that your
inference will be less powerful.

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11



Chapter 7

Logistic Regression

In the previous chapter, we looked at regression, where the goal is to understand
the relationship between a response variable 𝑦 and many explanatory variables.
Regression allowed for the explanatory variables to be categorical, but required
that the response 𝑦 be a continuous variable. Now we are going to consider the
setting where our response is categorical – specifically where the response takes
on one of two values (e.g. “Yes” and “No” or “Positive” and “Negative”). This
is often called classification.

7.1 The classification problem

The setting for the classification problem is similar to that of the regression
problem. We have a response variable 𝑦 and 𝑝 explanatory variables 𝑥1, … , 𝑥𝑝.
We collect data from 𝑛 subjects on these variables.

The only difference between regression and classification is that in classification,
the response variable 𝑦 is binary, meaning it takes only two values; for our
purposes we assume it is coded as 0 and 1, though in other settings you might
see -1 and 1. In contrast, for regression the response variable is continuous.
(The explanatory variables, as before, are allowed to be both continuous and
discrete.)

There are many examples for the classification problem. Two simple examples
are given below. We shall look at more examples later on.

Frogs Dataset

This dataset consists of 212 sites of the Snowy Mountain area of New South
Wales, Australia. Each site was surveyed to understand the distribution of the
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Southern Corroboree frog. The variables are is available as a dataset in R via
the package DAAG.
library(DAAG)
data(frogs)

The variables are:

1. pres.abs – 0/1 indicates whether frogs were found.
2. easting – reference point
3. northing – reference point
4. altitude – altitude in meters
5. distance – distance in meters to nearest extant population
6. NoOfPools– number of potential breeding pools
7. NoOfSites– number of potential breeding sites within a 2 km radius
8. avrain – mean rainfall for Spring period
9. meanmin – mean minimum Spring temperature
10. meanmax – mean maximum Spring temperature

The variable easting refers to the distance (in meters) east of a fixed reference
point. Similarly northing refers to the distance (in meters) north of the refer-
ence point. These two variables allow us to plot the sites in terms of a map,
where we color in sites where the frog was found:
presAbs <- factor(frogs$pres.abs, levels = c(0, 1),

labels = c("Absent", "Present"))
plot(northing ~ easting, data = frogs, pch = c(1, 16)[presAbs],

xlab = "Meters east of reference point", ylab = "Meters north")
legend("bottomleft", legend = levels(presAbs), pch = c(1,

16))

A natural goal is to under the relation between the occurence of a frog
(pres.abs) variable and the other geographic and environmental variables.
This naturally falls under the classification problem because the response
variable pres.abs is binary.
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Email Spam Dataset

This dataset is from Chapter 10 of the book Data Analysis and Graphics using
R. The original dataset is from the UC Irvine Repository of Machine Learning.
The original dataset had 4607 observations and 57 explanatory variables. The
authors of the book selected 6 of the 57 variables.
data(spam7)
head(spam7)

## crl.tot dollar bang money n000 make yesno
## 1 278 0.000 0.778 0.00 0.00 0.00 y
## 2 1028 0.180 0.372 0.43 0.43 0.21 y
## 3 2259 0.184 0.276 0.06 1.16 0.06 y
## 4 191 0.000 0.137 0.00 0.00 0.00 y
## 5 191 0.000 0.135 0.00 0.00 0.00 y
## 6 54 0.000 0.000 0.00 0.00 0.00 y
spam = spam7

The main variable here is yesno which indicates if the email is spam or not.
The other variables are explanatory variables. They are:

1. crl.tot - total length of words that are in capitals
2. dollar - frequency of the $ symbol, as percentage of all characters
3. bang - freqency of the ! symbol, as a percentage of all characters,
4. money - freqency of the word money, as a percentage of all words,
5. n000 - freqency of the text string 000, as percentage of all words,
6. make - freqency of the word make, as a percentage of all words.

The goal is mainly to predict whether a future email is spam or not based on
these explanatory variables. This is once again a classification problem because
the response is binary.

There are, of course, many more examples where the classification problem arises
naturally.

7.2 Logistic Regression Setup

We consider the simple example, where we just have a single predictor, 𝑥. We
could plot our 𝑦 versus our 𝑥, and might have something that looks like these
two examples plotted below (this is toy data I made up):
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Our goal is to predict the value of 𝑦 from our 𝑥.

Question: What do you notice about the relationship of 𝑦 with 𝑥 in the
above two examples? In which of the two examples is it easier to predict
𝑦?

Question: This is a standard x-y scatterplot from regression, but is a
pretty lousy plot for binary data! How could you better illustrate this data?

Prediction of Probability

Logistic regression does not directly try to predict values 0 or 1, but instead
tries to predict the probability that 𝑦 is 1 as a function of its variables,

𝑝(𝑥) = 𝑃(𝑌 = 1|𝑥)
Note that this can be thought of as our model for the random process of how
the data were generated: for a given value of 𝑥, you calculate the 𝑝(𝑥), and
then toss a coin that has probability 𝑝(𝑥) of heads. If you get a head, 𝑦 = 1,
otherwise 𝑦 = 0.1 The coin toss provides the randomness – 𝑝(𝑥) is an unknown
but fixed quantity.

Note that unlike regression, we are not writing 𝑦 as a function of 𝑥 plus some
noise (i.e. plus a random noise term). Instead we are writing 𝑃(𝑌 = 1) as a
function of 𝑥; our randomness comes from the random coin toss we perform
once we know 𝑝(𝑥).
We can use these probabilities to try to predict what the actual observed 𝑦 is
more likely to be (the classification problem). For example, if 𝑃(𝑌 = 1|𝑥) > 0.5

1I.e. conditional on 𝑥, 𝑦 is distributed 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝(𝑥)).
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we could decide to predict that 𝑦 = 1 and otherwise 𝑦 = 0; we could also use
the probabilities to be more stringent. For example, we could predict 𝑦 = 1 if
𝑃(𝑌 = 1|𝑥) > 0.7 and 𝑦 = 0 if 𝑃(𝑌 = 1|𝑥) < 0.3 and otherwise not make a
prediction. The point is that if we knew the probabilities, we could decide what
level of error in either direction we were willing to make. We’ll discuss this more
later in the chapter.

7.2.1 Estimating Probabilities

How can we estimate these probabilities? Let’s think of a simpler example,
where we observe many observations but only at three values 𝑥 (1, 1.5, and 2),
and their corresponding 𝑦. In the following plot I’ve added a small amount of
noise to the 𝑥 values so they don’t overplot on each other, but there are actually
only three values:

We can see this is still not entirely sufficient to see precisely the proportion of 0
versus 1 values at each x value, so I will plot each x value as a separate barplot
so we can directly compare the proportion of 0 versus 1 values at each x value:
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With this kind of data (i.e. with replication at each x-value), we could imagine
estimating the probability that 𝑦 = 1 if 𝑥 = 2, for example: we could take the
proportion of 𝑦 = 1 values for the observations that have 𝑥 = 2 (0.6. We could
call this value ̂𝑝(2). We could do this for each of the three values of 𝑥, getting
̂𝑝(1), ̂𝑝(1.5), ̂𝑝(2).

We could also then try to see how the probability of 𝑦 = 1 is changing with 𝑥.
For example, if we plotted ̂𝑝(𝑥) from above we would have:

So in this example, we see an increase in the value ̂𝑝(𝑥) as 𝑥 increases, i.e. the
probability of 𝑦 = 1 increases with 𝑥. However, with only 3 values of 𝑥 we
couldn’t describe ̂𝑝(𝑥) as a function of 𝑥 since we couldn’t say much about how
̂𝑝(𝑥) changes with 𝑥 for other values.

But if we had this kind of data with a lot of different 𝑥 values, we could think
of a way to estimate how ̂𝑝(𝑥) is changing with 𝑥, perhaps with curve fitting
methods we’ve already considered.

Without repeated observations
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More generally, however, we won’t have multiple observations with the same 𝑥.
Returning to the more realistic toy data example I created earlier (“Example
1”), we only have one observation at each 𝑥 value, but we have a lot of 𝑥 values.
Consider, for example, estimating the probability at 𝑥 = 2.5 (colored in red).
We only have one such value, and it’s 𝑦 values is 0:

We only have 1 observation, and ̂𝑝(2.5) = 0 is a very bad prediction based on
1 observation. Indeed, looking at the surrounding 𝑥 values around it, it is clear
from the plot that the probability that 𝑦 = 1 when 𝑥 = 2.5 is probably pretty
high, though not 1. We happen to get 𝑦 = 0 at 𝑥 = 2.5, but that was probably
random chance.

We could do something, like try to bin together similar 𝑥 values and estimate
a single probability for similar values of 𝑥, like our local regression fitting in
earlier chapters. Creating bins gets complicated when you have more than one
explanatory variable (though we will see that we do something similar to this
in decision trees, in the next chapter).

Instead, we will focus on predicting the function 𝑝(𝑥) by assuming 𝑝(𝑥) is a
straightforward function of 𝑥.

Why not regression?

We could ask, why don’t we just do regression to predict 𝑦? In other words, we
could do standard regression with the observed 𝑦 values as the response.

Numerically, we can do it, in the sense that lm will give us an answer that
vaguely seems reasonable. Here is the result from fitting to the two example
data sets from above (“Example 1” and “Example 2” from above):
par(mfrow = c(2, 2))
plot(y ~ x, data = toyDataCont, main = "Example 1")
abline(lm(y ~ x, data = toyDataCont))
plot(lm(y ~ x, data = toyDataCont), which = 1)
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plot(y ~ x, data = toyDataCont2, main = "Example 2")
abline(lm(y ~ x, data = toyDataCont2))
plot(lm(y ~ x, data = toyDataCont2), which = 1)

Question: What do you notice about using these predicted lines as an
estimate ̂𝑝(𝑥)?

This result doesn’t give us a prediction for probabilities (since values are outside
of [0,1]).

What about forgetting about predicting the probability and just try to predict
a 0 or 1 for y (i.e. classification)? The regression line doesn’t give us an obvious
way to create a classification. We’d have to make some decision (based on our
data) on what value of x to decide to make a prediction of 1 versus zero. Since
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we aren’t correctly predicting probabilities, there’s no obvious cutoff, though we
could use our data to try to pick one.

7.2.2 Logit function / Log Odds

What do we do instead?

Instead, we want a function for 𝑝(𝑥) that is constrained within [0,1]. While we
could try to figure out such a function, we are instead going to take another
tack which will lead us to such a function. Specifically, we are going to consider
transforming our 𝑝(𝑥) so that it takes on all real-valued values, say

𝑧(𝑥) = 𝜏(𝑝(𝑥))

Instead of trying to estimate 𝑝(𝑥), we will try to estimate 𝑧(𝑥) as a function of
our 𝑥.

Why? Because it will mean that 𝑧(𝑥) is no longer constrained to be between
0 and 1. Therefore, we can be free to use any simple modeling we’ve already
learned to estimate 𝑧(𝑥) (for example linear regression) without worrying about
any constraints. Then to get ̂𝑝(𝑥), we will invert to get

̂𝑝(𝑥) = 𝜏−1( ̂𝑧(𝑥)).

(Note that while 𝑝(𝑥) and 𝑧(𝑥) are unknown, we pick our function 𝜏 so we don’t
have to estimate it)

The other reason is that we are going to choose a function 𝜏 such that the value
𝑧(𝑥) is actually interpretable and makes sense on its own; thus the function 𝑧(𝑥)
is actually meaningful to estimate on its own.

There are different reasonable choices for 𝜏 , but we are going to focus on the
one traditionally used in logistic regression. The function we are going to use is
called the logit function. It takes any value 𝑝 in (0,1), and returns a real value:

𝜏(𝑝) = 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑜𝑔( 𝑝
1 − 𝑝).
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The value 𝑧 = 𝑙𝑜𝑔𝑖𝑡(𝑝) is interpretable as the log of the odds, a common measure
of discussing the probability of something.

Odds

Let 𝑝 be the probability of an event 𝐸, 𝑝 = 𝑃(𝐸). For example, our event could
be 𝐸 = {𝑦 = 1}, and then 𝑝 = 𝑃(𝐸) = 𝑃(𝑦 = 1)). Then the odds of the event
𝐸 is denoted by 𝑜𝑑𝑑𝑠(𝐸) and defined as

𝑜𝑑𝑑𝑠(𝐸) ∶= 𝑃(𝐸 happens)
𝑃 (𝐸 does not happen) = 𝑃(𝐸)

1 − 𝑃(𝐸) = 𝑝
1 − 𝑝

An important thing to note is that while 𝑝 = 𝑃(𝐸) lies between 0 and 1, the
odds of 𝐸 (𝑜𝑑𝑑𝑠(𝐸)) is only restricted to be nonnegative – i.e. the odds takes
on a wider range of values.
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Note the following simple formulae relating probability and odds:

𝑝 = 𝑃(𝐸) = 𝑜𝑑𝑑𝑠(𝐸)
1 + 𝑜𝑑𝑑𝑠(𝐸)

So if you know the odds of an event, you can also calculate the probability of
the event.

Log Odds

From a modeling perspective, it is still akward to work with odds – for example
to try to predict the odds – because it must be positive. Moreover, it’s not
symmetric in our choice of whether we consider 𝑃(𝑦 = 1) versus 𝑃(𝑦 = 0).
Changing the probability of 𝑦 = 1 from 0.8 to 0.9 create large differences in the
odds, but similarly changing the probability from 0.2 to 0.1 create small changes
in the odds.

This is unfortunate, since the choice of trying to estimate 𝑃(𝑦 = 1) is arbitrary
– we could have just as easily considered 𝑃(𝑦 = 0) and modeled that quantity.

However, if we take the log of the odds, there is no restriction on the value of
log(𝑜𝑑𝑑𝑠(𝐸)) i.e.,

𝑙𝑜𝑔 ( 𝑝
1 − 𝑝)

As your probability 𝑝 ranges between 0 and 1, the log-odds will take on all real-
valued numbers. Moreover, the logit function is symmetric around 0.5, meaning
that the difference between the log-odds of 𝑝 = 0.8 versus 𝑝 = 0.9 is the same
difference as the log-odds of 𝑝 = 0.2 versus 𝑝 = 0.1:
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Converting from log-odds to probability

As we discussed above, our goal is going to be to model 𝑧 = 𝑙𝑜𝑔𝑖𝑡(𝑝), and then
be able to transform from 𝑧 back to 𝑝.

We have the simple relationship between 𝑧 and the probability 𝑝

𝑝 = 𝑃(𝐸) = 𝜏−1(𝑧) = 𝑒𝑧

1 + 𝑒𝑧 = 1
1 + 𝑒−𝑧 .

This function 𝜏−1 is called the logistic function. For any real-valued 𝑧, the
logistic function converts that number into a value between 0-1 (i.e. a probabil-
ity).
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7.2.3 Logistic Regression Model

Logistic regression, then, is to model the 𝑙𝑜𝑔𝑖𝑡(𝑝) (i.e. the log-odds of the event),
as a linear function of the explanatory variable values 𝑥𝑖 of the 𝑖𝑡ℎ individual.
Again, this is a feasible thing to do, since log 𝑜𝑑𝑑𝑠 take on the full range of
values, so that we won’t have to figure out how to make sure we don’t predict
probabilities outside of 0-1. Then, because of the relationships above, this gives
us a model for the probabilities with respect to our explanatory variables 𝑥.
The logistic regression model, for 𝑝 = 𝑃(𝑦 = 1), is given as:

log( 𝑝
1 − 𝑝) = log (𝑜𝑑𝑑𝑠(𝑦 = 1)) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝.

This means that we are modeling the probabilities as

𝑝(𝑥) = exp(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝)
1 + exp(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝)

Visualizing Logistic Model

To understand the effect of these variables, let’s consider our model for a single
variable x:

𝑙𝑜𝑔( 𝑝𝑖
1 − 𝑝𝑖

) = log(𝑜𝑑𝑑𝑠(𝑦𝑖 = 1)) = 𝛽0 + 𝛽1𝑥𝑖

which means
𝑝𝑖 = exp (𝛽0 + 𝛽1𝑥𝑖)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖)

We can visualize the relationship of the probability 𝑝 of getting 𝑦 = 1 as a
function of 𝑥, for different values of 𝛽
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Fitting the Logistic Model in R

The R function for logistic regression in R is glm() and it is not very different
from lm() in terms of syntax.

For the frogs dataset, we will try to fit a model (but without the geographical
variables)
frogsNoGeo <- frogs[, -c(2, 3)]
glmFrogs = glm(pres.abs ~ ., family = binomial, data = frogsNoGeo)
summary(glmFrogs)

##
## Call:
## glm(formula = pres.abs ~ ., family = binomial, data = frogsNoGeo)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7215 -0.7590 -0.2237 0.8320 2.6789
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.105e+02 1.388e+02 0.796 0.42587
## altitude -3.086e-02 4.076e-02 -0.757 0.44901
## distance -4.800e-04 2.055e-04 -2.336 0.01949 *
## NoOfPools 2.986e-02 9.276e-03 3.219 0.00129 **
## NoOfSites 4.364e-02 1.061e-01 0.411 0.68077
## avrain -1.140e-02 5.995e-02 -0.190 0.84920
## meanmin 4.899e+00 1.564e+00 3.133 0.00173 **
## meanmax -5.660e+00 5.049e+00 -1.121 0.26224
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 279.99 on 211 degrees of freedom
## Residual deviance: 198.74 on 204 degrees of freedom
## AIC: 214.74
##
## Number of Fisher Scoring iterations: 6

GLM is not just the name of a function in R, but a general term that stands
for Generalized Linear Model. Logistic regression is a special case of a
generalized linear model; the family = binomial clause in the function call
above tells R to fit a logistic regression equation to the data – namely what
kind of function to use to determine whether the predicted probabilities fit our
data.
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7.3 Interpreting the Results

7.3.1 Coefficients

The parameter 𝛽𝑗 is interpreted as the change in log-odds of the event 𝑦 = 1 for a
unit change in the variable 𝑥𝑗 provided all other explanatory variables are kept
unchanged. Equivalently, 𝑒𝛽𝑗 can be interpreted as the multiplicative change in
odds due to a unit change in the variable 𝑥𝑗 – provided all other explanatory
variables are kept unchanged.

The R function provides estimates of the parameters 𝛽0, … , 𝛽𝑝. For exam-
ple, in the frogs dataset, the estimated coefficient of the variable NoOfPools
is 0.02986. This is interpreted as the change in log-odds of the event of find-
ing a frog when the NoOfPools increases by one (provided the other variables
remain unchanged). Equivalently, the odds of finding a frog get multiplied by
exp(0.02986) = 1.03031 when the NoOfPools increases by one.

P-values are also provided for each ̂𝛽𝑗; they have a similar interpretation as in
linear regression, namely evaluating the null hypothesis that 𝛽𝑗 = 0. We are
not going to go into how these p-values are calculated. Basically, if the model
is true, ̂𝛽𝑗 will be approximately normally distributed, with that approximation
being better for larger sample size. Logistic regression significance statements
rely much more heavily on asymptotics (i.e. having large sample sizes), even if
the data exactly follows the data generation model!

7.3.2 Fitted Values and prediction

Now suppose a new site is found in the area for which the explanatory variable
values are:

• altitude=1700
• distance=400
• NoOfPools=30
• NoOfSites=8
• avrain=150
• meanmin=4
• meanmax=16

What can our logistic regression equation predict for the presence or absence of
frogs in this area? Our logistic regression allows us to calculate the log(𝑜𝑑𝑑𝑠)
of finding frogs in this area as:
x0 = c(1, 1700, 400, 30, 8, 150, 4, 16)
sum(x0 * glmFrogs$coefficients)

## [1] -13.58643
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Remember that this is log(𝑜𝑑𝑑𝑠). From here, the odds of finding frogs is calcu-
lated as
exp(sum(x0 * glmFrogs$coefficients))

## [1] 1.257443e-06

These are very low odds. If one wants to obtain an estimate of the probability
of finding frogs at this new location, we can use the formula above to get:
exp(sum(x0 * glmFrogs$coefficients))/(1 + exp(sum(x0 *

glmFrogs$coefficients)))

## [1] 1.257441e-06

Therefore, we will predict that this species of frog will not be present at this
new location.

Similar to fitted values in linear regression, we can obtain fitted probabilities in
logistic regression for each of the observations in our sample using the fitted
function:
head(fitted(glmFrogs))

## 2 3 4 5 6 7
## 0.9994421 0.9391188 0.8683363 0.7443973 0.9427198 0.7107780

These fitted values are the fitted probabilities for each observation in our sample.
For example, for 𝑖 = 45, we can also calculate the fitted value manually as:
i = 45
rrg = c(1, frogs$altitude[i], frogs$distance[i], frogs$NoOfPools[i],

frogs$NoOfSites[i], frogs$avrain[i], frogs$meanmin[i],
frogs$meanmax[i])

eta = sum(rrg * glmFrogs$coefficients)
prr = exp(eta)/(1 + exp(eta))
c(manual = prr, FittedFunction = unname(glmFrogs$fitted.values[i]))

## manual FittedFunction
## 0.5807378 0.5807378

The following plots the fitted values against the actual response:
boxplot(fitted(glmFrogs) ~ frogs$pres.abs, at = c(0,

1))
points(x = jitter(frogs$pres.abs), fitted(glmFrogs))
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Question: Why do I plot this as a boxplot?

Some of the regions where frogs were present seems to have received very low
fitted probability under the model (and conversely, some of the regions with
high fitted probability did not actually have any frogs). We can look at these
unusual points in the following plot:
high0 <- frogs$pres.abs == 0 & glmFrogs$fitted > 0.7
low1 <- frogs$pres.abs == 1 & glmFrogs$fitted < 0.2
par(mfrow = c(1, 2))
plot(northing ~ easting, data = frogs, pch = c(1, 16)[frogs$pres.abs +

1], col = c("black", "red")[factor(high0)], xlab = "Meters east of reference point",
ylab = "Meters north", main = "Points with no frogs, but high prob")

plot(northing ~ easting, data = frogs, pch = c(1, 16)[frogs$pres.abs +
1], col = c("black", "red")[factor(low1)], xlab = "Meters east of reference point",
ylab = "Meters north", main = "Points with frogs, but low prob")

Question: What do you notice about these points?
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7.3.3 Fitting the model & Residual Deviance

We haven’t discussed how glm found the “best” choice of coefficients 𝛽 for our
model. Like regression, the coefficients are chosen based on getting the best fit
to our data, but how we measure that fit is different for logistic regression.

In regression we considered the squared residual as a measure of our fit for each
observation 𝑖,

(𝑦𝑖 − ̂𝑦𝑖)2,
and minimizing the average fit to our data. We will do something similar in
logistic regression, but

1. We will consider the fit of the fitted probabilities
2. The criterion we use to determine the best coefficients 𝛽 is not the residual,

but another notion of “fit” for every observation.

Let ̂𝑝1, … , ̂𝑝𝑛 denote the fitted probabilities in logistic regression for a possible
vector of coefficients 𝛽1, … , 𝛽𝑝. The actual response values are 𝑦1, … , 𝑦𝑛 (re-
member our responses 𝑦 are binary, i.e. 0-1 values). If the fit is good, we would
expect ̂𝑝𝑖 to be small (close to zero) when 𝑦𝑖 is 0 and ̂𝑝𝑖 to be large (close to
one) when 𝑦𝑖 is 1. Conversely, if the fit is not good, we would expect ̂𝑝𝑖 to be
large for some 𝑦𝑖 that is zero and ̂𝑝𝑖 to be small for some 𝑦𝑖 that is 1.

A commonly used function for measuring if a probability 𝑝 is close to 0 is

−2 log 𝑝.

This quantity is always nonnegative and it becomes very large if 𝑝 is close to
zero. Similarly, one can measure if a probability 𝑝 is close to 1 by −2 log(1 − 𝑝).

Using these quantities, we measure the quality of fit of ̂𝑝𝑖 to 𝑦𝑖 by

𝐷𝑒𝑣( ̂𝑝𝑖, 𝑦𝑖) = { −2 log ̂𝑝𝑖 ∶ 𝑦𝑖 = 1
−2 log (1 − ̂𝑝𝑖) ∶ 𝑦𝑖 = 0
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This is called the deviance.2 If 𝐷𝑒𝑣( ̂𝑝𝑖, 𝑦𝑖) is large, it means that ̂𝑝𝑖 is not a
good fit for 𝑦𝑖.

Because 𝑦𝑖 is either 0 or 1, the above formula for 𝐷𝑒𝑣( ̂𝑝𝑖, 𝑦𝑖) can be written
more succinctly as

𝐷𝑒𝑣( ̂𝑝𝑖, 𝑦𝑖) = 𝑦𝑖 (−2 log ̂𝑝𝑖) + (1 − 𝑦𝑖) (−2 log(1 − ̂𝑝𝑖)) .

Note that this is the deviance for the 𝑖𝑡ℎ observation. We can get a measure
of the overall goodness of fit (across all observations) by simply summing this
quantity over all our observations. The resulting quantity is called the Residual
Deviance:

𝑅𝐷 =
𝑛

∑
𝑖=1

𝐷𝑒𝑣( ̂𝑝𝑖, 𝑦𝑖).

Just like RSS, small values of 𝑅𝐷 are preferred and large values indicate lack
of fit.

This doesn’t have our 𝛽𝑗 anywhere, so how does this help in choosing the best 𝛽?
Well, remember that our fitted values ̂𝑝𝑖 is a specific function of our 𝑥𝑖 values:

̂𝑝𝑖 = ̂𝑝(𝑥𝑖) = 𝜏−1( ̂𝛽0 + … + ̂𝛽𝑝𝑥(𝑝)
𝑖 ) = exp( ̂𝛽0 + … + ̂𝛽𝑝𝑥(𝑝)

𝑖 )
1 + exp( ̂𝛽0 + … + ̂𝛽𝑝𝑥(𝑝)

𝑖 )

So we can put those values into our equation above, and find the ̂𝛽𝑗 that max-
imize that quantity. Unlike linear regression, this has to be maximized by a
computer – you can’t write down a mathematical expression for the ̂𝛽𝑗 that
minimize the residual deviance.

Residual Deviance in R

The function deviance can be used in R to calculate deviance. It can, of course,
also be calculated manually using the fitted probabilities.

RD (Residual Deviance) can be calculated from our glm object as
deviance(glmFrogs)

## [1] 198.7384

2This comes from assuming that the 𝑦𝑖 follow a Bernoulli distribtion with probability 𝑝𝑖.
Then this is the negative log-likelihood of the observation, and by minimizing the average of
this over all observations, we are maximizing the likelihood.
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7.4 Comparing Models

7.4.1 Deviance and submodels

Residual Deviance has parallels to RSS in linear regression, and we can use
deviance to compare models similarly to linear regression.

RD decreases as you add variables

Just like the RSS in linear regression, the RD in logistic regression will always
decrease as more variables are added to the model. For example, in the frogs
dataset, if we remove the variable NoOfPools, the RD changes to:
m2 = glm(pres.abs ~ altitude + distance + NoOfSites +

avrain + meanmin + meanmax, family = binomial,
data = frogs)

deviance(m2)

## [1] 210.8392
deviance(glmFrogs)

## [1] 198.7384

Note that RD decreased from 210.84 to 198.7384 by adding NoOfPools.

The Null Model (No Variables)

We can similarly ask whether we need any of the variables (like the F test). The
Null Deviance (ND) is the analogue of TSS (Total Sum of Squares) in linear
regression. It simply refers to the deviance when there are no explanatory
variables i.e., when one does logistic regression with only the intercept.

We can fit a model in R with no variables with the following syntax:
m0 <- glm(pres.abs ~ 1, family = binomial, data = frogs)
deviance(m0)

## [1] 279.987

Note, when there are no explanatory variables, the fitted probabilities are all
equal to ̄𝑦:
head(fitted(m0))

## 2 3 4 5 6 7
## 0.3726415 0.3726415 0.3726415 0.3726415 0.3726415 0.3726415
mean(frogs$pres.abs)

## [1] 0.3726415
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Notice that this null deviance is reported in the summary of the full model we
fit:
summary(glmFrogs)

##
## Call:
## glm(formula = pres.abs ~ ., family = binomial, data = frogsNoGeo)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7215 -0.7590 -0.2237 0.8320 2.6789
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.105e+02 1.388e+02 0.796 0.42587
## altitude -3.086e-02 4.076e-02 -0.757 0.44901
## distance -4.800e-04 2.055e-04 -2.336 0.01949 *
## NoOfPools 2.986e-02 9.276e-03 3.219 0.00129 **
## NoOfSites 4.364e-02 1.061e-01 0.411 0.68077
## avrain -1.140e-02 5.995e-02 -0.190 0.84920
## meanmin 4.899e+00 1.564e+00 3.133 0.00173 **
## meanmax -5.660e+00 5.049e+00 -1.121 0.26224
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 279.99 on 211 degrees of freedom
## Residual deviance: 198.74 on 204 degrees of freedom
## AIC: 214.74
##
## Number of Fisher Scoring iterations: 6

Significance of submodels

The deviances come with degrees of freedom. The degrees of freedom of RD is
𝑛 − 𝑝 − 1 (exactly equal to the residual degrees of freedom in linear regression)
while the degrees of freedom of ND is 𝑛 − 1.
Unlike regression, the automatic summary does not give a p-value as to whether
this is a significant change in deviance. Similarly, the anova function for com-
paring submodels doesn’t give a significance for comparing a submodel to the
larger model
anova(m0, glmFrogs)

## Analysis of Deviance Table
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##
## Model 1: pres.abs ~ 1
## Model 2: pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +
## meanmin + meanmax
## Resid. Df Resid. Dev Df Deviance
## 1 211 279.99
## 2 204 198.74 7 81.249

The reason for this that because for logistic regression, unlike linear regression,
there are multiple tests that for the same test. Furthermore, the glm function
can fit other models than just the logistic model, and depending on those models,
you will want different tests. I can specify a test, and get back a significance
value:
anova(m0, glmFrogs, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: pres.abs ~ 1
## Model 2: pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +
## meanmin + meanmax
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 211 279.99
## 2 204 198.74 7 81.249 7.662e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Question: What are the conclusions of these tests?

Comparison with Tests of ̂𝛽𝑗

Notice that unlike linear regression, you get slightly different answers testing the
importance of leaving out NoOfPools using the anova above and test statistics
that come with the summary of the logistic object:
anova(m2, glmFrogs, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: pres.abs ~ altitude + distance + NoOfSites + avrain + meanmin +
## meanmax
## Model 2: pres.abs ~ altitude + distance + NoOfPools + NoOfSites + avrain +
## meanmin + meanmax
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 205 210.84
## 2 204 198.74 1 12.101 0.000504 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cat("Summary results:\n")

## Summary results:
round(summary(glmFrogs)$coeff, 4)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 110.4935 138.7622 0.7963 0.4259
## altitude -0.0309 0.0408 -0.7571 0.4490
## distance -0.0005 0.0002 -2.3360 0.0195
## NoOfPools 0.0299 0.0093 3.2192 0.0013
## NoOfSites 0.0436 0.1061 0.4114 0.6808
## avrain -0.0114 0.0599 -0.1901 0.8492
## meanmin 4.8991 1.5637 3.1329 0.0017
## meanmax -5.6603 5.0488 -1.1211 0.2622

They are still testing the same null hypothesis, but they are making different
choices about the statistic to use3; in linear regression the different choices
converge to the same test (the 𝐹 -statistic for ANOVA is the square of the 𝑡-
statistic), but this is a special property of normal distribution. Theoretically
these two choices are equivalent for large enough sample size; in practice they
can differ.

7.4.2 Variable Selection using AIC

Although the Residual Deviance (RD) measures goodness of fit, it cannot be
used for variable selection because the full model will have the smallest RD. The
AIC however can be used as a goodness of fit criterion (this involves selecting
the model with the smallest AIC).

AIC

We can similarly calculate the AIC , only now it is based on the residual de-
viance,

𝐴𝐼𝐶 = 𝑅𝐷 + 2 (𝑝 + 1)

AIC(glmFrogs)

## [1] 214.7384

Based on AIC, we have the same choices as in linear regression. In principle, one
can go over all possible submodels and select the model with the smallest value
of AIC. But this involves going over 2𝑝 models which might be computationally

3The glm summary gives the Wald-statistics, while the anova uses the likelihood ratio
statistic.
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difficult if 𝑝 is moderate or large. A useful alternative is to use stepwise methods,
only now comparing the change in RD rather than RSS; we can use the same
step function in R:
step(glmFrogs, direction = "both", trace = 0)

##
## Call: glm(formula = pres.abs ~ distance + NoOfPools + meanmin + meanmax,
## family = binomial, data = frogsNoGeo)
##
## Coefficients:
## (Intercept) distance NoOfPools meanmin meanmax
## 14.0074032 -0.0005138 0.0285643 5.6230647 -2.3717579
##
## Degrees of Freedom: 211 Total (i.e. Null); 207 Residual
## Null Deviance: 280
## Residual Deviance: 199.6 AIC: 209.6

7.5 Classification Using Logistic Regression

Suppose that, for a new site, our logistic regression model predicts that the
probability that a frog will be found at that site to be ̂𝑝(𝑥). What if we want to
make a binary prediction, rather than just a probability, i.e. prediction ̂𝑦 that
is a 1 or 0, prediction whether there will be frogs found at that site. How large
should ̂𝑝(𝑥) be so that we predict that frogs will be found at that site? 0.5
sounds like a fair threshold but would 0.6 be better?

Let us now introduce the idea of a confusion matrix. Given any chosen
threshold, we can form obtain predictions in terms of 0 and 1 for each of the
sample observations by applying the threshold to the fitted probabilities given
by logistic regression. The confusion matrix is created by comparing these
predictions with the actual observed responses.

̂𝑦 = 0 ̂𝑦 = 1
𝑦 = 0 𝐶0 𝑊1
𝑦 = 1 𝑊0 𝐶1

• 𝐶0 denotes the number of observations where we were correct in predicting
0: both the observed response as well as our prediction are equal to zero.

• 𝑊1 denotes the number of observations where were wrong in our predic-
tions of 1: the observed response equals 0 but our prediction equals 1.

• 𝑊0 denotes the number of observations where were wrong in our predic-
tions of 0: the observed response equals 1 but our prediction equals 0.

• 𝐶1 denotes the number of observations where we were correct in predicting
0: both the observed response as well as our prediction are equal to 1.
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For example, for the frogs data, if we choose the threshold 0.5, then the entries
of the confusion matrix can be calculated as:

## Confusion matrix for threshold 0.5:

̂𝑦 = 0 ̂𝑦 = 1
𝑦 = 0 𝐶0 = 112 𝑊1 = 21
𝑦 = 1 𝑊0 = 21 𝐶1 = 58

On the other hand, if we use a threshold of 0.3, the numbers will be:

## Confusion for threshold 0.3:

̂𝑦 = 0 ̂𝑦 = 1
𝑦 = 0 𝐶0 = 84 𝑊1 = 49
𝑦 = 1 𝑊0 = 10 𝐶1 = 69

Note that 𝐶0 and 𝐶1 denote the extent to which the response agrees with our
threshold. And 𝑊1 and 𝑊0 measure the extent to which they disagree. An
optimal threshold can be chosen to be one which minimizes 𝑊1 + 𝑊0. We can
compute the entries of the confusion matrix for a range of possible thresholds.

## C0 W1 W0 C1
## 0 0 133 0 79
## 0.05 33 100 3 76
## 0.1 47 86 5 74
## 0.15 61 72 5 74
## 0.2 69 64 6 73
## 0.25 80 53 10 69
## 0.3 84 49 10 69
## 0.35 91 42 13 66
## 0.4 100 33 14 65
## 0.45 106 27 18 61
## 0.5 112 21 21 58
## 0.55 118 15 26 53
## 0.6 121 12 35 44
## 0.65 126 7 44 35
## 0.7 129 4 50 29
## 0.75 130 3 59 20
## 0.8 133 0 69 10
## 0.85 133 0 71 8
## 0.9 133 0 73 6
## 0.95 133 0 78 1
## 1 133 0 79 0

Notice that I can get either 𝑊1 or 𝑊0 exactly equal to 0 (i.e no mis-
classifications).
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Question: Why is it not a good idea to try to get 𝑊1 exactly equal to 0
(or alternatively try to get 𝑊0 exactly equal to 0)?

We can then plot the value of 𝑊1 + 𝑊0 for each value of the threshold in the
following plot:
plot(thr, conf[, "W1"] + conf[, "W0"], xlab = "threshold",

ylab = "W1+W0")

The smallest value of 𝑊1 + 𝑊0 corresponds to the threshold 0.55. It is sensible
therefore to use this threshold for predictions.

But there might be settings where you want to allow more of one type of mis-
take than another. For example, you might prefer to detect a higher percentage
of persons with a communicable disease, so as to limit the chances that some-
one further transmits the disease, even if that means slightly more people are
wrongly told that they have the disease. These are trade-offs that frequently
have to be made based on domain knowledge.

7.5.1 Example of Spam Dataset

Let us now consider the email spam dataset. Recall the dataset:
head(spam7)

## crl.tot dollar bang money n000 make yesno
## 1 278 0.000 0.778 0.00 0.00 0.00 y
## 2 1028 0.180 0.372 0.43 0.43 0.21 y
## 3 2259 0.184 0.276 0.06 1.16 0.06 y
## 4 191 0.000 0.137 0.00 0.00 0.00 y
## 5 191 0.000 0.135 0.00 0.00 0.00 y
## 6 54 0.000 0.000 0.00 0.00 0.00 y
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Before fitting a logistic regression model, let us first look at the summary and
histograms of the explanatory variables:
summary(spam)

## crl.tot dollar bang money
## Min. : 1.0 Min. :0.00000 Min. : 0.0000 Min. : 0.00000
## 1st Qu.: 35.0 1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.00000
## Median : 95.0 Median :0.00000 Median : 0.0000 Median : 0.00000
## Mean : 283.3 Mean :0.07581 Mean : 0.2691 Mean : 0.09427
## 3rd Qu.: 266.0 3rd Qu.:0.05200 3rd Qu.: 0.3150 3rd Qu.: 0.00000
## Max. :15841.0 Max. :6.00300 Max. :32.4780 Max. :12.50000
## n000 make yesno
## Min. :0.0000 Min. :0.0000 n:2788
## 1st Qu.:0.0000 1st Qu.:0.0000 y:1813
## Median :0.0000 Median :0.0000
## Mean :0.1016 Mean :0.1046
## 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :5.4500 Max. :4.5400
par(mfrow = c(3, 2))
for (i in 1:5) hist(spam[, i], main = "", xlab = names(spam)[i],

breaks = 10000)
par(mfrow = c(1, 1))

The following is a pairs plot of the variables.
pairs(spam, cex = 0.5)
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It is clear from these plots that the explanatory variables are highly skewed and
it is hard to see any structure in these plots. Visualization will be much easier
if we take logarithms of the explanatory variables.
s = 0.001
pairs(~log(crl.tot) + log(dollar + s) + log(bang +

s) + log(money + s) + log(n000 + s) + log(make +
s) + yesno, data = spam, cex = 0.5)

We now fit a logistic regression model for 𝑦𝑒𝑠𝑛𝑜 based on the logged explanatory
variables.
spam.glm <- glm(yesno ~ log(crl.tot) + log(dollar +

s) + log(bang + s) + log(money + s) + log(n000 +
s) + log(make + s), family = binomial, data = spam)

summary(spam.glm)
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##
## Call:
## glm(formula = yesno ~ log(crl.tot) + log(dollar + s) + log(bang +
## s) + log(money + s) + log(n000 + s) + log(make + s), family = binomial,
## data = spam)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1657 -0.4367 -0.2863 0.3609 2.7152
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.11947 0.36342 11.335 < 2e-16 ***
## log(crl.tot) 0.30228 0.03693 8.185 2.71e-16 ***
## log(dollar + s) 0.32586 0.02365 13.777 < 2e-16 ***
## log(bang + s) 0.40984 0.01597 25.661 < 2e-16 ***
## log(money + s) 0.34563 0.02800 12.345 < 2e-16 ***
## log(n000 + s) 0.18947 0.02931 6.463 1.02e-10 ***
## log(make + s) -0.11418 0.02206 -5.177 2.25e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6170.2 on 4600 degrees of freedom
## Residual deviance: 3245.1 on 4594 degrees of freedom
## AIC: 3259.1
##
## Number of Fisher Scoring iterations: 6

Note that all the variables are significant. We actually could have fitted a linear
model as well (even though the response variable is binary).
spam.lm <- lm(as.numeric(yesno == "y") ~ log(crl.tot) +

log(dollar + s) + log(bang + s) + log(money + s) +
log(n000 + s) + log(make + s), data = spam)

summary(spam.lm)

##
## Call:
## lm(formula = as.numeric(yesno == "y") ~ log(crl.tot) + log(dollar +
## s) + log(bang + s) + log(money + s) + log(n000 + s) + log(make +
## s), data = spam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10937 -0.13830 -0.05674 0.15262 1.05619
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.078531 0.034188 31.547 < 2e-16 ***
## log(crl.tot) 0.028611 0.003978 7.193 7.38e-13 ***
## log(dollar + s) 0.054878 0.002934 18.703 < 2e-16 ***
## log(bang + s) 0.064522 0.001919 33.619 < 2e-16 ***
## log(money + s) 0.039776 0.002751 14.457 < 2e-16 ***
## log(n000 + s) 0.018530 0.002815 6.582 5.16e-11 ***
## log(make + s) -0.017380 0.002370 -7.335 2.61e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3391 on 4594 degrees of freedom
## Multiple R-squared: 0.5193, Adjusted R-squared: 0.5186
## F-statistic: 827.1 on 6 and 4594 DF, p-value: < 2.2e-16

A comparison plot of the fitted values for the linear regression and logistic
regression is given below.
par(mfrow = c(1, 1))
plot(spam.lm$fitted.values, spam.glm$fitted.values,

asp = 1)
abline(c(0, 1), col = "red")

Note that some of the fitted values for the linear model are less than 0 and
some are more than one. We can formally compare the prediction performance
of the linear model and the generalized linear model by the confusion matrix.
For various thresholds on the fitted values, the confusion matrices of linear
regression and logistic regression can be computed and we can compare their
misclassification error
v <- seq(0.001, 0.999, length = 50)
y <- as.numeric(spam$yesno == "y")
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glm.conf <- confusion(y, spam.glm$fitted, v)
lm.conf <- confusion(y, spam.lm$fitted, v)
matplot(v, cbind((glm.conf[, "W1"] + glm.conf[, "W0"])/4601,

(lm.conf[, "W1"] + lm.conf[, "W0"])/4601), xlab = "threshold",
ylab = "W0+W1", type = "b", pch = 1)

legend(0.8, 0.4, lty = 1:2, col = 1:2, c("glm", "lm"))

It is clear from this plot that 0.5 is the best threshold for both linear and logistic
regression as the misclassification error is minimized at 0.5. Logistic regression
seems to be slightly better than linear regression at other thresholds.

The log-transformation on the explanatory variables is quite important in this
case.

To see this, let us perform a logistic regression without the transformations:
spam.glm.nolog <- glm(yesno ~ crl.tot + dollar + bang +

money + n000 + make, family = binomial, data = spam)
summary(spam.glm)

##
## Call:
## glm(formula = yesno ~ log(crl.tot) + log(dollar + s) + log(bang +
## s) + log(money + s) + log(n000 + s) + log(make + s), family = binomial,
## data = spam)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.1657 -0.4367 -0.2863 0.3609 2.7152
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.11947 0.36342 11.335 < 2e-16 ***
## log(crl.tot) 0.30228 0.03693 8.185 2.71e-16 ***
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## log(dollar + s) 0.32586 0.02365 13.777 < 2e-16 ***
## log(bang + s) 0.40984 0.01597 25.661 < 2e-16 ***
## log(money + s) 0.34563 0.02800 12.345 < 2e-16 ***
## log(n000 + s) 0.18947 0.02931 6.463 1.02e-10 ***
## log(make + s) -0.11418 0.02206 -5.177 2.25e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6170.2 on 4600 degrees of freedom
## Residual deviance: 3245.1 on 4594 degrees of freedom
## AIC: 3259.1
##
## Number of Fisher Scoring iterations: 6
summary(spam.glm.nolog)

##
## Call:
## glm(formula = yesno ~ crl.tot + dollar + bang + money + n000 +
## make, family = binomial, data = spam)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.4904 -0.6153 -0.5816 0.4439 1.9323
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.700e+00 5.361e-02 -31.717 < 2e-16 ***
## crl.tot 6.917e-04 9.745e-05 7.098 1.27e-12 ***
## dollar 8.013e+00 6.175e-01 12.976 < 2e-16 ***
## bang 1.572e+00 1.115e-01 14.096 < 2e-16 ***
## money 2.142e+00 2.418e-01 8.859 < 2e-16 ***
## n000 4.149e+00 4.371e-01 9.492 < 2e-16 ***
## make 1.698e-02 1.434e-01 0.118 0.906
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6170.2 on 4600 degrees of freedom
## Residual deviance: 4058.8 on 4594 degrees of freedom
## AIC: 4072.8
##
## Number of Fisher Scoring iterations: 16
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spam.lglmFrogs = lm(as.numeric(yesno == "y") ~ crl.tot +
dollar + bang + money + n000 + make, data = spam)

summary(spam.lglmFrogs)

##
## Call:
## lm(formula = as.numeric(yesno == "y") ~ crl.tot + dollar + bang +
## money + n000 + make, data = spam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8650 -0.2758 -0.2519 0.4459 0.7499
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.498e-01 7.488e-03 33.365 <2e-16 ***
## crl.tot 1.241e-04 1.058e-05 11.734 <2e-16 ***
## dollar 3.481e-01 2.733e-02 12.740 <2e-16 ***
## bang 1.113e-01 7.725e-03 14.407 <2e-16 ***
## money 1.765e-01 1.440e-02 12.262 <2e-16 ***
## n000 3.218e-01 1.891e-02 17.014 <2e-16 ***
## make 3.212e-02 2.101e-02 1.529 0.126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4223 on 4594 degrees of freedom
## Multiple R-squared: 0.2543, Adjusted R-squared: 0.2533
## F-statistic: 261.1 on 6 and 4594 DF, p-value: < 2.2e-16
summary(spam.lm)

##
## Call:
## lm(formula = as.numeric(yesno == "y") ~ log(crl.tot) + log(dollar +
## s) + log(bang + s) + log(money + s) + log(n000 + s) + log(make +
## s), data = spam)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10937 -0.13830 -0.05674 0.15262 1.05619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.078531 0.034188 31.547 < 2e-16 ***
## log(crl.tot) 0.028611 0.003978 7.193 7.38e-13 ***
## log(dollar + s) 0.054878 0.002934 18.703 < 2e-16 ***
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## log(bang + s) 0.064522 0.001919 33.619 < 2e-16 ***
## log(money + s) 0.039776 0.002751 14.457 < 2e-16 ***
## log(n000 + s) 0.018530 0.002815 6.582 5.16e-11 ***
## log(make + s) -0.017380 0.002370 -7.335 2.61e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3391 on 4594 degrees of freedom
## Multiple R-squared: 0.5193, Adjusted R-squared: 0.5186
## F-statistic: 827.1 on 6 and 4594 DF, p-value: < 2.2e-16

There is a noticeable difference between the two R-squared values.

7.5.2 Trading off different types of errors

We used the quantity 𝑊0 +𝑊1 to quantify how many errors we make. However,
these are combining together two different types of errors, and we might care
about one type of error more than another. For example, if 𝑦 = 1 if a person
has a disease and 𝑦 = 0 if they do not, then we might have different ideas about
how much of the two types of error we would want. 𝑊1 are all of the times
we say someone has a disease when they don’t, while 𝑊0 is the reverse (we say
someone has the disease, but they don’t).

We’ve already seen that it’s not a good idea to try to drive either 𝑊0 or 𝑊1 to
zero (if that was our goal we could just ignore any data and always says someone
has the disease, and that would make 𝑊0 = 0 since we would never have ̂𝑦 = 0).
Alternatively, we might have a prediction procedure, and want to quantify how
good it is, and so we want a vocabulary to talk about the types of mistakes we
make.

Recall our types of results:

pred = 0 pred = 1
obs = 0 𝐶0 𝑊1
obs = 1 𝑊0 𝐶1

There are two sets of metrics that are commonly used.

1. Precision/Recall

• Precision
𝑃(𝑦 = 1| ̂𝑦 = 1)

We estimate it with the proportion of predictions of ̂𝑦 = 1 that are
correct

# correct ̂𝑦 = 1
# ̂𝑦 = 1 = 𝐶1

𝐶1 + 𝑊1
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• Recall
𝑃( ̂𝑦 = 1|𝑦 = 1)

Estimated with proportion of 𝑦 = 1 that are correctly predicted

# correct ̂𝑦 = 1
#𝑦 = 1

𝐶1
𝐶1 + 𝑊0

2. Sensitivity/Specificity

• Specificity (or true negative rate)

𝑃( ̂𝑦 = 0|𝑦 = 0)
Estimated with the proportion of all 𝑦 = 0 that are correctly pre-
dicted

# correct ̂𝑦 = 0
# ̂𝑦 = 0 = 𝐶0

𝐶0 + 𝑊1
• Sensitivity (equivalent to Recall or true positive rate)

𝑃( ̂𝑦 = 1|𝑦 = 1)
Estimated with the proportion of all 𝑦 = 1 that are correctly pre-
dicted

# correct ̂𝑦 = 1
#𝑦 = 1 = 𝐶1

𝐶1 + 𝑊0

Example: Disease classification

If we go back to our example of 𝑦 = 1 if a person has a disease and 𝑦 = 0 if they
do not, then we have:

• Precision The proportion of patients classified with the disease that ac-
tually have the disease.

• Recall/Sensitivity The proportion of diseased patients that will be cor-
rectly identified as diseased

• Specificity The proportion of non-diseased patients that will be correctly
identified as non-diseased

7.5.3 ROC/Precision-Recall Curves

These metrics come in pairs because you usually consider the two pairs together
to decide on the right cutoff, as well as to generally compare techniques.

These measures are usually done plotted: Sensitivity plotted against specificity
is called a ROC curve (“Receiver operating characteristic” curve); the other plot
is just the precision-recall plot.

Here are these curves estimated for our glm model on the spam dataset (note
that the points are where we actually evaluated it, and we draw lines between
those points to get a curve)
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spamGlm.precision <- glm.conf[, "C1"]/(glm.conf[, "C1"] +
glm.conf[, "W1"])

spamGlm.recall <- glm.conf[, "C1"]/(glm.conf[, "C1"] +
glm.conf[, "W0"])

spamGlm.spec <- glm.conf[, "C0"]/(glm.conf[, "C0"] +
glm.conf[, "W1"])

par(mfrow = c(1, 2))
plot(x = spamGlm.precision, y = spamGlm.recall, xlab = "Precision",

ylab = "Recall / Sensitivity", type = "b", xlim = c(0,
1), ylim = c(0, 1), main = "Precision-Recall")

plot(x = spamGlm.spec, y = spamGlm.recall, ylab = "Recall / Sensitivity",
xlab = "Specificity", type = "b", xlim = c(0, 1),
ylim = c(0, 1), main = "ROC")

Question: Why would there be a NaN?

We can compare linear and logistic regressions in one plot as follows.
spamlm.precision <- lm.conf[, "C1"]/(lm.conf[, "C1"] +

glm.conf[, "W1"])
spamlm.recall <- lm.conf[, "C1"]/(lm.conf[, "C1"] +

glm.conf[, "W0"])
spamlm.spec <- lm.conf[, "C0"]/(lm.conf[, "C0"] + glm.conf[,

"W1"])
par(mfrow = c(1, 2))
matplot(x = cbind(spamGlm.precision, spamlm.precision),

y = cbind(spamGlm.recall, spamlm.recall), xlab = "Precision",
ylab = "Recall", type = "l")

legend(0.8, 0.4, lty = 1:2, col = 1:2, c("glm", "lm"))
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matplot(x = cbind(spamGlm.spec, spamlm.spec), y = cbind(spamGlm.recall,
spamlm.recall), ylab = "Recall / Sensitivity",
xlab = "Specificity", type = "l")

legend(0.8, 0.4, lty = 1:2, col = 1:2, c("glm", "lm"))

Why one versus the other?

Notice that Precision-Recall focuses on the cases of 𝑦 = 1 or ̂𝑦 = 1. This can
be useful in cases where your focus is really on how well you detect someone
and you are not concerned about how well you are detecting 𝑦 = 0. This is
most common if the vast majority of the population has 𝑦 = 0, and you want
to detect very rare events when 𝑦 = 1 – these are often problems when you
are “trying to find a needle in the haystack”, and only care about your ability
to find positive results. For example, suppose you want to consider how well
a search engine lists of links are correctly related to the topic requested. You
can imagine all websites in the world have a true 𝑦𝑖 = 1 if it would be correct
to be listed and the search engine gives a ̂𝑦𝑖 = 1 to those websites that they
will return. Then precision is asking (on average) what proportion of the search
engine’s list of websites are correct; recall/sensitivity is asking what proportion
of all of the 𝑦𝑖 = 1 websites are found. Both are reasonable questions to try
to trade off. Specificity, however, is what proportion of all the other (billion?)
websites that are not related (i.e. 𝑦𝑖 = 0) are NOT given in the search engine’s
list of good websites. You are not concerned about this quantity at all.

However, in other contexts it matters very much how good you are at separat-
ing the negative results (i.e. 𝑦 = 0). Consider predicting if a patient has a
disease ( ̂𝑦𝑖 = 1), and then 𝑦𝑖 is whether the patient actually has a disease. A
negative result tells a patient that the patient doesn’t have the disease – and is
a serious problem if in fact the patient does have the disease, and thus doesn’t
get treatment.

Note that the key distinction between these two contexts the reprecussions to
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being negative. There are many settings where the use of the predictions is ulti-
mately as a recommendation system (movies to see, products to buy, best times
to buy something, potential important genes to investigate, etc), so mislabeling
some positive things as negative (i.e. not finding them) isn’t a big deal so long
as what you do recommend is high quality.

Indeed, the cases where trade-offs lead to different conclusions tend to be cases
where the overall proportion of 𝑦𝑖 = 1 in the population is small. (However,
just because they have a small proportion in the population doesn’t mean you
don’t care about making mistakes about negatives – missing a diagnosis for a
rare but serious disease is still a problem)



Chapter 8

Regression and
Classification Trees

## Linking to ImageMagick 6.9.12.3
## Enabled features: cairo, fontconfig, freetype, heic, lcms, pango, raw, rsvg, webp
## Disabled features: fftw, ghostscript, x11

Now we are going to turn to a very different statistical approach, called deci-
sion trees. This approach is focused on prediction of our outcome 𝑦 based on
covariates 𝑥. Unlike our previous regression and logistic regression approaches,
decision trees are a much more flexible model and are primarily focused on ac-
curate prediction of the 𝑦, but they also give a very simple and interpretable
model for the data 𝑦.
Decision trees, themselves, are not very powerful for predictions. However, when
we combine them with ideas of resampling, we can combine together many
decision trees (run on different samples of the data) to get what are called
Random Forests. Random Forests are a pretty powerful and widely-used
prediction tool.

8.1 Basic Idea of Decision Trees.

The basic idea behind decision trees is the following: Group the 𝑛 subjects in
our observed data (our training data) into a bunch of groups. The groups
are defined based on binning the explanatory variables (𝑥) of the observed data,
and the bins are picked so that the observed data in a bin have similar outcomes
𝑦.
Prediction for a future subject is then done in the following way. Look at the
explanatory variable values for the future subject to figure into which binned

385
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values of the 𝑥 the observation belongs. Then predict the future response based
on the responses in the observed data that were in that group.

When the output 𝑦 is continuous, we call it regression trees, and we will pre-
dict a future response based on the mean of the training data in that group/bin.
If the outcome 𝑦 is binary we call this technique classification trees. Just
like with regression and logistic regression, there are important distinctions in
how the model is built for continuous and binary data, but there is a general
similarity in the approach.

8.2 The Structure of Decision Trees

The main thing to understand here is how the grouping of the data into groups
is constructed. Let’s return to the bodyfat data from our multiple regression
chapter.

The groups of data are from partitioning (or binning) the 𝑥 covariates in the
training data. For example, one group of data in our training data could be
observations that meet all of the following criterion:

• HEIGHT>72.5
• 91<ABDOMEN<103
• 180<WEIGHT<200

Notice that this group of observations is constructed by taking a simple range
for each of the variables used. This is the partitioning of the 𝑥 data, and decision
trees limit themselves to these kind of groupings of the data. The particular
values for those ranges are picked, as we said before, based on what best divides
the training data so that the response 𝑦 is similar.

Why Trees?

The reason these are called decision trees, is that you can describe the rules for
how to put an observation into one of these groups based on a simple decision
tree.
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How to interpret this tree? This tree defines all of the possible groups based
on the explanatory variables. You start at the top node of the tree. At each
node of the tree, there is a condition involving a variable and a cut-off. If the
condition is met, then we go left and if it is not met, we go right. The bottom
“terminal nodes” or “leaves” of the tree correspond to the groups. So for example,
consider an individual who is 30 years of age, 180 pounds in weight, 70 inches
tall and whose chest circumference is 95 cm, abdomen circumference is 90 cm,
hip circumference is 100 cm and thigh circumference is 60 cm. The clause at the
top of the tree is “ABDOMEN < 91.9” which is met for this person, so we move left.
We then encounter the clause “ABDOMEN < 85.45” which is not met so we move
right. This leads to the clause ”HEIGHT >= 71.88” which is true for this person.
So we move left. We then hit a terminal node, so this defines the group for this
individual. Putting all those conditions together, we have that individuals in
this group are defined by

• 85.45 ≤ ABDOMEN < 91.9
• HEIGHT ≥ 71.88

There is a displayed value for this group of 13.19 – this is the predicted value
for individuals in this group, namely the mean of the training data that fell into
this group.

Consider another terminal node, with the displayed (predicted) value of 30.04.
What is the set of conditions that describes the observations in this group?

8.2.1 How are categorical explanatory variables dealt
with?

For a categorical explanatory variable, it clearly does not make sense to put a
numerical cut-off across its value. For such variables, the groups (or splits) are
created by the possible combinations of the levels of the categorical variables.
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Specifically, suppose 𝑋𝑗 is a categorical variable that one of 𝑘 values given by:
{𝑎1, … , 𝑎𝑘}. Then possible conditions in the node of our tree are given by subsets
of these 𝑘 values; the condition is satisfied if the value of 𝑋𝑗 for the observation
is in this subset: go left if 𝑋𝑗 ∈ 𝑆 and go right if 𝑋𝑗 ∉ 𝑆.

Here is an example with categorical explanatory variables from our college
dataset. The variable CONTROL corresponded to the type of college (private,
public, or for profit)

Note that CONTROL is a categorical variable. Here is a decision tree based on the
college data:

Note the conditions CONTROL = bc and CONTROL = b appearing in the tree. Un-
fortunately the plotting command doesn’t actually give the names of the levels
in the tree, but uses “a”,“b”,… for the levels. We can see the levels of CONTROL:
levels(scorecard$CONTROL)

## [1] "public" "private" "for-profit"

So in CONTROL = b, “b” corresponds to the second level of the variable, in this
case “private”. So it is really CONTROL="private". CONTROL = bc corresponds
CONTROL being either “b” or “c”, i.e. in either the second OR third level of
CONTROL. This translates to observations where CONTROL is either “private”‘ OR
“for-profit”. (We will also see when we look at the R command that is creating
these trees below that you can work with the output to see this information
better, in case you forget.)

What are the set of conditions that define the group with prediction 0.7623?
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8.3 The Recursive Partitioning Algorithm

Finding the “best” such grouping or partitioning is a computationally challeng-
ing task, regardless of how we define “best”. In practice, a greedy algorithm,
called Recursive Partitioning, is employed which produces a reasonable group-
ing, albeit not guaranteeing to be the best grouping.

8.3.1 Fitting the Tree in R

Let’s first look at how we create the above trees in R. Recursive Partitioning is
done in R via the function rpart from the library rpart.

Let us first use the rpart function to fit a regression tree to the bodyfat dataset.
We will use BODYFAT as our response, and explanatory variables Age, Weight,
Height, Chest, Abdomen, Hip and Thigh. This is, in fact, the code that gave
us the tree above.
library(rpart)
rt = rpart(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

ABDOMEN + HIP + THIGH, data = body)

Notice we use a similar syntax as lm and glm to define the variable that is the
response and those that are the explanatory variables.

In addition to plotting the tree, we can look at a textual representation (which
can be helpful if it is difficult to see all of the tree or you want to be sure you
remember whether you go right or left)
print(rt)

## n= 252
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 252 17578.99000 19.150790
## 2) ABDOMEN< 91.9 132 4698.25500 13.606060
## 4) ABDOMEN< 85.45 66 1303.62400 10.054550
## 8) ABDOMEN< 75.5 7 113.54860 5.314286 *
## 9) ABDOMEN>=75.5 59 1014.12300 10.616950 *
## 5) ABDOMEN>=85.45 66 1729.68100 17.157580
## 10) HEIGHT>=71.875 19 407.33790 13.189470 *
## 11) HEIGHT< 71.875 47 902.23110 18.761700 *
## 3) ABDOMEN>=91.9 120 4358.48000 25.250000
## 6) ABDOMEN< 103 81 1752.42000 22.788890 *
## 7) ABDOMEN>=103 39 1096.45200 30.361540
## 14) ABDOMEN< 112.3 28 413.60000 28.300000
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## 28) HEIGHT>=72.125 8 89.39875 23.937500 *
## 29) HEIGHT< 72.125 20 111.04950 30.045000 *
## 15) ABDOMEN>=112.3 11 260.94910 35.609090 *

Note that the tree here only uses the variables Abdomen and Height even though
we gave many other variables. The other variables are not being used. This is
because the algorithm, which we will discuss below, does variable selection in
choosing the variables to use to split up observations.

Interaction Terms

You should note that rpart gives an error if you try to put in interaction
terms. This is because interaction is intrinsically included in decision trees
trees. You can see this by thinking about what an interaction is in our regression
framework: giving a different coefficient for variable 𝑋𝑗 based on what the value
of another variable 𝑋𝑘 is. For example, in our college data, a different slope for
the variable TUITIONFEE_OUT based on whether the college is private or public
is an interaction between TUITIONFEE_OUT and CONTROL.

Looking at our decision trees, we can see that the groups observations are put
in also have this property – the value of TUITIONFEE_OUT that puts you into one
group will also depend on the value of CONTROL. This is an indication of how
much more flexible decision trees are in their predictions than linear regression.

8.3.2 How is the tree constructed?

How does rpart construct this tree? Specifically, at each node of the tree, there
is a condition involving a variable and a cut-off. How does rpart choose the
variable and the cut-off?

The first split

Let us first understand how the first condition is selected at the top of the tree,
as this same process is repeated iteratively.

We’re going to assume that we have a continuous response (we’ll discuss varia-
tions to this procedure for binary response in the next section).

Our condition is going to consist of a variable and a cutoff 𝑐, or if the variable
is categorical, a subset 𝑆 of levels. For simplicity of notation, let’s just assume
that we are looking only at numerical data so we can assume for each condition
we need to find a variable 𝑗 and it’s corresponding cutoff 𝑐, i.e. the pair (𝑗, 𝑐).
Just remember for categorical variables it’s really (𝑗, 𝑆).
We are going to consider each possible variable and a possible cutoff 𝑐 find the
best (𝑗, 𝑐) pair for dividing the data into two groups. Specifically, each (𝑗, 𝑐)
pair, can divide the subjects into two groups:

• 𝐺1 given by observations with 𝑋𝑗 ≤ 𝑐
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• 𝐺2 given by observations with 𝑋𝑗 > 𝑐.
Then we need to evaluate which (𝑗, 𝑐) pair gives the best split of the data.

For any particular split, which defines groups 𝐺1 and 𝐺2, we have a predicted
value for each group, ̂𝑦1 and ̂𝑦2, corresponding to the mean of the observations
in group 𝐺1 and 𝐺2 (i.e. ̄𝑦1 and ̄𝑦2). This means that we can calculate the loss
(or error) in our prediction for each observation. Using standard squared-error
loss, this gives us the RSS for the split defined by (𝑗, 𝑐):

𝑅𝑆𝑆(𝑗, 𝑐) ∶= ∑
𝑖∈𝐺1

(𝑦𝑖 − ̄𝑦1)2 + ∑
𝑖∈𝐺2

(𝑦𝑖 − ̄𝑦2)2.

To find the best split, then, we compare the values 𝑅𝑆𝑆(𝑗, 𝑐) and pick the value
of 𝑗 and 𝑐 for which 𝑅𝑆𝑆(𝑗, 𝑐) is the smallest.

Further splits

The above procedure gives the first node (or split) of the data. The same process
continues down the tree, only now with a smaller portion of the data.

Specifically, the first node split the data into two groups 𝐺1 and 𝐺2. The next
step of the algorithm is to repeat the same process, only now with only the data
in 𝐺1 and 𝐺2 separately. Using the data in group 𝐺1 you find the variable 𝑋𝑗
and cutoff 𝑐 that divides the observations in 𝐺1 into two groups 𝐺11 and 𝐺12.
You find that split by determining the pair (𝑗, 𝑐) with the smallest 𝑅𝑆𝑆, just
like before. And similarly the observations in 𝐺2 are split into two by a different
pair (𝑗, 𝑐), obtaining groups 𝐺21 and 𝐺22.

This process continues, continuing to split the current sets of groups into two
each time.

Measuring the improvement due to the split

Just like in regression, the improvement in fit can be quantified by comparing
the error you get from adding variables (RSS) to the error you would have if
you just used the group mean (TSS). This same principle applies here. For each
split (𝑗, 𝑐), the smallest RSS,

min
𝑗,𝑐

𝑅𝑆𝑆(𝑗, 𝑐)

can be compared with the to the total variability in the data before splitting

𝑇 𝑆𝑆 = ∑
𝑖

(𝑦𝑖 − ̄𝑦)2.

Notice that TSS here is only calculated on the current set of observations in the
group you are trying to split.

The ratio
min𝑗,𝑐 𝑅𝑆𝑆(𝑗, 𝑐)

𝑇 𝑆𝑆
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is always smaller than 1 and the smaller it is, the greater we are gaining by the
split.

For example, for the bodyfat dataset, the total sum of squares before any split-
ting is 17578.99. After splitting based on “Abdomen < 91.9”, one gets two
groups with residuals sums of squares given by 4698.255 and 4358.48. There-
fore the reduction in the sum of squares is:
(4698.255 + 4358.48)/17578.99

## [1] 0.5152022

The reduction in error due to this split is therefore 0.5152. This is the greatest
reduction possible by splitting the data into two groups based on a variable and
a cut-off.

In the visualization of the decision tree, the length of the branches in the plot of
the tree are proportional to the reduction in error due to the split. In the bodyfat
dataset, the reduction in sum of squares due to the first split was 0.5152. For this
dataset, this is apparently a big reduction compared to subsequence reductions
and this is why it is plotted with such a long branch down to subsequent splits
(a common phenomena).

For every regression tree 𝑇 , we can define its global RSS in the following way.
Let the final groups generated by 𝑇 be 𝐺1, … , 𝐺𝑘. Then the RSS of 𝑇 is defined
as

𝑅𝑆𝑆(𝑇 ) ∶=
𝑚

∑
𝑗=1

∑
𝑖∈𝐺𝑗

(𝑦𝑖 − ̄𝑦𝑗)
2

where ̄𝑦1, … , ̄𝑦𝑚 denote the mean values of the response in each of the groups.

We can also define a notion of 𝑅2 for the regression tree as:

𝑅2(𝑇 ) ∶= 1 − 𝑅𝑆𝑆(𝑇 )
𝑇 𝑆𝑆 .

1 - (sum(residuals(rt)^2))/(sum((body$BODYFAT - mean(body$BODYFAT))^2))

## [1] 0.7354195

8.3.3 Tree Size and Pruning

Notice that as we continue to recursively split our groups, we have less and
less data each time on which to decide how to split the data. In principle we
could keep going until each group consisted of a single observation! Clearly we
don’t want to do that, which brings us to the biggest and most complicated
issue for decision trees. How large should the tree be “grown”? Very large trees
obviously lead to over-fitting, but insufficient number of splits will lead to poor
prediction. We’ve already seen a similar over-fitting phenomena in regression,
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where the more variables you include the better the fit will be on your training
data. Decision trees are have a similar phenomena only it is based on how big
the tree is – bigger trees will fit the training data better but may not generalize
to new data well creating over-fitting.

How is rpart deciding when to stop growing the tree?

In regression we saw that we could make this choice via cross-validation – we fit
our model on a portion of the tree and then evaluated it on the left out portion.
This is more difficult to conceptualize for trees. Specifically, with regression,
we could look at different a priori submodels (i.e. subset of variables), fit the
submodels to our random subsets of data, and calculate the cross-validation
error for each submodel to choose the best one. For our decision trees, however,
what would be our submodels be? We could consider different variables as input,
but this wouldn’t control the size of the tree, which is a big source of over-fitting.

One strategy is to instead stop when the improvement

min(𝑗,𝑐) 𝑅𝑆𝑆(𝑗, 𝑐)
𝑇 𝑆𝑆

is not very large. This would be the case when we are not gaining all that
much by splitting further. This is actually not a very smart strategy. Why?
Because you can actually sometimes split the data and get small amount of
improvements, but because you were able to split the data there, it allows you
to make another split later that adds a lot of improvement. Stopping the first
time you see a small improvement would keep you from discovering that future
improvement.

Regression and classification trees were invented by Leo Breiman from UC Berke-
ley. He also had a different approach for the tree size issue. He advocated
against stopping the recursive partitioning algorithm. Instead, he recommends
growing a full tree (or a very large tree), 𝑇max, and then “pruning” back 𝑇max
by cutting back lower level groupings. This allows you to avoid situations like
above, where you miss a great split because of an early unpromising split. This
“pruned” tree will be a subtree of the full tree.

How to Prune

The idea behind pruning a tree is to find a measure of how well a smaller
(prunned) tree is fitting the data that doesn’t suffer from the issue that larger
trees will always fit the training data better. If you think back to variable se-
lection in regression, in addition to cross-validation, we also have measures in
addition to cross-validation, like CP, AIC, and BIC, that didn’t involve resam-
pling, but had a form

𝑅(𝛼) = 𝑅𝑆𝑆 + 𝛼𝑘
In other words, use RSS as a measure of fit, but penalize models with a large
number of variables 𝑘 by adding a term 𝛼𝑘. Minimizing this quantity meant
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that smaller models with good fits could have a value 𝑅(𝛼) that was lower than
bigger models.

Breiman proposed a similar strategy for measuring the fit of a potential subtree
for pruning, but instead penalizing for the size of the tree rather than the number
of variables. Namely, for a possible subtree 𝑇 , define

𝑅𝛼(𝑇 ) ∶= 𝑅𝑆𝑆(𝑇 ) + 𝛼(𝑇 𝑆𝑆)|𝑇 |

where |𝑇 | is the number of terminal nodes of the tree 𝑇 . 𝑅𝛼(𝑇 ) is evaluated
for all the possible subtrees, and the subtree with the smallest 𝑅𝛼(𝑇 ) is chosen.
Since it depends on 𝛼, we will call the subtree that minimizes 𝑅𝛼(𝑇 ) 𝑇 (𝛼).
Obviously the number of possible subtrees and possible values of 𝛼 can be large,
but there is an algorithm (weakest link cutting) that simplifies the process. In
fact it can be shown that only a fixed number of 𝛼𝑘 values and the corresponding
optimal 𝑇 (𝛼𝑘) subtrees need to be considered. In other words you don’t need to
consider all 𝛼 values, but only a fixed set of 𝛼𝑘 values and compare the fit of their
optimal 𝑇 (𝛼𝑘) subtree. After obtaining this sequence of trees 𝑇 (𝛼1), 𝑇 (𝛼2), …,
the default choice in R is to take 𝛼∗ = 0.01 and then generating the tree 𝑇 (𝛼𝑘)
for the 𝛼𝑘 closest to 𝛼∗.1 The value of 𝛼∗ is set by the argument cp in rpart.

The 𝑝𝑟𝑖𝑛𝑡𝑐𝑝() function in R gives those fixed 𝛼𝑘 values for this data and also
gives the number of splits of the subtrees 𝑇 (𝛼𝑘) for each 𝑘:
printcp(rt)

##
## Regression tree:
## rpart(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN +
## HIP + THIGH, data = body)
##
## Variables actually used in tree construction:
## [1] ABDOMEN HEIGHT
##
## Root node error: 17579/252 = 69.758
##
## n= 252
##
## CP nsplit rel error xerror xstd
## 1 0.484798 0 1.00000 1.00618 0.081161
## 2 0.094713 1 0.51520 0.56445 0.048861
## 3 0.085876 2 0.42049 0.50963 0.045123
## 4 0.024000 3 0.33461 0.39540 0.033100
## 5 0.023899 4 0.31061 0.40685 0.033483
## 6 0.012125 5 0.28672 0.37517 0.031735
## 7 0.010009 6 0.27459 0.38122 0.030388

1specifically the 𝛼𝑘 such that 𝛼𝑘 ≤ 𝛼∗ < 𝛼𝑘−1
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## 8 0.010000 7 0.26458 0.38243 0.030431

Each row in the printcp output corresponds to a different tree 𝑇 (𝛼𝑘). Note
that each tree has an increasing number of splits. This is a property of the
𝑇 (𝛼𝑘) values, specifically that the best trees for each 𝛼𝑘 value will be nested
within each other, so going from 𝛼𝑘 to 𝛼𝑘+1 corresponds to adding an additional
split to one of the terminal nodes of 𝑇 (𝛼𝑘).

Also given in the printcp output are three other quantities:

• rel error: for a tree 𝑇 this simply 𝑅𝑆𝑆(𝑇 )/𝑇 𝑆𝑆. Because more deep
trees have smaller RSS, this quantity will always decrease as we go down
the column.

• xerror: an accuracy measure calculated by 10-fold cross validation (and
then divided by TSS). Notice before we mentioned the difficult in concep-
tualizing cross-validation. But now that we have the complexity parameter
𝛼, we can use this for cross-validation. Instead of changing the number of
variables 𝑘 and comparing the cross-validated error, we can change values
of 𝛼, fit the corresponding tree on random subsets of the data, and evalu-
ate the cross-validated error as to which value of 𝛼 is better. Notice that
this quantity will be random (i.e., different runs of 𝑟𝑝𝑎𝑟𝑡() will result in
different values for xerror); this is because 10-fold cross-validation relies
on randomly partitioning the data into 10 parts and the randomness of
this partition results in xerror being random.

• xstd: The quantity xstd provides a standard deviation for the random
quantity xerror. If we do not like the default choice of 0.01 for 𝛼, we can
choose a higher value of 𝛼 using 𝑥𝑒𝑟𝑟𝑜𝑟 and 𝑥𝑠𝑡𝑑.

For this particular run, the xerror seems to be smallest at 𝛼 = 0.012125 and
then xerror seems to increase. So we could give this value to the argument cp
in rpart instead of the default cp = 0.01.
rtd = rpart(BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST +

ABDOMEN + HIP + THIGH, data = body, cp = 0.0122)
plot(rtd)
text(rtd)
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We will then get a smaller tree. Now we get a tree with 5 splits or 6 terminal
nodes.

However, we would also note that xstd is around 0.032 = 0.033, so it’s not
clear that the difference between the xerror values for the different 𝛼 values is
terribly meaningful.

8.3.4 Classification Trees

The partitioning algorithm for classification trees (i.e. for a 0-1 response) is
the same, but we need to make sure we have an appropriate measurement for
deciding on which split is best at each iteration, and there are several to choose
from. We can still use the 𝑅𝑆𝑆 for binary response, which is the default in R,
in which case it has a useful simplification that we will discuss.

Specifically, as in the case of regression trees, we need to find the pair (𝑗, 𝑐)
corresponding to a variable 𝑋𝑗 and a cut-off 𝑐. (or a pair (𝑗, 𝑆) for variables
𝑋𝑗 that are categorical). Like regression trees, the pair (𝑗, 𝑐) divides the obser-
vations into the two groups 𝐺1 (where 𝑋𝑗 ≤ 𝑐) and 𝐺2 (where 𝑋𝑗 > 𝑐), and
we need to find the pair (𝑗, 𝑐) that gives the best fit to the data. We will go
through several measures.

8.3.4.1 RSS / Gini-Index

We can use the RSS as before,

𝑅𝑆𝑆(𝑗, 𝑐) ∶= ∑
𝑖∈𝐺1

(𝑦𝑖 − ̄𝑦1)2 + ∑
𝑖∈𝐺2

(𝑦𝑖 − ̄𝑦2)2

where ̄𝑦1 and ̄𝑦2 denote the mean values of the response in the groups 𝐺1 and
𝐺2 respectively. Since in classification problems the response values are 0 or 1,

̄𝑦1 equals the proportion of ones in 𝐺1 while ̄𝑦2 equals the proportion of ones in
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𝐺2. It is therefore better to denote ̄𝑦1 and ̄𝑦2 by ̂𝑝1 and ̂𝑝2 respectively, so that
the formula for 𝑅𝑆𝑆(𝑗, 𝑐) then simplifies to:

𝑅𝑆𝑆(𝑗, 𝑐) = 𝑛1 ̂𝑝1(1 − ̂𝑝1) + 𝑛2 ̂𝑝2(1 − ̂𝑝2).

This quantity is also called the Gini index of the split corresponding to the
pair (𝑗, 𝑐).
Notice that the Gini index involves calculating the function 𝑝(1 − 𝑝) for each
group’s proportion of 1’s:

This function takes its largest value at 𝑝 = 1/2 and it is small when 𝑝 is close
to 0 or 1.

Therefore the quantity
𝑛1 ̂𝑝1(1 − ̂𝑝1)

is small if either most of the response values in the group 𝐺1 are 0 (in which
case ̂𝑝1 is close to 0) or when most of the response values in the group are 1 (in
which case ̂𝑝1 ≈ 1).
A group is said to be pure if either most of the response values in the group
are 0 or if most of the response values are 1. Thus the quantity 𝑛1 ̂𝑝1(1 − ̂𝑝1)
measures the impurity of a group. If 𝑛1 ̂𝑝1(1 − ̂𝑝1) is low, then the group is pure
and if it is high, it is impure. The group is maximally impure if ̂𝑝1 = 1/2.
The Gini Index (which is 𝑅𝑆𝑆(𝑗, 𝑐)), is the sum of the impurities of the groups
defined by the split given by 𝑋𝑗 ≤ 𝑐 and 𝑋𝑗 > 𝑐. So that for binary data, the
recursive partitioning algorithm determines 𝑗 and 𝑐 as the one that divides the
observations into two groups with high amount of purity.

8.3.4.2 Other measures

The quantity 𝑛 ̂𝑝(1− ̂𝑝) is not the only function used for measuring the impurity
of a group in classification. The key property of the function 𝑝(1 − 𝑝) is that
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it is symmetric about 1/2, takes its maximum value at 1/2 and it is small near
the end points 𝑝 = 0 and 𝑝 = 1. Two other functions having this property are
also commonly used:

• Cross-entropy or Deviance: Defined as

−2𝑛 ( ̂𝑝 log ̂𝑝 + (1 − ̂𝑝) log(1 − ̂𝑝)) .

This also takes its smallest value when ̂𝑝 is 0 or 1 and it takes its maximum
value when ̂𝑝 = 1/2. We saw this value when we did logistic regression, as
a measure of the fit.

• Misclassification Error: This is defined as

𝑛min( ̂𝑝, 1 − ̂𝑝).

This quantity equals 0 when ̂𝑝 is 0 or 1 and takes its maximum value when
̂𝑝 = 1/2.

This is value is called misclassification error based on prediction using a
majority rule decision for prediction. Specifically, assume we predict
the response for an observation in group 𝐺 based on the which response
is seen the most in group 𝐺. Then the number of observations that are
misclassified by this rule will be equal to 𝑛min( ̂𝑝, 1 − ̂𝑝).

One can use Deviance or Misclassification error instead of the Gini index while
growing a classification tree. The default in R is to use the Gini index.

8.3.4.3 Application to spam email data

Let us apply the classification tree to the email spam dataset from the chapter
on logistic regression.
library(DAAG)
data(spam7)
spam = spam7

The only change to the rpart function to classification is to use the argument
method = "class".
sprt = rpart(yesno ~ crl.tot + dollar + bang + money +

n000 + make, method = "class", data = spam)
plot(sprt)
text(sprt)
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The tree construction works exactly as in the regression tree. We can look at
the various values of the 𝛼𝑘 parameter and the associated trees and errors using
the function printcp.
printcp(sprt)

##
## Classification tree:
## rpart(formula = yesno ~ crl.tot + dollar + bang + money + n000 +
## make, data = spam, method = "class")
##
## Variables actually used in tree construction:
## [1] bang crl.tot dollar
##
## Root node error: 1813/4601 = 0.39404
##
## n= 4601
##
## CP nsplit rel error xerror xstd
## 1 0.476558 0 1.00000 1.00000 0.018282
## 2 0.075565 1 0.52344 0.56977 0.015611
## 3 0.011583 3 0.37231 0.39548 0.013570
## 4 0.010480 4 0.36073 0.39217 0.013523
## 5 0.010000 5 0.35025 0.38610 0.013437

Notice that the xerror seems to decrease as cp decreases. We might want to
set the cp to be lower than 0.01 so see how the xerror changes:
sprt = rpart(yesno ~ crl.tot + dollar + bang + money +

n000 + make, method = "class", cp = 0.001, data = spam)
printcp(sprt)

##
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## Classification tree:
## rpart(formula = yesno ~ crl.tot + dollar + bang + money + n000 +
## make, data = spam, method = "class", cp = 0.001)
##
## Variables actually used in tree construction:
## [1] bang crl.tot dollar money n000
##
## Root node error: 1813/4601 = 0.39404
##
## n= 4601
##
## CP nsplit rel error xerror xstd
## 1 0.4765582 0 1.00000 1.00000 0.018282
## 2 0.0755654 1 0.52344 0.54881 0.015403
## 3 0.0115830 3 0.37231 0.38941 0.013484
## 4 0.0104799 4 0.36073 0.38555 0.013429
## 5 0.0063431 5 0.35025 0.36569 0.013139
## 6 0.0055157 10 0.31660 0.35025 0.012904
## 7 0.0044126 11 0.31109 0.34253 0.012784
## 8 0.0038610 12 0.30667 0.33867 0.012723
## 9 0.0027579 16 0.29123 0.32377 0.012482
## 10 0.0022063 17 0.28847 0.32212 0.012455
## 11 0.0019305 18 0.28627 0.32488 0.012500
## 12 0.0016547 20 0.28240 0.31771 0.012381
## 13 0.0010000 25 0.27413 0.31826 0.012391

Now the minimum xerror seems to be the tree with 16 splits (at cp = 0.0027).
A reasonable choice of cp here is therefore 0.0028. We can refit the classification
tree with this value of cp:
sprt = rpart(yesno ~ crl.tot + dollar + bang + money +

n000 + make, method = "class", cp = 0.0028, data = spam)
plot(sprt)
text(sprt)
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Predictions for Binary Data

Let us now talk about getting predictions from the classification tree. Prediction
is obtained in the usual way using the predict function. The predict function
results in predicted probabilities (not 0-1 values). Suppose we have an email
where crl.tot = 100, dollar = 3, bang = 0.33, money = 1.2, n000 = 0 and
make = 0.3. Then the predicted probability for this email being spam is given
by:
x0 = data.frame(crl.tot = 100, dollar = 3, bang = 0.33,

money = 1.2, n000 = 0, make = 0.3)
predict(sprt, newdata = x0)

## n y
## 1 0.04916201 0.950838

The predicted probability is 0.950838. If we want to convert this into a 0-1
prediction, we can do this via a confusion matrix in the same way as for logistic
regression.
y = as.numeric(spam$yesno == "y")
y.hat = predict(sprt, spam)[, 2]
v <- seq(0.1, 0.9, by = 0.05)
tree.conf = confusion(y, y.hat, thres = v)
plot(v, tree.conf[, "W1"] + tree.conf[, "W0"], xlab = "threshold",

ylab = "Total error", type = "l")
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It seems that it is pretty equivalent between 0.4 − 0.6, so it is seems the simple
choice of 0.5 is reasonable. This would give the following confusion matrix:

̂𝑦 = 0 ̂𝑦 = 1
𝑦 = 0 𝐶0 = 2624 𝑊1 = 164
𝑦 = 1 𝑊0 = 364 𝐶1 = 1449

8.4 Random Forests

Decision trees are very simple and intuitive, but they often do not perform well
in prediction compare to other techniques. They are too variable, with the
choice of variable 𝑋𝑗 and the cutoff 𝑐 changing a good deal with small changes
in the data. However, decisions trees form the building blocks for a much better
technique called random forests. Essentially a random forest is a collection
of decision trees (either regression or classification trees depending on the type
of response).

The idea behind random forests is to sample from your training data (like in
the bootstrap) to create new datasets, and fit decision trees to each of these
resampled data. This gives a large number of decision trees, from similar but
not exactly the same data. Then the prediction of a new observation is based
on combining the predictions of all these trees.2

8.4.1 Details of Constructing the Random Trees

We will construct 𝐵 total trees. The method for constructing the 𝑏𝑡ℎ tree (for
𝑏 = 1, … , 𝐵) is the following:

2This is an example of an ensemble method, where many models are fit on the data, or
variations of the data, and combined together to get a final prediction.
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1. Generate a new dataset having 𝑛 observations by resampling uniformly
at random with replacement from the existing set of observations. This
resampling is the same as in bootstrap. Of course, some of the original
set of observations will be repeated in this bootstrap sample (because of
with replacement draws) while some other observations might be dropped
altogether. The observations that do not appear in the bootstrap are
referred to as out of bag (o.o.b) observations.

2. Construct a decision tree based on the bootstrap sample. This tree con-
struction is almost the same as the construction underlying the rpart
function but with two important differences:

• Random selection of variables At each stage of splitting the data into
groups, 𝑘 number of variables are selected at random from the available
set of 𝑝 variables and only splits based on these 𝑘 variables are considered.
In contrast, in rpart, the best split is chosen by considering possible splits
from all 𝑝 explanatory variables and all thresholds.

So it can happen, for example, that the first split in the tree is chosen from
variables 1, 2, 3 resulting in two groups 𝐺1 and 𝐺2. But then in splitting
the group 𝐺1, the split might chosen from variables 4, 5, 6 and in further
splitting group 𝐺2, the next split might be based on variables 1, 5, 6 and
so on.

The rationale behind this random selection of variables is that often co-
variates are highly correlated with each other, and the choice of using one
𝑋𝑗 versus a variable 𝑋𝑘 is likely to be due to training observations you
have. Indeed we’ve seen in the body fat data, that the variables are highly
correlated with each other. On future data, a different variable 𝑋𝑘 might
perform better. So by actually forcing the tree to explore not always re-
lying on 𝑋𝑗, you are more likely to give good predictions for future data
that may not match your training data.

• No “pruning” of trees We discussed above how to choose the depth or
size of a tree, noting that too large of a tree results in a tree with a lot
of variability, as your groups are based on small sample sizes. However,
the tree construction in random forests the trees are actually grown to full
size. There is no pruning involved, i.e. no attempt to find the right size
tree. More precisely, each tree is grown till the number of observations in
each terminal node is no more than a size 𝑚. This, of course, means that
each individual tree will overfit the data. However, each individual tree
will overfit in a different way and when we average the predictions from
different trees, the overfitting will be removed.

At the end, we will have 𝐵 trees. These 𝐵 trees will all be different because
each tree will be based on a different bootstrapped dataset and also because of
our randomness choice of variables to consider in each split. The idea is that
these different models, that might be roughly similar, when put together will fit
future data more robustly.
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Prediction now works in the following natural way. Given a new observation
with explanatory variable values 𝑥1, … , 𝑥𝑝, each tree in our forest will yield a
prediction for the response of this new observation. Our final prediction will
simply take the average of the predictions of the individual trees (in case of
regression trees) or the majority vote of the predictions of the individual trees
in case of classification.

8.4.2 Application in R

We shall use the R function randomForest (in the package randomForest) for
constructing random forests. The following important parameters are

• ntree corresponding to 𝐵, the number of trees to fit. This should be large
(default choice is 500)

• mtry corresponding to 𝑘, the number of random variables to consider at
each split (whose default choice is 𝑝/3)

• nodesize corresponding to 𝑚, the maximum size allowed for any terminal
node (whose default size is 5)

Let us now see how random forests work for regression in the bodyfat dataset.

The syntax for the randomForest function works as follows:
library(randomForest)
ft = randomForest(BODYFAT ~ AGE + WEIGHT + HEIGHT +

CHEST + ABDOMEN + HIP + THIGH, data = body, importance = TRUE)
ft

##
## Call:
## randomForest(formula = BODYFAT ~ AGE + WEIGHT + HEIGHT + CHEST + ABDOMEN + HIP + THIGH, data = body, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 23.26881
## % Var explained: 66.64

R tells us that ntree is 500 and mtry (number of variables tried at each split)
is 2. We can change these values if we want.

The square of the mean of squared residuals roughly indicates the size of each
residual. These residuals are slightly different from the usual residuals in that
for each observation, the fitted value is computed from those trees where this
observation is out of bag. But you can ignore this detail.

The percent of variance explained is similar to 𝑅2. The importance = TRUE
clause inside the randomForest function gives some variable importance mea-
sures. These can be seen by:
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importance(ft)

## %IncMSE IncNodePurity
## AGE 10.26600 1086.051
## WEIGHT 14.15797 2252.906
## HEIGHT 11.97533 1204.042
## CHEST 15.96507 3120.295
## ABDOMEN 34.62901 5858.290
## HIP 14.45801 2050.055
## THIGH 11.03569 1369.466

The exact meaning of these importance measures is nicely described in the help
entry for the function importance. Basically, large values indicate these variables
were important for the prediction, roughly because many of the trees built as
part of the random forest used these variables.

The variable ABDOMEN seems to be the most important (this is unsurprising given
our previous experience with this dataset) for predicting bodyfat.

Now let us come to prediction with random forests. The R command for this
is exactly the same as before. Suppose we want to the body fat percentage for
a new individual whose AGE = 40, WEIGHT = 170, HEIGHT = 76, CHEST = 120,
ABDOMEN = 100, HIP = 101 and THIGH = 60. The prediction given by random
forest for this individual’s response is obtained via the function predict
x0 = data.frame(AGE = 40, WEIGHT = 170, HEIGHT = 76,

CHEST = 120, ABDOMEN = 100, HIP = 101, THIGH = 60)
predict(ft, x0)

## 1
## 24.34849

Now let us come to classification and consider the email spam dataset. The
syntax is almost the same as regression.
sprf = randomForest(as.factor(yesno) ~ crl.tot + dollar +

bang + money + n000 + make, data = spam)
sprf

##
## Call:
## randomForest(formula = as.factor(yesno) ~ crl.tot + dollar + bang + money + n000 + make, data = spam)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 2
##
## OOB estimate of error rate: 11.78%
## Confusion matrix:
## n y class.error
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## n 2643 145 0.05200861
## y 397 1416 0.21897408

The output is similar to the regression forest except that now we are also given
a confusion matrix as well as some estimate of the misclassification error rate.

Prediction is obtained in exactly the same was as regression forest via:
x0 = data.frame(crl.tot = 100, dollar = 3, bang = 0.33,

money = 1.2, n000 = 0, make = 0.3)
predict(sprf, x0)

## 1
## y
## Levels: n y

Note that unlike logistic regression and classification tree, this directly gives a
binary prediction (instead of a probability). So we don’t even need to worry
about thresholds.
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